[17]
Spijk JN, Van , Schoster A, Wittenbrink MM, Schmitt S. A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital ( 2012 – 2015 ). Schweizer Archiv für Tierheilkunde 2016; 158: 433-2.
[32]
Moormeier DE, Bayles KW. Micro review Staphylococcus aureus biofilm : a complex developmental organism. 2017; 104: 365-76.
[33]
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, et al. Options and limitations in clinical investigation of bacterial. Biofilms 2018; 31(3): 1-49.
[39]
De Aldecoa ALI, Zafra O, González-pastor JE. Mechanisms and regulation of extracellular dna release and its biological roles in microbial communities. Front Microbial 2017; 8(July): 1-19.
[44]
Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 2013; 16(5): 580-9.
[47]
Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2016; 2: 16022.
[49]
Lee J, Bae Y, Lee S, Lee S. Biofilm formation of staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J Food Sci 2015; 80(10): M2279-86.
[50]
Rajput A, Thakur A, Sharma S, Kumar M. a Biofilm : A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46: 894-900.
[53]
Shahiwala AF, Khan GA, Bostanooei NM. Efficacy of Levofloxacin , Chitosan and EDTA Combination against Methicillin Resistant Staphylococcus aureus Skin Infections : in vitro and in vivo evaluations. Int J Med Microbiol 2017; 1: 2-7.
[54]
Sultana N, Shafia S, Sultana SN, Habib Ur Rehman I, Kokiwar P, Stephen AS. Study of relation between prescribing pattern and antibiotic resistance pattern in a tertiary care hospital. Indo Am J Pharm 2015; 5(02): 1-6.
[56]
Soleimani M, Habibi-Pirkoohi M. Antimicrobial effect of silver nanoparticles on Staphylococcus aureus. GMJ 2016; 5(4): 200-7.
[58]
Chukwudi CU. rRNA binding sites and the molecular mechanism of action of the Tetracyclines. Antimicrob Agents Chemother 2016; 60(8): 4433-41.
[59]
Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 2016; 6(9): a025320.
[65]
Handzlik J, Matys A, Kieć-kononowicz K. Recent advances in Multi-Drug Resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics (Basel) 2013; 2(1): 28-45.
[72]
Aderibigbe BA, Mukaya HE. Polymer Therapeutics : Design , Application , and Pharmacokinetics. Nano- and Microscale Drug Delivery Systems 2017; 33-48.
[73]
Pelaz P del P. Nanobiotechnology.Zaragoza, Spain: Elsevier 2012; pp. 307-416.
[92]
Haneefa M, Jayandran M, Balasubramanian V. Evaluation of antimicrobial activity of green-synthesized manganese oxide nanoparticles and comparative studies with curcuminaniline functionalized nanoform. Asian J Pharm Clin Res 2017; 10(3): 347.
[93]
Mishra V, Sharma R, Jasuja ND, et al. A review on green synthesis of nanoparticles and evaluation of antimicrobial activity. Int J Green Herb Chem 2014; 3: 81-94.
[97]
Sondi I, Salopek-sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[102]
Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014; 2014: 1-4.
[103]
Mamat MH, Khusaimi Z, Musa MF, Rusop M. Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped Zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods. Sens Actuators A Phys 2011; 171(2): 241-7.
[106]
Mahapatra M. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 2013; 8: 4467-79.
[110]
Feris K, Otto C, Tinker J, et al. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 2010; 26(28): 4429-36.
[115]
Sharmila G, Thirumarimurugan M, Muthukumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. 2019; 145: 578-87.
[118]
Saha R, Subramani K, Petchi Muthu Raju SAK, Rangaraj S, Venkatachalam R. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. 2018; 124: 80-91.
[119]
Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater Sci Eng C Mater Biol Appl 2019; 102: 212-20.
[124]
Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Pharm Sci 2014; 6(6): 461-5.
[127]
Parmar S. Amit Gangwal NSD. Synthesis of plant mediated silver nanoparticles and antimicrobial activity in Cucumis sativa. J Nat Prod Plant Resour 2011; 2(4): 373-83.
[128]
Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopestic 2010; 3(1 SPEC.ISSUE): 394-9.
[133]
Singh R, Wagh P, Wadhwani S, et al. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 2013; 8: 4277-90.
[134]
Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2013; 2: 48-57.
[135]
Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R. Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B Biointerfaces 2010; 75: 175-8.