Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Shedding Light on the Pathophysiology of Preeclampsia-Syndrome in the Era of Cardio-Obstetrics: Role of Inflammation and Endothelial Dysfunction

Author(s): María M. Pereira, Juan Torrado, Claudio Sosa, Yanina Zócalo and Daniel Bia*

Volume 18, Issue 1, 2022

Published on: 18 February, 2021

Page: [17 - 33] Pages: 17

DOI: 10.2174/1573402117666210218105951

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Preeclampsia (PE) is a pregnancy complication with serious maternal and neonatal consequences worldwide. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction are the most useful clinical approach to reduce the PE burden.

Introduction: Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase the risk of PE dramatically provides a critical opportunity to improve outcomes by acting on potentially reversible factors, and also contributes to better understand this pathophysiologic enigma.

Methods: Pertinent studies were searched in PubMed/Medline and Google Scholar (updated August 2020) using common keywords applied in the field of preeclampsia, inflammation and endothelial dysfunction. Given the design of this work as a narrative review, no formal criteria for study selection or appraisal were utilized.

Conclusion: In this review, we highlight major clinical contributors of PE and shed light on their potential link with endothelial dysfunction and inflammation.

Keywords: Preeclampsia, risk factors, cardiovascular system, endothelial dysfunction, inflammation, inflammasome.

Graphical Abstract
[1]
Robillard PY, Dekker G, Chaouat G, Scioscia M, Iacobelli S, Hulsey TC. Historical evolution of ideas on eclampsia/preeclampsia: A proposed optimistic view of preeclampsia. J Reprod Immunol 2017; 123: 72-7.
[http://dx.doi.org/10.1016/j.jri.2017.09.006] [PMID: 28941881]
[2]
Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 2012; 36(1): 56-9.
[http://dx.doi.org/10.1053/j.semperi.2011.09.011] [PMID: 22280867]
[3]
Brown MA, Magee LA, Kenny LC, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2018; 13: 291-310.
[http://dx.doi.org/10.1016/j.preghy.2018.05.004] [PMID: 29803330]
[4]
ACOG Practice Bulletin No 202: Gestational Hypertension and Preeclampsia. Obstet Gynecol 2019; 133(1): e1-e25.
[PMID: 31241598]
[5]
Roberts J M, Gammill H S. Preeclampsia: recent insights. Hypertension (Dallas, Tex : 1979) 2005; 46(6): 1243-9.
[6]
Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 2005; 330(7491): 565.
[http://dx.doi.org/10.1136/bmj.38380.674340.E0] [PMID: 15743856]
[7]
Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 2016; 353: i1753.
[http://dx.doi.org/10.1136/bmj.i1753] [PMID: 27094586]
[8]
Lopez-Jaramillo P, Barajas J, Rueda-Quijano SM, Lopez-Lopez C, Felix C. Obesity and Preeclampsia: Common Pathophysiological Mechanisms. Front Physiol 2018; 9: 1838.
[http://dx.doi.org/10.3389/fphys.2018.01838] [PMID: 30618843]
[9]
Sciatti E, Cavazzana I, Vizzardi E, et al. Systemic lupus erythematosus and endothelial dysfunction: a close relationship. Curr Rheumatol Rev 2019; 15(3): 177-88.
[http://dx.doi.org/10.2174/1573397115666181126105318] [PMID: 30474532]
[10]
Mihai S, Codrici E, Popescu ID, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res 2018; 2018: 2180373.
[http://dx.doi.org/10.1155/2018/2180373] [PMID: 30271792]
[11]
von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy 2003; 22(2): 143-8.
[http://dx.doi.org/10.1081/PRG-120021060] [PMID: 12908998]
[12]
Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol 2016; 11(6): 1102-13.
[http://dx.doi.org/10.2215/CJN.12081115] [PMID: 27094609]
[13]
Aardema MW, Oosterhof H, Timmer A, van Rooy I, Aarnoudse JG. Uterine artery doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta 2001; 22(5): 405-11.
[http://dx.doi.org/10.1053/plac.2001.0676] [PMID: 11373150]
[14]
Henderson JT, Thompson JH, Burda BU, Cantor A, Beil T, Whitlock EP. U.S. Preventive services task force evidence syntheses, formerly systematic evidence reviews.Screening for preeclampsia: a systematic evidence review for the us preventive services task force, agency for healthcare research and quality (us): rockville (MD). 2017.
[15]
Bianco A, Stone J, Lynch L, Lapinski R, Berkowitz G, Berkowitz RL. Pregnancy outcome at age 40 and older. Obstet Gynecol 1996; 87(6): 917-22.
[http://dx.doi.org/10.1016/0029-7844(96)00045-2] [PMID: 8649698]
[16]
Ogawa K, Urayama KY, Tanigaki S, et al. Association between very advanced maternal age and adverse pregnancy outcomes: a cross sectional Japanese study. BMC Pregnancy Childbirth 2017; 17(1): 349.
[http://dx.doi.org/10.1186/s12884-017-1540-0] [PMID: 29017467]
[17]
Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 2017; 70(6): 776-803.
[http://dx.doi.org/10.1016/j.jacc.2017.04.025] [PMID: 28461007]
[18]
Sibai BM, Lindheimer M, Hauth J, et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. N Engl J Med 1998; 339(10): 667-71.
[http://dx.doi.org/10.1056/NEJM199809033391004] [PMID: 9725924]
[19]
Chappell LC, Enye S, Seed P, Briley AL, Poston L, Shennan AH. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension 2008; 51(4): 1002-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.107565] [PMID: 18259010]
[20]
Wei Y, Xu Q, Yang H, et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China. PLoS Med 2019; 16(10): e1002926.
[http://dx.doi.org/10.1371/journal.pmed.1002926] [PMID: 31574092]
[21]
American Diabetes Association. 14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020; 43(Suppl. 1): S183-92.
[http://dx.doi.org/10.2337/dc20-S014] [PMID: 31862757]
[22]
Yogev, Chen; Hod, Coustan, Oats, McIntyre, Metzger, Lowe, Dyer, Dooley, Trimble, McCance, Hadden, Persson, Rogers; Hyperglycemia and adverse pregnancy outcome (HAPO) study: preeclampsia. Am J Obstet Gynecol 2010; 202(3): 255.e1-7.
[23]
Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005; 352(24): 2477-86.
[http://dx.doi.org/10.1056/NEJMoa042973] [PMID: 15951574]
[24]
Ringholm L, Damm P, Mathiesen ER. Improving pregnancy outcomes in women with diabetes mellitus: modern management. Nat Rev Endocrinol 2019; 15(7): 406-16.
[http://dx.doi.org/10.1038/s41574-019-0197-3] [PMID: 30948803]
[25]
Landon MB, Spong CY, Thom E, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009; 361(14): 1339-48.
[http://dx.doi.org/10.1056/NEJMoa0902430] [PMID: 19797280]
[26]
Poolsup N, Suksomboon N, Amin M. Effect of treatment of gestational diabetes mellitus: a systematic review and meta-analysis. PLoS One 2014; 9(3): e92485.
[http://dx.doi.org/10.1371/journal.pone.0092485] [PMID: 24658089]
[27]
Shore S, Jones PG, Maddox TM, et al. Longitudinal persistence with secondary prevention therapies relative to patient risk after myocardial infarction. Heart 2015; 101(10): 800-7.
[http://dx.doi.org/10.1136/heartjnl-2014-306754] [PMID: 25801001]
[28]
He XJ, Dai RX, Hu CL. Maternal prepregnancy overweight and obesity and the risk of preeclampsia: A meta-analysis of cohort studies. Obes Res Clin Pract 2020; 14(1): 27-33.
[http://dx.doi.org/10.1016/j.orcp.2020.01.004] [PMID: 32035840]
[29]
Lateef A, Petri M. Systemic Lupus Erythematosus and Pregnancy. Rheum Dis Clin North Am 2017; 43(2): 215-26.
[http://dx.doi.org/10.1016/j.rdc.2016.12.009] [PMID: 28390564]
[30]
Kwok LW, Tam LS, Zhu T, Leung YY, Li E. Predictors of maternal and fetal outcomes in pregnancies of patients with systemic lupus erythematosus. Lupus 2011; 20(8): 829-36.
[http://dx.doi.org/10.1177/0961203310397967] [PMID: 21543513]
[31]
Buyon JP, Kim MY, Salmon JE. Predictors of Pregnancy Outcomes in Patients With Lupus. Ann Intern Med 2016; 164(2): 131.
[http://dx.doi.org/10.7326/L15-0500] [PMID: 26784479]
[32]
Chen D, Lao M, Zhang J, et al. Fetal and maternal outcomes of planned pregnancy in patients with systemic lupus erythematosus: a retrospective multicenter study. J Immunol Res 2018; 2018: 2413637.
[http://dx.doi.org/10.1155/2018/2413637] [PMID: 30255104]
[33]
Zhang JJ, Ma XX, Hao L, Liu LJ, Lv JC, Zhang H. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin J Am Soc Nephrol 2015; 10(11): 1964-78.
[http://dx.doi.org/10.2215/CJN.09250914] [PMID: 26487769]
[34]
Crandon AJ, Isherwood DM. Effect of aspirin on incidence of pre-eclampsia. Lancet 1979; 1(8130): 1356.
[http://dx.doi.org/10.1016/S0140-6736(79)91996-2] [PMID: 87824]
[35]
Askie LM, Duley L, Henderson-Smart DJ, Stewart LA. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet 2007; 369(9575): 1791-8.
[http://dx.doi.org/10.1016/S0140-6736(07)60712-0] [PMID: 17512048]
[36]
Rolnik DL, Wright D, Poon LCY, et al. ASPRE trial: performance of screening for preterm pre-eclampsia. Ultrasound Obstet Gynecol 2017; 50(4): 492-5.
[http://dx.doi.org/10.1002/uog.18816] [PMID: 28741785]
[37]
Bose P, Black S, Kadyrov M, et al. Heparin and aspirin attenuate placental apoptosis in vitro: implications for early pregnancy failure. Am J Obstet Gynecol 2005; 192(1): 23-30.
[http://dx.doi.org/10.1016/j.ajog.2004.09.029] [PMID: 15671997]
[38]
Panagodage S, Yong HE, Da Silva Costa F, et al. Low-Dose Acetylsalicylic Acid Treatment Modulates the Production of Cytokines and Improves Trophoblast Function in an in Vitro Model of Early-Onset Preeclampsia. Am J Pathol 2016; 186(12): 3217-24.
[http://dx.doi.org/10.1016/j.ajpath.2016.08.010] [PMID: 27750048]
[39]
Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 2015; 10(9): 1024-94.
[40]
Hofmeyr GJ, Lawrie TA, Atallah AN, Torloni MR. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev 2018; 10: CD001059.
[http://dx.doi.org/10.1002/14651858.CD001059.pub5] [PMID: 30277579]
[41]
Lam MTC, Dierking E. Intensive Care Unit issues in eclampsia and HELLP syndrome. Int J Crit Illn Inj Sci 2017; 7(3): 136-41.
[http://dx.doi.org/10.4103/IJCIIS.IJCIIS_33_17] [PMID: 28971026]
[42]
Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy 2011; 2011: 214365.
[http://dx.doi.org/10.1155/2011/214365] [PMID: 21547086]
[43]
Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2017; 10(2): e003497.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.116.003497] [PMID: 28228456]
[44]
Kristensen JH, Basit S, Wohlfahrt J, Damholt MB, Boyd HA. Pre-eclampsia and risk of later kidney disease: nationwide cohort study. BMJ 2019; 365: l1516.
[http://dx.doi.org/10.1136/bmj.l1516] [PMID: 31036557]
[45]
Garovic VD, White WM, Vaughan L, et al. Incidence and Long-Term Outcomes of Hypertensive Disorders of Pregnancy. J Am Coll Cardiol 2020; 75(18): 2323-34.
[http://dx.doi.org/10.1016/j.jacc.2020.03.028] [PMID: 32381164]
[46]
Auger N, Potter BJ, He S, Healy-Profitós J, Schnitzer ME, Paradis G. Maternal Cardiovascular Disease 3 Decades After Preterm Birth: Longitudinal Cohort Study of Pregnancy Vascular Disorders. Hypertension 2020; 75(3): 788-95.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14221] [PMID: 32008431]
[47]
Jayet PY, Rimoldi SF, Stuber T, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 2010; 122(5): 488-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.941203] [PMID: 20644018]
[48]
Stuart JJ, Tanz LJ, Missmer SA, et al. Hypertensive Disorders of Pregnancy and Maternal Cardiovascular Disease Risk Factor Development: An Observational Cohort Study. Ann Intern Med 2018; 169(4): 224-32.
[http://dx.doi.org/10.7326/M17-2740] [PMID: 29971437]
[49]
Honigberg MC, Zekavat SM, Aragam K, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol 2019; 74(22): 2743-54.
[http://dx.doi.org/10.1016/j.jacc.2019.09.052] [PMID: 31727424]
[50]
Diniz ALD, Paes MMBM, Diniz AD. Analyzing preeclampsia as the tip of the iceberg represented by women with long-term cardiovascular disease, atherosclerosis, and inflammation. Curr Atheroscler Rep 2020; 22(3): 13.
[http://dx.doi.org/10.1007/s11883-020-0830-6] [PMID: 32078066]
[51]
Chen CW, Jaffe IZ, Karumanchi SA. Pre-eclampsia and cardiovascular disease. Cardiovasc Res 2014; 101(4): 579-86.
[http://dx.doi.org/10.1093/cvr/cvu018] [PMID: 24532051]
[52]
Wu P, Mamas MA, Gulati M. Pregnancy As a Predictor of Maternal Cardiovascular Disease: The Era of CardioObstetrics. J Womens Health (Larchmt) 2019; 28(8): 1037-50.
[http://dx.doi.org/10.1089/jwh.2018.7480] [PMID: 31408425]
[53]
Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 1989; 161(5): 1200-4.
[http://dx.doi.org/10.1016/0002-9378(89)90665-0] [PMID: 2589440]
[54]
Pi X, Xie L, Patterson C. Emerging Roles of Vascular Endothelium in Metabolic Homeostasis. Circ Res 2018; 123(4): 477-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313237] [PMID: 30355249]
[55]
Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111(5): 649-58.
[http://dx.doi.org/10.1172/JCI17189] [PMID: 12618519]
[56]
Venkatesha S, Toporsian M, Lam C, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12(6): 642-9.
[http://dx.doi.org/10.1038/nm1429] [PMID: 16751767]
[57]
Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int J Mol Sci 2019; 20(17): E4246.
[http://dx.doi.org/10.3390/ijms20174246] [PMID: 31480243]
[58]
Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 2006; 355(10): 992-1005.
[http://dx.doi.org/10.1056/NEJMoa055352] [PMID: 16957146]
[59]
Osol G, Celia G, Gokina N, et al. Placental growth factor is a potent vasodilator of rat and human resistance arteries. Am J Physiol Heart Circ Physiol 2008; 294(3): H1381-7.
[http://dx.doi.org/10.1152/ajpheart.00922.2007] [PMID: 18192215]
[60]
Launay-Vacher V, Deray G. Hypertension and proteinuria: a class-effect of antiangiogenic therapies. Anticancer Drugs 2009; 20(1): 81-2.
[http://dx.doi.org/10.1097/CAD.0b013e3283161012] [PMID: 19343005]
[61]
Vigneau C, Lorcy N, Dolley-Hitze T, et al. All anti-vascular endothelial growth factor drugs can induce ‘pre-eclampsia-like syndrome’: a RARe study. Nephrol Dial Transplant 2014; 29(2): 325-32.
[http://dx.doi.org/10.1093/ndt/gft465] [PMID: 24302609]
[62]
Lankhorst S, Danser AH, van den Meiracker AH. Endothelin-1 and antiangiogenesis. Am J Physiol Regul Integr Comp Physiol 2016; 310(3): R230-4.
[http://dx.doi.org/10.1152/ajpregu.00373.2015] [PMID: 26511523]
[63]
Thijs AM, van Herpen CM, Sweep FC, et al. Role of endogenous vascular endothelial growth factor in endothelium-dependent vasodilation in humans. Hypertension 2013; 61(5): 1060-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00841] [PMID: 23509076]
[64]
Buttrup Larsen S, Wallukat G, Schimke I, et al. Functional autoantibodies against Endothelin-1 receptor type A and Angiotensin II receptor type 1 in patients with preeclampsia. Pregnancy Hypertens 2018; 14: 189-94.
[http://dx.doi.org/10.1016/j.preghy.2018.10.002] [PMID: 30527110]
[65]
Buckalew V M. Role of endogenous digitalis-like factors in the clinical manifestations of severe preeclampsia: a sytematic review. Clinical science (London, England : 1979) 2018; 132(12): 1215-42.
[66]
Ehrig JC, Horvat D, Allen SR, Jones RO, Kuehl TJ, Uddin MN. Cardiotonic steroids induce anti-angiogenic and anti-proliferative profiles in first trimester extravillous cytotrophoblast cells. Placenta 2014; 35(11): 932-6.
[http://dx.doi.org/10.1016/j.placenta.2014.07.014] [PMID: 25149386]
[67]
Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39(2): 257-65.
[http://dx.doi.org/10.1016/S0735-1097(01)01746-6] [PMID: 11788217]
[68]
Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation 2007; 115(18): 2390-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.678276] [PMID: 17452608]
[69]
Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta- analysis. Int J Cardiol 2013; 168(1): 344-51.
[http://dx.doi.org/10.1016/j.ijcard.2012.09.047] [PMID: 23041097]
[70]
Dørup I, Skajaa K, Sørensen KE. Normal pregnancy is associated with enhanced endothelium-dependent flow-mediated vasodilation. Am J Physiol 1999; 276(3): H821-5.
[PMID: 10070064]
[71]
Savvidou MD, Hingorani AD, Tsikas D, Frölich JC, Vallance P, Nicolaides KH. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet 2003; 361(9368): 1511-7.
[http://dx.doi.org/10.1016/S0140-6736(03)13177-7] [PMID: 12737861]
[72]
Torrado J, Zócalo Y, Farro I, et al. Normal pregnancy is associated with changes in central hemodynamics and enhanced recruitable, but not resting, endothelial function. Int J Reprod Med 2015; 2015: 250951.
[http://dx.doi.org/10.1155/2015/250951] [PMID: 26421317]
[73]
Torrado J, Farro I, Zócalo Y, et al. Preeclampsia is associated with increased central aortic pressure, elastic arteries stiffness and wave reflections, and resting and recruitable endothelial dysfunction. Int J Hypertens 2015; 2015: 720683.
[http://dx.doi.org/10.1155/2015/720683] [PMID: 26351578]
[74]
Weissgerber TL, Milic NM, Milin-Lazovic JS, Garovic VD. Impaired Flow-Mediated Dilation Before, During, and After Preeclampsia: A Systematic Review and Meta-Analysis. Hypertension 2016; 67(2): 415-23.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06554] [PMID: 26711737]
[75]
Khan F, Belch JJ, MacLeod M, Mires G. Changes in endothelial function precede the clinical disease in women in whom preeclampsia develops. Hypertension 2005; 46(5): 1123-8.
[http://dx.doi.org/10.1161/01.HYP.0000186328.90667.95] [PMID: 16230524]
[76]
Kirollos S, Skilton M, Patel S, Arnott C. A Systematic review of vascular structure and function in pre-eclampsia: non-invasive assessment and mechanistic links. Front Cardiovasc Med 2019; 6: 166.
[http://dx.doi.org/10.3389/fcvm.2019.00166] [PMID: 31803759]
[77]
Noori M, Donald AE, Angelakopoulou A, Hingorani AD, Williams DJ. Prospective study of placental angiogenic factors and maternal vascular function before and after preeclampsia and gestational hypertension. Circulation 2010; 122(5): 478-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.895458] [PMID: 20644016]
[78]
Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 2007; 65(12 Pt 2): S194-202.
[http://dx.doi.org/10.1301/nr.2007.dec.S194-S202] [PMID: 18240548]
[79]
Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 1993; 14(7): 353-6.
[http://dx.doi.org/10.1016/0167-5699(93)90235-D] [PMID: 8363725]
[80]
Burns WR, Wang Y, Tang PC, et al. Recruitment of CXCR3+ and CCR5+ T cells and production of interferon-gamma-inducible chemokines in rejecting human arteries. Am J Transplant 2005; 5(6): 1226-36.
[http://dx.doi.org/10.1111/j.1600-6143.2005.00892.x] [PMID: 15888026]
[81]
Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front Immunol 2014; 5: 253.
[http://dx.doi.org/10.3389/fimmu.2014.00253] [PMID: 24904596]
[82]
Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 2011; 1221: 80-7.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05938.x] [PMID: 21401634]
[83]
Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol 2010; 63(6): 534-43.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00831.x] [PMID: 20331588]
[84]
LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr Opin Pharmacol 2011; 11(2): 175-9.
[http://dx.doi.org/10.1016/j.coph.2011.01.003] [PMID: 21317038]
[85]
LaMarca B D, Alexander B T, Gilbert J S, et al. Pathophysiology of hypertension in response to placental ischemia during pregnancy: a central role for endothelin? Gend Med 2008; 5(Suppl A): S133-8.
[http://dx.doi.org/10.1016/j.genm.2008.03.013]
[86]
Burton G J, Yung H W, Cindrova-Davies T, Charnock-Jones D S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009; 30(Suppl A): S43-8.
[http://dx.doi.org/10.1016/j.placenta.2008.11.003]
[87]
Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012; 490(7418): 102-6.
[http://dx.doi.org/10.1038/nature11462] [PMID: 23023128]
[88]
Cheng SB, Sharma S. Preeclampsia and health risks later in life: an immunological link. Semin Immunopathol 2016; 38(6): 699-708.
[http://dx.doi.org/10.1007/s00281-016-0579-8] [PMID: 27339196]
[89]
Hara CdeC, França EL, Fagundes DL, et al. Characterization of Natural Killer Cells and Cytokines in Maternal Placenta and Fetus of Diabetic Mothers. J Immunol Res 2016; 2016: 7154524.
[http://dx.doi.org/10.1155/2016/7154524] [PMID: 27294162]
[90]
Kalinderis M, Papanikolaou A, Kalinderi K, et al. Elevated serum levels of interleukin-6, interleukin-1β and human chorionic gonadotropin in pre-eclampsia. Am J Reprod Immunol 2011; 66(6): 468-75.
[http://dx.doi.org/10.1111/j.1600-0897.2011.01019.x] [PMID: 21623995]
[91]
Aggarwal R, Jain AK, Mittal P, Kohli M, Jawanjal P, Rath G. Association of pro- and anti-inflammatory cytokines in preeclampsia. J Clin Lab Anal 2019; 33(4): e22834.
[http://dx.doi.org/10.1002/jcla.22834] [PMID: 30666720]
[92]
Chen LM, Liu B, Zhao HB, Stone P, Chen Q, Chamley L. IL-6, TNFalpha and TGFbeta promote nonapoptotic trophoblast deportation and subsequently causes endothelial cell activation. Placenta 2010; 31(1): 75-80.
[http://dx.doi.org/10.1016/j.placenta.2009.11.005] [PMID: 19948358]
[93]
LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep 2007; 9(6): 480-5.
[http://dx.doi.org/10.1007/s11906-007-0088-1] [PMID: 18367011]
[94]
I, C. W.; Romao-Veiga, M.; Matias, M. L.; Fioratti, E. G.; Peracoli, J. C.; Borges, V. T.; Araujo, J. P., Jr.; Peracoli, M. T., Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia. J Reprod Immunol 2017; 123: 40-7.
[http://dx.doi.org/10.1016/j.jri.2017.09.002]
[95]
Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 2018; 15(4): 203-14.
[http://dx.doi.org/10.1038/nrcardio.2017.161] [PMID: 29143812]
[96]
de Rivero Vaccari JP. The Inflammasome in Reproductive Biology: A Promising Target for Novel Therapies. Front Endocrinol (Lausanne) 2020; 11: 8.
[http://dx.doi.org/10.3389/fendo.2020.00008] [PMID: 32047476]
[97]
Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010; 327(5963): 296-300.
[http://dx.doi.org/10.1126/science.1184003] [PMID: 20075245]
[98]
Mulla MJ, Myrtolli K, Potter J, et al. Uric acid induces trophoblast IL-1β production via the inflammasome: implications for the pathogenesis of preeclampsia. Am J Reprod Immunol 2011; 65(6): 542-8.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00960.x] [PMID: 21352397]
[99]
D'Ippolito S, Tersigni C, Marana R, et al. Inflammosome in the human endometrium: further step in the evaluation of the "maternal side". Fertil Steril 2016; 105(1): 111-8.
[100]
Matias ML, Romão M, Weel IC, et al. Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia. PLoS One 2015; 10(6): e0129095.
[http://dx.doi.org/10.1371/journal.pone.0129095] [PMID: 26053021]
[101]
Shirasuna K, Usui F, Karasawa T, et al. Nanosilica-induced placental inflammation and pregnancy complications: Different roles of the inflammasome components NLRP3 and ASC. Nanotoxicology 2015; 9(5): 554-67.
[http://dx.doi.org/10.3109/17435390.2014.956156] [PMID: 25211550]
[102]
Stødle GS, Silva GB, Tangerås LH, et al. Placental inflammation in pre-eclampsia by Nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts. Clin Exp Immunol 2018; 193(1): 84-94.
[http://dx.doi.org/10.1111/cei.13130] [PMID: 29683202]
[103]
Bainbridge S A, Roberts J M. Uric acid as a pathogenic factor in preeclampsia. Placenta 2008; 29(A): S67-72.
[http://dx.doi.org/10.1016/j.placenta.2007.11.001]
[104]
Ryu A, Cho NJ, Kim YS, Lee EY. Predictive value of serum uric acid levels for adverse perinatal outcomes in preeclampsia. Medicine (Baltimore) 2019; 98(18): e15462.
[http://dx.doi.org/10.1097/MD.0000000000015462] [PMID: 31045822]
[105]
Thangaratinam S, Ismail KM, Sharp S, Coomarasamy A, Khan KS. Accuracy of serum uric acid in predicting complications of pre-eclampsia: a systematic review. BJOG 2006; 113(4): 369-78.
[http://dx.doi.org/10.1111/j.1471-0528.2006.00908.x] [PMID: 16553648]
[106]
Taravati A, Tohidi F. Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwan J Obstet Gynecol 2018; 57(6): 779-90.
[http://dx.doi.org/10.1016/j.tjog.2018.10.002] [PMID: 30545527]
[107]
San Juan-Reyes S, Gómez-Oliván LM, Islas-Flores H, Dublán- García O. Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys 2020; 681: 108255.
[http://dx.doi.org/10.1016/j.abb.2020.108255] [PMID: 31904364]
[108]
McAllister JM, Legro RS, Modi BP, Strauss JF III. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 2015; 26(3): 118-24.
[http://dx.doi.org/10.1016/j.tem.2014.12.004] [PMID: 25600292]
[109]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[110]
Escudero CA, Herlitz K, Troncoso F, et al. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies. Front Physiol 2016; 7: 98.
[http://dx.doi.org/10.3389/fphys.2016.00098] [PMID: 27047385]
[111]
Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS One 2013; 8(11): e79636.
[http://dx.doi.org/10.1371/journal.pone.0079636] [PMID: 24244532]
[112]
Kohli S, Ranjan S, Hoffmann J, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood 2016; 128(17): 2153-64.
[http://dx.doi.org/10.1182/blood-2016-03-705434] [PMID: 27589872]
[113]
Sabapatha A, Gercel-Taylor C, Taylor DD. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol 2006; 56(5-6): 345-55.
[http://dx.doi.org/10.1111/j.1600-0897.2006.00435.x] [PMID: 17076679]
[114]
Baig S, Kothandaraman N, Manikandan J, et al. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 2014; 11(1): 40.
[http://dx.doi.org/10.1186/1559-0275-11-40] [PMID: 25469110]
[115]
Vargas A, Zhou S, Éthier-Chiasson M, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J 2014; 28(8): 3703-19.
[http://dx.doi.org/10.1096/fj.13-239053] [PMID: 24812088]
[116]
Baig S, Lim JY, Fernandis AZ, et al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 2013; 34(5): 436-42.
[http://dx.doi.org/10.1016/j.placenta.2013.02.004] [PMID: 23465879]
[117]
Bdolah Y, Elchalal U, Natanson-Yaron S, et al. Relationship between nulliparity and preeclampsia may be explained by altered circulating soluble fms-like tyrosine kinase 1. Hypertens Pregnancy 2014; 33(2): 250-9.
[http://dx.doi.org/10.3109/10641955.2013.858745] [PMID: 24304210]
[118]
von Versen-Hoynck F, Narasimhan P, Selamet Tierney E S, et al. Absent or Excessive Corpus Luteum Number Is Associated With Altered Maternal Vascular Health in Early Pregnancy. Hypertension 2019; 73(3): 680-90.
[119]
Pasqua T, Pagliaro P, Rocca C, Angelone T, Penna C. Role of NLRP-3 Inflammasome in Hypertension: A Potential Therapeutic Target. Curr Pharm Biotechnol 2018; 19(9): 708-14.
[http://dx.doi.org/10.2174/1389201019666180808162011] [PMID: 30091406]
[120]
Omi T, Kumada M, Kamesaki T, et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006; 14(12): 1295-305.
[http://dx.doi.org/10.1038/sj.ejhg.5201698] [PMID: 16868559]
[121]
Fearon WF, Fearon DT. Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation 2008; 117(20): 2577-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.772491] [PMID: 18490534]
[122]
Krishnan SM, Dowling JK, Ling YH, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 2016; 173(4): 752-65.
[http://dx.doi.org/10.1111/bph.13230] [PMID: 26103560]
[123]
Jiménez-Altayó F, Briones AM, Giraldo J, Planas AM, Salaices M, Vila E. Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries. J Pharmacol Exp Ther 2006; 316(1): 42-52.
[http://dx.doi.org/10.1124/jpet.105.088435] [PMID: 16183707]
[124]
Costa RA, Hoshida MS, Alves EA, Zugaib M, Francisco RP. Preeclampsia and superimposed preeclampsia: The same disease? The role of angiogenic biomarkers. Hypertens Pregnancy 2016; 35(2): 139-49.
[http://dx.doi.org/10.3109/10641955.2015.1115063] [PMID: 26930132]
[125]
Cohen AL, Wenger JB, James-Todd T, et al. The association of circulating angiogenic factors and HbA1c with the risk of preeclampsia in women with preexisting diabetes. Hypertens Pregnancy 2014; 33(1): 81-92.
[http://dx.doi.org/10.3109/10641955.2013.837175] [PMID: 24354578]
[126]
Han CS, Herrin MA, Pitruzzello MC, et al. Glucose and metformin modulate human first trimester trophoblast function: a model and potential therapy for diabetes-associated uteroplacental insufficiency. Am J Reprod Immunol 2015; 73(4): 362-71.
[http://dx.doi.org/10.1111/aji.12339] [PMID: 25394884]
[127]
Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod 2014; 90(6): 129.
[http://dx.doi.org/10.1095/biolreprod.113.116186] [PMID: 24759787]
[128]
Spradley FT, Palei AC, Granger JP. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol 2015; 309(11): R1326-43.
[http://dx.doi.org/10.1152/ajpregu.00178.2015] [PMID: 26447211]
[129]
Toda N, Okamura T. Obesity impairs vasodilatation and blood flow increase mediated by endothelial nitric oxide: an overview. J Clin Pharmacol 2013; 53(12): 1228-39.
[http://dx.doi.org/10.1002/jcph.179] [PMID: 24030923]
[130]
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, et al. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2020; 38(1): 106-17.
[http://dx.doi.org/10.1002/cbf.3458] [PMID: 31746004]
[131]
Liu H, Wu Y, Qiao F, Gong X. Effect of leptin on cytotrophoblast proliferation and invasion. J Huazhong Univ Sci Technolog Med Sci 2009; 29(5): 631-6.
[http://dx.doi.org/10.1007/s11596-009-0519-0] [PMID: 19821099]
[132]
Klaffenbach D, Meissner U, Raake M, et al. Upregulation of leptin-receptor in placental cells by hypoxia. Regul Pept 2011; 167(1): 156-62.
[http://dx.doi.org/10.1016/j.regpep.2010.12.007] [PMID: 21237211]
[133]
Fu S, Liu L, Han L, Yu Y. Leptin promotes IL‑18 secretion by activating the NLRP3 inflammasome in RAW 264.7 cells. Mol Med Rep 2017; 16(6): 9770-6.
[http://dx.doi.org/10.3892/mmr.2017.7797] [PMID: 29039567]
[134]
Wallace JM, Horgan GW, Bhattacharya S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta 2012; 33(8): 611-8.
[http://dx.doi.org/10.1016/j.placenta.2012.05.006] [PMID: 22695104]
[135]
Antonioli L, Moriconi D, Masi S, et al. Differential Impact of Weight Loss and Glycemic Control on Inflammasome Signaling. Obesity (Silver Spring) 2020; 28(3): 609-15.
[http://dx.doi.org/10.1002/oby.22734] [PMID: 32020775]
[136]
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17(2): 179-88.
[http://dx.doi.org/10.1038/nm.2279] [PMID: 21217695]
[137]
Su DL, Lu ZM, Shen MN, Li X, Sun LY. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J Biomed Biotechnol 2012; 2012: 347141.
[http://dx.doi.org/10.1155/2012/347141] [PMID: 22500087]
[138]
Mayer-Pickel K, Stern C, Eberhard K, Lang U, Obermayer-Pietsch B, Cervar-Zivkovic M. Angiogenic factors in pregnancies of women with antiphospholipid syndrome and systemic lupus erythematosus. J Reprod Immunol 2018; 127: 19-23.
[http://dx.doi.org/10.1016/j.jri.2018.04.002] [PMID: 29689494]
[139]
Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019; 8(11): E1389.
[http://dx.doi.org/10.3390/cells8111389] [PMID: 31694192]
[140]
Zhao M, Bai M, Ding G, et al. Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Dis (Basel) 2018; 4(2): 83-94.
[http://dx.doi.org/10.1159/000488242] [PMID: 29998123]
[141]
Vilaysane A, Chun J, Seamone ME, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010; 21(10): 1732-44.
[http://dx.doi.org/10.1681/ASN.2010020143] [PMID: 20688930]
[142]
Di Marco GS, Reuter S, Hillebrand U, et al. The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD. J Am Soc Nephrol 2009; 20(10): 2235-45.
[http://dx.doi.org/10.1681/ASN.2009010061] [PMID: 19608702]
[143]
Moghaddas Sani H, Zununi Vahed S, Ardalan M. Preeclampsia: A close look at renal dysfunction. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2019; 109: 408-16.
[144]
Akolekar R, Syngelaki A, Poon L, Wright D, Nicolaides KH. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013; 33(1): 8-15.
[http://dx.doi.org/10.1159/000341264] [PMID: 22906914]
[145]
Zeisler H, Llurba E, Chantraine F, et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N Engl J Med 2016; 374(1): 13-22.
[http://dx.doi.org/10.1056/NEJMoa1414838] [PMID: 26735990]
[146]
Garg P, Jaryal AK, Kachhawa G, Kriplani A, Deepak KK. Sequential profile of endothelial functions and arterial stiffness in preeclampsia during the course of pregnancy. Pregnancy Hypertens 2019; 18: 88-95.
[http://dx.doi.org/10.1016/j.preghy.2019.09.013] [PMID: 31585347]
[147]
Brandão AH, Félix LR, Patrício EdoC, Leite HV, Cabral AC. Difference of endothelial function during pregnancies as a method to predict preeclampsia. Arch Gynecol Obstet 2014; 290(3): 471-7.
[http://dx.doi.org/10.1007/s00404-014-3243-3] [PMID: 24748339]
[148]
Lin ZH, Jin J, Shan XY. The effects of estradiol on inflammatory and endothelial dysfunction in rats with preeclampsia. Int J Mol Med 2020; 45(3): 825-35.
[http://dx.doi.org/10.3892/ijmm.2020.4465] [PMID: 31985028]
[149]
Liu Z, Zhao X, Shan H, Gao H, Wang P. microRNA-520c-3p suppresses NLRP3 inflammasome activation and inflammatory cascade in preeclampsia by downregulating NLRP3. Inflamm Res 2019; 68(8): 643-54.
[http://dx.doi.org/10.1007/s00011-019-01246-8] [PMID: 31143973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy