Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The Therapeutic Effects of Dihydroartemisinin on Cisplatin-Resistant Gastric Cancer Cells

Author(s): Suyun Zhang, Rui Feng, Fang Yuan, Qiong Luo, Xiangqi Chen*, Nan Li* and Sheng Yang*

Volume 23, Issue 2, 2022

Published on: 16 February, 2021

Page: [276 - 286] Pages: 11

DOI: 10.2174/1389201022666210217114825

Price: $65

Abstract

Background: Dihydroartemisinin (DHA) exhibited anti-tumor effect in a variety of cancer cells, but its mechanism of action is unclear.

Objectives: To investigate the therapeutic effects of DHA on Cisplatin (DDP)-resistant gastric cancer cell strain SGC7901/DDP and the possible molecular mechanism.

Methods: Cells were treated with DHA in a dose- and time-dependent manner, after which their proliferation, apoptosis, invasion, and migration abilities were evaluated. We further evaluated autophagy with mRFP-GFP-LC3 adenovirus transfection and transmission electron microscopy and also detected the expression levels of proteins (related to autophagy and apoptosis) via western blot. Meanwhile, the influence of DHA on cisplatin resistance was detected through a sensitization test and the evaluation of P-gp expression levels.

Results: DHA effectively inhibited the proliferation, invasion, and migration of SGC7901/DDP cells and induced cell apoptosis which was accompanied by caspase-8/9/3 activation. Furthermore, exposure to DHA resulted in a pronounced increase in autophagy proteins, including Beclin-1 and LC3 II with PI3K/AKT/mTOR pathway inhibition. Additionally, enhancement of cisplatin sensitivity occurred in SGC7901/DDP cells treated with DHA, which was accompanied by P-gp downregulation.

Conclusion: DHA exerts an anti-cancer effect on SGC7901/DDP cells and the mechanisms possibly include enhancement of autophagy via PI3K/AKT/mTOR inhibition, inducement of apoptosis through caspase-dependent and mitochondrial pathway, and enhancement of cisplatin sensitivity through P-gp inhibition.

Keywords: Dihydroartemisinin, cisplatin resistance, gastric cancer cells, apoptosis, autophagy, proliferation.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Yang, S.M.; Huang, C.; Li, X.F.; Yu, M.Z.; He, Y.; Li, J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology, 2013, 306, 162-168.
[http://dx.doi.org/10.1016/j.tox.2013.02.014] [PMID: 23466500]
[3]
Koizumi, W.; Narahara, H.; Hara, T.; Takagane, A.; Akiya, T.; Takagi, M.; Miyashita, K.; Nishizaki, T.; Kobayashi, O.; Takiyama, W.; Toh, Y.; Nagaie, T.; Takagi, S.; Yamamura, Y.; Yanaoka, K.; Orita, H.; Takeuchi, M. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol., 2008, 9(3), 215-221.
[http://dx.doi.org/10.1016/S1470-2045(08)70035-4] [PMID: 18282805]
[4]
Efferth, T.; Li, P.C.; Konkimalla, V.S.B.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13(8), 353-361.
[http://dx.doi.org/10.1016/j.molmed.2007.07.001] [PMID: 17644431]
[5]
Disbrow, G.L.; Baege, A.C.; Kierpiec, K.A.; Yuan, H.; Centeno, J.A.; Thibodeaux, C.A.; Hartmann, D.; Schlegel, R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res., 2005, 65(23), 10854-10861.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1216] [PMID: 16322232]
[6]
Hwang, Y.P.; Yun, H.J.; Kim, H.G.; Han, E.H.; Lee, G.W.; Jeong, H.G. Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms. Biochem. Pharmacol., 2010, 79(12), 1714-1726.
[http://dx.doi.org/10.1016/j.bcp.2010.02.003] [PMID: 20152819]
[7]
Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113.
[http://dx.doi.org/10.1080/15384047.2015.1108496] [PMID: 26574780]
[8]
Satelli, A.; Rao, U.S. Galectin-1 is silenced by promoter hypermethylation and its re-expression induces apoptosis in human colorectal cancer cells. Cancer Lett., 2011, 301(1), 38-46.
[http://dx.doi.org/10.1016/j.canlet.2010.10.027] [PMID: 21122983]
[9]
Sun, L.; Yan, W.; Wang, Y.; Sun, G.; Luo, H.; Zhang, J.; Wang, X.; You, Y.; Yang, Z.; Liu, N. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res., 2011, 1389, 9-18.
[http://dx.doi.org/10.1016/j.brainres.2011.03.013] [PMID: 21419107]
[10]
Zhang, H.Y.; Sun, H. Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett., 2010, 287(1), 91-97.
[http://dx.doi.org/10.1016/j.canlet.2009.06.001] [PMID: 19628330]
[11]
He, L.; Shi, W.; Liu, X.; Zhao, X.; Zhang, Z. Anticancer action and mechanism of ergosterol peroxide from paecilomyces cicadae fermentation broth. Int. J. Mol. Sci., 2018, 19(12), 3935.
[http://dx.doi.org/10.3390/ijms19123935] [PMID: 30544579]
[12]
Zhu, B.; Liu, G.T.; Zhao, Y.M.; Wu, R.S.; Strada, S.J. Chemosensitizing multiple drug resistance of human carcinoma by Bicyclol involves attenuated p-glycoprotein, GST-P and Bcl-2. Cancer Biol. Ther., 2006, 5(5), 536-543.
[http://dx.doi.org/10.4161/cbt.5.5.2655] [PMID: 16627975]
[13]
Li, N.; Zhang, S.; Luo, Q.; Yuan, F.; Feng, R.; Chen, X.; Yang, S. The effect of dihydroartemisinin on the malignancy and epithelial-mesenchymal transition of gastric cancer cells. Curr. Pharm. Biotechnol., 2019, 20(9), 719-726.
[http://dx.doi.org/10.2174/1389201020666190611124644] [PMID: 31187708]
[14]
Yu, C.; Wang, L.; Lv, B.; Lu, Y.; Zeng, L.; Chen, Y.; Ma, D.; Shi, T.; Wang, L. TMEM74, a lysosome and autophagosome protein, regulates autophagy. Biochem. Biophys. Res. Commun., 2008, 369(2), 622-629.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.055] [PMID: 18294959]
[15]
Sun, K.; Wang, W.; Wang, C.; Lao, G.; Liu, D.; Mai, L.; Yan, L.; Yang, C.; Ren, M. AGEs trigger autophagy in diabetic skin tissues and fibroblasts. Biochem. Biophys. Res. Commun., 2016, 471(3), 355-360.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.020] [PMID: 26872427]
[16]
Peng, C.; Rao, W.; Zhang, L.; Gao, F.; Hui, H.; Wang, K.; Dai, S.; Yang, Y.; Luo, P.; Ma, Y.; Ma, W.; Yu, X.; Fei, Z. Mitofusin 2 exerts a protective role in ischemia reperfusion injury through increasing autophagy. Cell. Physiol. Biochem., 2018, 46(6), 2311-2324.
[http://dx.doi.org/10.1159/000489621] [PMID: 29734176]
[17]
Qin, Y.; Yang, G.; Li, M.; Liu, H.J.; Zhong, W.L.; Yan, X.Q.; Qiao, K.L.; Yang, J.H.; Zhai, D.H.; Yang, W.; Chen, S.; Zhou, H.G.; Sun, T.; Yang, C. Dihydroartemisinin inhibits EMT induced by platinum-based drugs via Akt-Snail pathway. Oncotarget, 2017, 8(61), 103815-103827.
[http://dx.doi.org/10.18632/oncotarget.21793] [PMID: 29262602]
[18]
Lu, Y.Y.; Chen, T.S.; Qu, J.L.; Pan, W.L.; Sun, L.; Wei, X.B. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells. J. Biomed. Sci., 2009, 16(1), 16.
[http://dx.doi.org/10.1186/1423-0127-16-16] [PMID: 19272183]
[19]
Lu, J.J.; Chen, S.M.; Ding, J.; Meng, L.H. Characterization of dihydroartemisinin-resistant colon carcinoma HCT116/R cell line. Mol. Cell. Biochem., 2012, 360(1-2), 329-337.
[http://dx.doi.org/10.1007/s11010-011-1072-2] [PMID: 21959972]
[20]
Nakamura, Y.; Oka, M.; Soda, H.; Shiozawa, K.; Yoshikawa, M.; Itoh, A.; Ikegami, Y.; Tsurutani, J.; Nakatomi, K.; Kitazaki, T.; Doi, S.; Yoshida, H.; Kohno, S. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res., 2005, 65(4), 1541-1546.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2417] [PMID: 15735043]
[21]
Bijman, M.N.; van Nieuw Amerongen, G.P.; Laurens, N.; van Hinsbergh, V.W.; Boven, E. Microtubule-targeting agents inhibit angiogenesis at subtoxic concentrations, a process associated with inhibition of Rac1 and Cdc42 activity and changes in the endothelial cytoskeleton. Mol. Cancer Ther., 2006, 5(9), 2348-2357.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0242] [PMID: 16985069]
[22]
Mishra, R.K.; Ramasamy, K.; Lim, S.M.; Ismail, M.F.; Majeed, A.B. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J. Mater. Sci. Mater. Med., 2014, 25(8), 1925-1939.
[http://dx.doi.org/10.1007/s10856-014-5228-y] [PMID: 24831081]
[23]
Canal-Raffin, M.; L’azou, B.; Martinez, B.; Sellier, E.; Fawaz, F.; Robinson, P.; Ohayon-Courtès, C.; Baldi, I.; Cambar, J.; Molimard, M.; Moore, N.; Brochard, P. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG(R) and Myco 500(R), two commercial forms of folpet. Part. Fibre Toxicol., 2007, 4(1), 8.
[http://dx.doi.org/10.1186/1743-8977-4-8] [PMID: 17883864]
[24]
Ueda, T.; Volinia, S.; Okumura, H.; Shimizu, M.; Taccioli, C.; Rossi, S.; Alder, H.; Liu, C.G.; Oue, N.; Yasui, W.; Yoshida, K.; Sasaki, H.; Nomura, S.; Seto, Y.; Kaminishi, M.; Calin, G.A.; Croce, C.M. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol., 2010, 11(2), 136-146.
[http://dx.doi.org/10.1016/S1470-2045(09)70343-2] [PMID: 20022810]
[25]
Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; Smith, D.B.; Langley, R.E.; Verma, M.; Weeden, S.; Chua, Y.J.; Participants, M.T. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med., 2006, 355(1), 11-20.
[http://dx.doi.org/10.1056/NEJMoa055531] [PMID: 16822992]
[26]
Kanagavel, D.; Pokataev, I.A.; Fedyanin, M.Y.; Tryakin, A.A.; Bazin, I.S.; Narimanov, M.N.; Yakovleva, E.S.; Garin, A.M.; Tjulandin, S.A. A prognostic model in patients treated for metastatic gastric cancer with second-line chemotherapy. Ann. Oncol., 2010, 21(9), 1779-1785.
[http://dx.doi.org/10.1093/annonc/mdq032] [PMID: 20150573]
[27]
Zhang, X.G.; Li, G.X.; Zhao, S.S.; Xu, F.L.; Wang, Y.H.; Wang, W. A review of dihydroartemisinin as another gift from traditional Chinese medicine not only for malaria control but also for schistosomiasis control. Parasitol. Res., 2014, 113(5), 1769-1773.
[http://dx.doi.org/10.1007/s00436-014-3822-z] [PMID: 24609234]
[28]
Liu, J.J.; Lin, M.; Yu, J.Y.; Liu, B.; Bao, J.K. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett., 2011, 300(2), 105-114.
[http://dx.doi.org/10.1016/j.canlet.2010.10.001] [PMID: 21036469]
[29]
Wang, S.F.; Wu, M.Y.; Cai, C.Z.; Li, M.; Lu, J.H. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J. Ethnopharmacol., 2016, 194, 861-876.
[http://dx.doi.org/10.1016/j.jep.2016.10.069] [PMID: 27793785]
[30]
Wang, Z.; Hu, W.; Zhang, J.L.; Wu, X.H.; Zhou, H.J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio, 2012, 2(1), 103-112.
[http://dx.doi.org/10.1016/j.fob.2012.05.002] [PMID: 23650588]
[31]
Jia, G.; Kong, R.; Ma, Z.B.; Han, B.; Wang, Y.W.; Pan, S.H.; Li, Y.H.; Sun, B. The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. J. Exp. Clin. Cancer Res., 2014, 33(1), 8.
[http://dx.doi.org/10.1186/1756-9966-33-8] [PMID: 24438216]
[32]
Zhang, Z.S.; Wang, J.; Shen, Y.B.; Guo, C.C.; Sai, K.E.; Chen, F.R.; Mei, X.; Han, F.U.; Chen, Z.P. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol. Lett., 2015, 10(1), 379-383.
[http://dx.doi.org/10.3892/ol.2015.3183] [PMID: 26171034]
[33]
Mujumdar, N.; Mackenzie, T.N.; Dudeja, V.; Chugh, R.; Antonoff, M.B.; Borja-Cacho, D.; Sangwan, V.; Dawra, R.; Vickers, S.M.; Saluja, A.K. Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology, 2010, 139(2), 598-608.
[http://dx.doi.org/10.1053/j.gastro.2010.04.046] [PMID: 20434451]
[34]
Cao, Y.; Klionsky, D.J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res., 2007, 17(10), 839-849.
[http://dx.doi.org/10.1038/cr.2007.78] [PMID: 17893711]
[35]
Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005, 122(6), 927-939.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[36]
Noda, T.; Yoshimori, T. Molecular basis of canonical and bactericidal autophagy. Int. Immunol., 2009, 21(11), 1199-1204.
[http://dx.doi.org/10.1093/intimm/dxp088] [PMID: 19737785]
[37]
Chen, T.; Li, M.; Zhang, R.; Wang, H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J. Cell. Mol. Med., 2009, 13(7), 1358-1370.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00360.x] [PMID: 18466355]
[38]
Du, X.X.; Li, Y.J.; Wu, C.L.; Zhou, J.H.; Han, Y.; Sui, H.; Wei, X.L.; Liu, L.; Huang, P.; Yuan, H.H.; Zhang, T.T.; Zhang, W.J.; Xie, R.; Lang, X.H.; Jia, D.X.; Bai, Y.X. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed. Pharmacother., 2013, 67(5), 417-424.
[http://dx.doi.org/10.1016/j.biopha.2013.01.013] [PMID: 23582790]
[39]
Nakajima, K.; Takahashi, A.; Yaoita, Y. Structure, expression, and function of the Xenopus laevis caspase family. J. Biol. Chem., 2000, 275(14), 10484-10491.
[http://dx.doi.org/10.1074/jbc.275.14.10484] [PMID: 10744739]
[40]
Allam, R.; Lawlor, K.E.; Yu, E.C.W.; Mildenhall, A.L.; Moujalled, D.M.; Lewis, R.S.; Ke, F.; Mason, K.D.; White, M.J.; Stacey, K.J.; Strasser, A.; O’Reilly, L.A.; Alexander, W.; Kile, B.T.; Vaux, D.L.; Vince, J.E.; Strasser, A. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep., 2014, 15(9), 982-990.
[http://dx.doi.org/10.15252/embr.201438463] [PMID: 24990442]
[41]
Bao, Q.; Shi, Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ., 2007, 14(1), 56-65.
[http://dx.doi.org/10.1038/sj.cdd.4402028] [PMID: 16977332]
[42]
Wang, J.; Lenardo, M.J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J. Cell Sci., 2000, 113(Pt 5), 753-757.
[PMID: 10671365]
[43]
Reungpatthanaphong, P.; Mankhetkorn, S. Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol. Pharm. Bull., 2002, 25(12), 1555-1561.
[http://dx.doi.org/10.1248/bpb.25.1555] [PMID: 12499639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy