Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Challenges and Opportunities of Nanotechnological based Approach for the Treatment of Tuberculosis

Author(s): Goutam Rath*, Deepak Pradhan, Goutam Ghosh and Amit K. Goyal

Volume 27, Issue 17, 2021

Published on: 26 February, 2021

Page: [2026 - 2040] Pages: 15

DOI: 10.2174/1381612827666210226121359

Price: $65

Open Access Journals Promotions 2
Abstract

Mycobacterium tuberculosis, because of its unique biochemical behavior and a complex host relationship, successfully evades the host immune system. Therefore, chemotherapy appears to be the first-line option for patients with tuberculosis. However, poor patient compliance with anti-tubercular treatment and variability in anti-tubercular drug pharmacokinetics are among the major driving factors for the emergence of drug resistance. The rising cases of extrapulmonary TB, cross-resistance patterns, high prevalence of tuberculosis and HIV co-infections make tuberculosis treatment more complicated than conventional multidrug therapy. Due to their distinct advantages like higher solubility, increased payload, controlled release profiles, tissue-specific accumulation, and lack of toxicity, nanoscale materials have immense potential for drug delivery applications. An appropriate selection of polymer and careful particle engineering further improves therapeutic outcomes with opportunities to overcome conventional anti-tubercular drugs' challenges. The present review introduces the prospect of using nanotechnology in tuberculosis (TB) chemotherapy and provides a comprehensive overview of recent advances in nanocarriers implied for delivering anti-tubercular drugs.

Keywords: Anti-tubercular drugs, liposomes, lipid nanoparticles, polymeric nanoparticles, dendrimers, metallic nanoparticles.

[1]
Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb) 2010; 90(5): 279-92.
[http://dx.doi.org/10.1016/j.tube.2010.07.002] [PMID: 20709598]
[2]
Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature 2011; 469(7331): 483-90.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[3]
Tasneen R, Williams K, Amoabeng O, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother 2015; 59(1): 129-35.
[http://dx.doi.org/10.1128/AAC.03822-14] [PMID: 25331697]
[4]
Dye C. Global epidemiology of tuberculosis. Lancet 2006; 367(9514): 938-40.
[http://dx.doi.org/10.1016/S0140-6736(06)68384-0] [PMID: 16546542]
[5]
Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 2010; 62(4-5): 547-59.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[6]
Sarathy JP, Dartois V, Lee EJD. The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel) 2012; 5(11): 1210-35.
[http://dx.doi.org/10.3390/ph5111210] [PMID: 24281307]
[7]
Kaur M, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit Rev Ther Drug Carrier Syst 2014; 31(1): 49-88.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008285] [PMID: 24579767]
[8]
Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003; 16(3): 463-96.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[9]
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[10]
Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013; 441(1-2): 202-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.042] [PMID: 23220081]
[11]
Kalluru R, Fenaroli F, Westmoreland D, et al. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci 2013; 126(Pt 14): 3043-54.
[http://dx.doi.org/10.1242/jcs.121814] [PMID: 23687375]
[12]
Hari BNV, Chitra KP, Bhimavarapu R, Karunakaran P, Muthukrishnan N, Rani BS. Novel technologies: A weapon against tuberculosis. Indian J Pharmacol 2010; 42(6): 338-44.
[http://dx.doi.org/10.4103/0253-7613.71887] [PMID: 21189901]
[13]
Rawal T, Parmar R, Tyagi RK, Butani S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces 2017; 154: 321-30.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[14]
Feng H, Zhang L, Zhu C. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces 2013; 103: 530-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.007] [PMID: 23266829]
[15]
Hu C, Feng H, Zhu C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surf B Biointerfaces 2012; 95: 162-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.02.030] [PMID: 22424828]
[16]
Wu G, Chen L, Li H, Deng C-L, Chen X-F. Comparing microspheres with different internal phase of polyelectrolyte as local drug delivery system for bone tuberculosis therapy. Biomed Res Int 2014; 2014: 297808.
[17]
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 2017; 7: 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[18]
Singh J, Garg T, Rath G, Goyal AK. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review. Drug Deliv 2016; 23(5): 1676-98.
[http://dx.doi.org/10.3109/10717544.2015.1074765] [PMID: 26289212]
[19]
Garg T, Rath G, Murthy RR, Gupta UD, Vatsala PG, Goyal AK. Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Curr Pharm Des 2015; 21(22): 3076-89.
[http://dx.doi.org/10.2174/1381612821666150531163254] [PMID: 26027577]
[20]
Patil TS, Deshpande A, Shende PK, Deshpande S, Gaud R. Evaluation of nanocarrier-based dry powder formulations for inhalation with special reference to anti-tuberculosis drugs. Crit Rev Ther Drug Carrier Syst 2019; 36: 239-76.
[21]
Kaur M, Garg T, Narang RK. A review of emerging trends in the treatment of tuberculosis. Artif Cells Nanomed Biotechnol 2016; 44(2): 478-84.
[http://dx.doi.org/10.3109/21691401.2014.962745] [PMID: 25365354]
[22]
Garg T, Rath G, Goyal AK. Colloidal drug delivery systems: current status and future directions. Crit Rev Ther Drug Carrier Syst 2015; 32(2): 89-147.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015010159] [PMID: 25955882]
[23]
Cunha S, Amaral MH, Lobo JMS, Silva AC. Lipid nanoparticles for nasal/intranasal drug delivery. Crit Rev Ther Drug Carrier Syst 2017; 34(3): 257-82.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693] [PMID: 28845761]
[24]
Rajpoot K. Solid lipid nanoparticles: a promising nanomaterial in drug delivery. Curr Pharm Des 2019; 25(37): 3943-59.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[25]
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012; 64(5): 1020-37.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[26]
Hawthorne MF, Shelly K. Liposomes as drug delivery vehicles for boron agents. J Neurooncol 1997; 33(1-2): 53-8.
[http://dx.doi.org/10.1023/A:1005713113990] [PMID: 9151223]
[27]
Pandey R, Sharma S, Khuller GK. Lung specific stealth liposomes as antitubercular drug carriers in guinea pigs. Indian J Exp Biol 2004; 42(6): 562-6.
[PMID: 15260105]
[28]
Perrett S, Golding M, Williams WP. A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. J Pharm Pharmacol 1991; 43(3): 154-61.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb06657.x] [PMID: 1675270]
[29]
Niven RW, Speer M, Schreier H. Nebulization of liposomes. II. the effects of size and modeling of solute release profiles. Pharm Res 1991; 8(2): 217-21.
[http://dx.doi.org/10.1023/A:1015896121377] [PMID: 2023870]
[30]
Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des 2017; 23(3): 362-72.
[http://dx.doi.org/10.2174/1381612823666161116114732] [PMID: 27848886]
[31]
Mata-Espinosa D, Molina-Salinas GM, Barrios-Payán J, et al. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm Pharmacol Ther 2015; 32: 7-14.
[http://dx.doi.org/10.1016/j.pupt.2015.03.004] [PMID: 25843004]
[32]
Alyane M, Barratt G, Lahouel M. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells. Saudi Pharm J 2016; 24(2): 165-75.
[http://dx.doi.org/10.1016/j.jsps.2015.02.014] [PMID: 27013909]
[33]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[34]
Pinheiro M, Silva AS, Pisco S, Reis S. Interactions of isoniazid with membrane models: implications for drug mechanism of action. Chem Phys Lipids 2014; 183: 184-90.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.07.002] [PMID: 25016155]
[35]
Chimote G, Banerjee R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J Biomed Mater Res A 2009; 89(2): 281-92.
[http://dx.doi.org/10.1002/jbm.a.31959] [PMID: 18431766]
[36]
Ladavière C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine (Lond) 2015; 10(19): 3033-55.
[http://dx.doi.org/10.2217/nnm.15.128] [PMID: 26420270]
[37]
Zugic A, Tadic V, Savic S. Nano- and microcarriers as drug delivery systems for usnic acid: review of literature. Pharmaceutics 2020; 12(2): 156.
[http://dx.doi.org/10.3390/pharmaceutics12020156] [PMID: 32075296]
[38]
Bhardwaj A, Grobler A, Rath G, Goyal AK, Jain AK, Mehta A. Pulmonary delivery of anti-tubercular drugs using ligand anchored pH sensitive liposomes for the treatment of pulmonary tuberculosis. Curr Drug Deliv 2016; 13(6): 909-22.
[http://dx.doi.org/10.2174/1567201813666151231093605] [PMID: 26718489]
[39]
Yousefi-Manesh H, Shirooie S, Partoazar A, Nikoui V, Estakhri MRA, Bakhtiarian A. Hepatoprotective effects of phosphatidylserine liposomes on carbon tetrachloride-induced hepatotoxicity in rats. J Cell Biochem 2019; 120: 11853-8.
[http://dx.doi.org/10.1002/jcb.28464] [PMID: 30770580]
[40]
de Steenwinkel JEM, van Vianen W, Ten Kate MT, et al. Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice. J Antimicrob Chemother 2007; 60(5): 1064-73.
[http://dx.doi.org/10.1093/jac/dkm341] [PMID: 17846106]
[41]
Dhillon J, Fielding R, Adler-Moore J, Goodall RL, Mitchison D. The activity of low-clearance liposomal amikacin in experimental murine tuberculosis. J Antimicrob Chemother 2001; 48(6): 869-76.
[http://dx.doi.org/10.1093/jac/48.6.869] [PMID: 11733471]
[42]
Whitehead TC, Lovering AM, Cropley IM, Wade P, Davidson RN. Kinetics and toxicity of liposomal and conventional amikacin in a patient with multidrug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 1998; 17(11): 794-7.
[http://dx.doi.org/10.1007/s100960050189] [PMID: 9923523]
[43]
Donald PR, Sirgel FA, Venter A, et al. The early bactericidal activity of a low-clearance liposomal amikacin in pulmonary tuberculosis. J Antimicrob Chemother 2001; 48(6): 877-80.
[http://dx.doi.org/10.1093/jac/48.6.877] [PMID: 11733472]
[44]
Greco E, Quintiliani G, Santucci MB, et al. Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 2012; 109(21): E1360-8.
[http://dx.doi.org/10.1073/pnas.1200484109] [PMID: 22538807]
[45]
Kim M-J, Wainwright HC, Locketz M, et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2010; 2(7): 258-74.
[http://dx.doi.org/10.1002/emmm.201000079] [PMID: 20597103]
[46]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[47]
Mehta SK, Jindal N, Kaur G. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes. Colloids Surf B Biointerfaces 2011; 87(1): 173-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.018] [PMID: 21640561]
[48]
Moazeni E, Gilani K, Sotoudegan F, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul 2010; 27(7): 618-27.
[http://dx.doi.org/10.3109/02652048.2010.506579] [PMID: 20681747]
[49]
Gupta A, Pandya SM, Mohammad I, Agrawal AK, Mohan M, Misra A. Particulate pulmonary delivery systems containing anti-tuberculosis agents. Crit Rev Ther Drug Carrier Syst 2013; 30(4): 277-91.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005684] [PMID: 23662603]
[50]
El-Ridy MS, Abdelbary A, Nasr EA, et al. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev Ind Pharm 2011; 37(9): 1110-8.
[http://dx.doi.org/10.3109/03639045.2011.560605] [PMID: 21417612]
[51]
Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. J Liposome Res 2020; 30(2): 197-207.
[http://dx.doi.org/10.1080/08982104.2019.1614952] [PMID: 31060402]
[52]
Aboutaleb E, Noori M, Gandomi N, et al. Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett 2012; 2: 33.
[http://dx.doi.org/10.1186/2228-5326-2-33]
[53]
Gupta S, Kumar P, Gupta MK, Vyas S. Colloidal carriers: a rising tool for therapy of tuberculosis. Crit Rev Ther Drug Carrier Syst 2012; 29(4): 299-53.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i4.20] [PMID: 22746187]
[54]
Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb) 2005; 85(5-6): 415-20.
[http://dx.doi.org/10.1016/j.tube.2005.08.009] [PMID: 16256437]
[55]
Sanzhakov MA, Ipatova OM, Prozorovskiĭ VN, Medvedeva NV, Torkhovskaia TI. Interaction of rifampicin embedded in phospholipid nanoparticles with blood plasma lipoproteins. Biomed Khim 2014; 60(3): 348-53.
[http://dx.doi.org/10.18097/pbmc20146003348] [PMID: 25019397]
[56]
Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 2011; 28(5): 978-85.
[http://dx.doi.org/10.1007/s11095-010-0309-1] [PMID: 21057856]
[57]
Lu I-J, Fu Y-S, Chang W-Y, Wu P-C. Using microemulsion as carrier for drug transdermal delivery: the effect of surfactants and cosurfactants. Curr Pharm Des 2019; 25(10): 1052-8.
[http://dx.doi.org/10.2174/1381612825666190527091528] [PMID: 31131746]
[58]
Mehta SK, Kaur G. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties. J Colloid Interface Sci 2011; 356(2): 589-97.
[http://dx.doi.org/10.1016/j.jcis.2010.12.069] [PMID: 21292277]
[59]
Mehta SK, Kaur G, Bhasin KK. Tween-embedded microemulsions physicochemical and spectroscopic analysis for antitubercular drugs. AAPS PharmSciTech 2010; 11(1): 143-53.
[http://dx.doi.org/10.1208/s12249-009-9356-5] [PMID: 20087697]
[60]
Kaur G, Mehta SK, Kumar S, Bhanjana G, Dilbaghi N. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization. J Pharm Sci 2015; 104(7): 2203-12.
[http://dx.doi.org/10.1002/jps.24469] [PMID: 25951802]
[61]
Ahmed M, Ramadan W, Rambhu D, Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie 2008; 63(11): 806-11.
[PMID: 19069240]
[62]
Coler RN, Bertholet S, Pine SO, et al. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 2013; 207(8): 1242-52.
[http://dx.doi.org/10.1093/infdis/jis425] [PMID: 22891286]
[63]
Garg T, Goyal AK. Biomaterial-based scaffolds current status and future directions. Expert Opin Drug Deliv 2014; 11(5): 767-89.
[http://dx.doi.org/10.1517/17425247.2014.891014] [PMID: 24669779]
[64]
Minakshi P, Ghosh M, Brar B, et al. Nano-antimicrobials: a new paradigm for combating mycobacterial resistance. Curr Pharm Des 2019; 25(13): 1554-79.
[http://dx.doi.org/10.2174/1381612825666190620094041] [PMID: 31218956]
[65]
Garg T, Singh O, Arora S, Murthy R. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29(1): 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10] [PMID: 22356721]
[66]
Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm 2001; 224(1-2): 19-38.
[http://dx.doi.org/10.1016/S0378-5173(01)00720-7] [PMID: 11472812]
[67]
Hines DJ, Kaplan DL. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 2013; 30(3): 257-76.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475] [PMID: 23614648]
[68]
Petkar KC, Chavhan S, Kunda N, et al. Development of novel octanoyl chitosan nanoparticles for improved rifampicin pulmonary delivery: optimization by factorial design. AAPS PharmSciTech 2018; 19(4): 1758-72.
[http://dx.doi.org/10.1208/s12249-018-0972-9] [PMID: 29589222]
[69]
Ahmad MI, Nakpheng T, Srichana T. The safety of ethambutol dihydrochloride dry powder formulations containing chitosan for the possibility of treating lung tuberculosis. Inhal Toxicol 2014; 26(14): 908-17.
[http://dx.doi.org/10.3109/08958378.2014.975875] [PMID: 25472479]
[70]
Berezin AS, Skorik YA. Chitosan-isoniazid conjugates: Synthesis, evaluation of tuberculostatic activity, biodegradability and toxicity. Carbohydr Polym 2015; 127: 309-15.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.060] [PMID: 25965488]
[71]
El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine 2015; 10: 3269-74.
[http://dx.doi.org/10.2147/IJN.S74469] [PMID: 25995633]
[72]
Gangotri W, Jain-Raina R, Babbar SB. Evaluation of guar gum derivatives as gelling agents for microbial culture media. World J Microbiol Biotechnol 2012; 28(5): 2279-85.
[http://dx.doi.org/10.1007/s11274-012-1027-0] [PMID: 22806052]
[73]
Kaur R, Garg T, Das Gupta U, Gupta P, Rath G, Goyal AK. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs. Artif Cells Nanomed Biotechnol 2016; 44(1): 182-7.
[http://dx.doi.org/10.3109/21691401.2014.930747] [PMID: 24992699]
[74]
Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 2010; 385(1-2): 143-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.004] [PMID: 19819315]
[75]
Cassano R, Trombino S, Ferrarelli T, et al. Synthesis, characterization and in vitro antitubercular activity of isoniazid-gelatin conjugate. J Pharm Pharmacol 2012; 64(5): 712-8.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01461.x] [PMID: 22471367]
[76]
Ahmad Z, Khuller GK. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv 2008; 5(12): 1323-34.
[http://dx.doi.org/10.1517/17425240802600662] [PMID: 19040395]
[77]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
[PMID: 18610673]
[78]
Choonara YE, Pillay V, Ndesendo VMK, et al. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B Biointerfaces 2011; 87(2): 243-54.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.025] [PMID: 21664111]
[79]
Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst 2011; 28(1): 1-45.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i1.10] [PMID: 21395514]
[80]
Booysen LLIJ, Kalombo L, Brooks E, et al. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int J Pharm 2013; 444(1-2): 10-7.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.038] [PMID: 23357255]
[81]
Ohashi K, Kabasawa T, Ozeki T, Okada H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release 2009; 135(1): 19-24.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.027] [PMID: 19121349]
[82]
Kumar G, Sharma S, Shafiq N, Khuller GK, Malhotra S. Optimization, in vitro-in vivo evaluation, and short-term tolerability of novel levofloxacin-loaded PLGA nanoparticle formulation. J Pharm Sci 2012; 101(6): 2165-76.
[http://dx.doi.org/10.1002/jps.23087] [PMID: 22392918]
[83]
Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009; 38(3): 185-96.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[84]
Dobrovolskaia MA. Dendrimers effects on the immune system: insights into toxicity and therapeutic utility. Curr Pharm Des 2017; 23(21): 3134-41.
[http://dx.doi.org/10.2174/1381612823666170309151958] [PMID: 28294045]
[85]
Winnicka K, Wroblewska M, Sosnowska K, Car H, Kasacka I. Evaluation of cationic polyamidoamine dendrimers’ dermal toxicity in the rat skin model. Drug Des Devel Ther 2015; 9: 1367-77.
[http://dx.doi.org/10.2147/DDDT.S78336] [PMID: 25834395]
[86]
Bellini RG, Guimarães AP, Pacheco MAC, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 2015; 60: 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[87]
Bharatwaj B, Mohammad AK, Dimovski R, et al. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 2015; 12(3): 826-38.
[http://dx.doi.org/10.1021/mp500662z] [PMID: 25455560]
[88]
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006; 14(8): 546-56.
[http://dx.doi.org/10.1080/10611860600825159] [PMID: 17050121]
[89]
Falkinham JO III, Macri RV, Maisuria BB, et al. Antibacterial activities of dendritic amphiphiles against nontuberculous mycobacteria. Tuberculosis (Edinb) 2012; 92(2): 173-81.
[http://dx.doi.org/10.1016/j.tube.2011.12.002] [PMID: 22209468]
[90]
Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 2010; 79(2): 467-79.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.016] [PMID: 20627665]
[91]
Moretton MA, Hocht C, Taira C, Sosnik A. Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine (Lond) 2014; 9(11): 1635-50.
[http://dx.doi.org/10.2217/nnm.13.154] [PMID: 24410279]
[92]
Grotz E, Tateosian NL, Salgueiro J, et al. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J Drug Deliv Sci Technol 2019; 53: 101170.
[http://dx.doi.org/10.1016/j.jddst.2019.101170]
[93]
Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface 2012; 9(68): 487-502.
[http://dx.doi.org/10.1098/rsif.2011.0414] [PMID: 21865255]
[94]
Pepić I, Lovrić J, Hafner A, Filipović-Grčić J. Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug Dev Ind Pharm 2014; 40(7): 944-51.
[http://dx.doi.org/10.3109/03639045.2013.791831] [PMID: 23627442]
[95]
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res 2020; 24: 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[96]
Chavhan SS, Petkar KC, Sawant KK. Nanosuspensions in drug delivery: recent advances, patent scenarios, and commercialization aspects. Crit Rev Ther Drug Carrier Syst 2011; 28(5): 447-88.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i5.20] [PMID: 22077201]
[97]
Arora D, Khurana B, Rath G, Nanda S, Goyal AK. Recent advances in nanosuspension technology for drug delivery. Curr Pharm Des 2018; 24(21): 2403-15.
[http://dx.doi.org/10.2174/1381612824666180522100251] [PMID: 29788880]
[98]
Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
[http://dx.doi.org/10.1093/jac/45.1.77] [PMID: 10629016]
[99]
Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnology 2012; 10: 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[100]
Bhardwaj A, Kumar L, Narang RK, Murthy RSR. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif Cells Nanomed Biotechnol 2013; 41(1): 52-9.
[http://dx.doi.org/10.3109/10731199.2012.702316] [PMID: 22889361]
[101]
El-Ridy MS, Yehia SA, Kassem MA-E-M, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv 2015; 22(1): 21-36.
[http://dx.doi.org/10.3109/10717544.2013.868556] [PMID: 24359403]
[102]
Patil-Gadhe A, Pokharkar V. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm Pharmacol Ther 2014; 27(2): 197-207.
[http://dx.doi.org/10.1016/j.pupt.2013.07.006] [PMID: 23916767]
[103]
Vadakkan MV, Annapoorna K, Sivakumar KC, Mundayoor S, Kumar GSV. Dry powder cationic lipopolymeric nanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine 2013; 8: 2871-85.
[http://dx.doi.org/10.2147/IJN.S47456] [PMID: 23990716]
[104]
Bhardwaj A, Mehta S, Yadav S, et al. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(6): 1544-55.
[http://dx.doi.org/10.3109/21691401.2015.1062389] [PMID: 26178768]
[105]
Garg T, Rath G, Goyal AK. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol 2016; 44(3): 997-1001.
[http://dx.doi.org/10.3109/21691401.2015.1008508] [PMID: 25682840]
[106]
Lacerda L, Parize AL, Fávere V, Laranjeira MCM, Stulzer HK. Development and evaluation of pH-sensitive sodium alginate/chitosan microparticles containing the antituberculosis drug rifampicin. Mater Sci Eng C 2014; 39: 161-7.
[http://dx.doi.org/10.1016/j.msec.2014.01.054] [PMID: 24863212]
[107]
Gajendiran M, Gopi V, Elangovan V, Murali RV, Balasubramanian S. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release. Colloids Surf B Biointerfaces 2013; 104: 107-15.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.008] [PMID: 23298594]
[108]
Varma JNR, Kumar TS, Prasanthi B, Ratna JV. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: efficiency for alveolar macrophage targeting. Indian J Pharm Sci 2015; 77(3): 258-66.
[http://dx.doi.org/10.4103/0250-474X.159602] [PMID: 26180270]
[109]
Goyal AK, Garg T, Rath G, Gupta UD, Gupta P. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol Pharm 2015; 12(11): 3839-50.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00016] [PMID: 26436948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy