[1]
Poznyak V, Rekve D. Global Status Report on Alcohol and Health 2018. WHO 2018 2018; 1-450.
[2]
Ieraci A, Herrera DG. Nicotinamide inhibits ethanol-induced Caspase-3 and PARP-1 over-activation and subsequent neurodegeneration in the developing mouse cerebellum. Cerebellum (London, England) 2018; 17(3): 326-35.
[3]
Mandyam CD, Villalpando EG, Steiner NL, Quach LW, Fannon MJ, Somkuwar SS. Platelet endothelial cell adhesion molecule-1 and oligodendrogenesis: Significance in alcohol use disorders. Brain Sci 2017; 7(10): 131.
[4]
Song DY, Wang XW, Wang S, et al. Jidong cognitive impairment cohort study: Objectives, design, and baseline screening. Neural Regen Res 2020; 15(6): 1111-9.
[5]
Visontay R, Rao RT, Mewton L. Alcohol use and dementia: New research directions. Curr Opin Psychiatry 2021; 34(2): 165-70.
[6]
Bahorik A, Bobrow K, Hoang T, Yaffe K. Increased risk of dementia in older female US veterans with alcohol use disorder. Addiction 2021. [Epub ahead of print
[7]
Gonzalo-Gobernado R, Perucho J, Vallejo-Muñoz M, et al. Liver growth factor “LGF” as a therapeutic agent for Alzheimer’s disease. Int J Mol Sci 2020; 21(23): 9201.
[8]
Hu Z, Jiao R, Wang P, et al. Shared causal paths underlying Alzheimer’s dementia and type 2 Diabetes. Sci Rep 2020; 10(1): 4107.
[9]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease:Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[10]
Wang H, Li Q, Sun S, Chen S. Neuroprotective effects of salidroside in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol 2020; 40(7): 7287-92.
[11]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021. [Epub ahead of print
[12]
Cheng X, Song C, Du Y, Gaur U, Yang M. Pharmacological treatment of Alzheimer’s disease: Insights from Drosophila melanogaster. Int J Mol Sci 2020; 21(13): 4621.
[13]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[14]
Maiese K. Nicotinamide: Oversight of metabolic dysfunction through SIRT1, mTOR, and Clock genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[15]
Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M. Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: Possible involved mechanisms. Peptides 2016; 86: 102-11.
[16]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target Alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[17]
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer’s disease etiology. Biochim Biophys Acta 2017; 1868(2): 341-58.
[18]
Guo J, Yang CX, Yang JJ, Yao Y. Glycyrrhizic acid ameliorates cognitive impairment in a rat model of vascular dementia associated with oxidative damage and inhibition of voltage-gated sodium channels. CNS Neurol Disord Drug Targets 2016; 15(8): 1001-8.
[19]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and Alzheimer’s disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[20]
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of cerebrovascular endothelial cells: Prelude to vascular dementia. Front Aging Neurosci 2018; 10: 376.
[21]
Maiese K. The bright side of reactive oxygen species: Lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[22]
Maiese K, Chong ZZ, Hou J, Shang YC. Oxidative stress: Biomarkers and novel therapeutic pathways. Exp Gerontol 2010; 45(3): 217-34.
[23]
Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci (Landmark ed) 2021; 26: 50-96.
[24]
Rey F, Ottolenghi S, Giallongo T, et al. Mitochondrial metabolism as target of the neuroprotective role of erythropoietin in Parkinson’s disease. Antioxidants (Basel, Switzerland) 2021; 10(1): 121.
[25]
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD(+) synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132110841
[26]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[27]
Mikhed Y, Daiber A, Steven S. Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 2015; 16(7): 15918-53.
[28]
Scialo F, Sriram A, Fernandez-Ayala D, et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 2016; 23(4): 725-34.
[29]
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2018; 592(5): 743-58.
[30]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[31]
Dai C, Xiao X, Zhang Y, et al. Curcumin attenuates colistin-induced peripheral neurotoxicity in mice. ACS Infect Dis 2020; 6(4): 715-24.
[32]
Deng D, Yan J, Wu Y, Wu K, Li W. Morroniside suppresses hydrogen peroxide-stimulated autophagy and apoptosis in rat ovarian granulosa cells through the PI3K/AKT/mTOR pathway. Hum Exp Toxicol 2020; 2020960327120960768
[33]
Jayaraj RL, Beiram R, Azimullah S, et al. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. Int J Mol Sci 2020; 21(20): 7670.
[34]
Meng J, Chen Y, Wang J, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med 2020; 8(5): 200.
[35]
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 20: 1-19.
[36]
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol 2020; 36101664
[37]
Xie T, Ye W, Liu J, Zhou L, Song Y. The emerging key role of Klotho in the hypothalamus-pituitary-ovarian axis. Reprod Sci 2021; 28(2): 322-31.
[38]
Liu W, Xu X, Fan Z, et al. Wnt signaling activates TP53-induced glycolysis and apoptosis regulator and protects against cisplatin-induced spiral ganglion neuron damage in the mouse cochlea. Antioxid Redox Signal 2019; 30(11): 1389-410.
[39]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10(4): 518-28.
[40]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[41]
Cai D, Hong S, Yang J, San P. The effects of microRNA-515-5p on the Toll-Like Receptor 4 (TLR4)/JNK signaling pathway and WNT1-Inducible-Signaling Pathway Protein 1 (WISP-1) expression in Rheumatoid Arthritis Fibroblast-Like Synovial (RAFLS) cells following treatment with Receptor Activator of Nuclear Factor-kappa-B Ligand (RANKL). Med Sci Monit 2020; 26e920611
[42]
Chen S, Li B. MiR-128-3p post-transcriptionally inhibits WISP1 to suppress apoptosis and inflammation in human articular chondrocytes via the PI3K/AKT/NF-κB signaling pathway. Cell Transplant 2020; 29963689720939131
[43]
Fernandez-Ruiz R, García-Alamán A, Esteban Y, et al. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11(1): 5982.
[44]
Klimontov VV, Bulumbaeva DM, Fazullina ON, et al. Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2020; 14(1): 101-9.
[45]
Liu L, Hu J, Yang L, et al. Association of WISP1/CCN4 with risk of overweight and gestational Diabetes mellitus in chinese pregnant women. Dis Markers 2020; 20204934206
[46]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in Diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[47]
Wang QY, Feng YJ, Ji R. High expression of WISP1 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. European Rev Med Pharmacol Sci 2020; 24(20): 10445-51.
[48]
Jarero-Basulto J, Rivera-Cervantes M, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of Alzheimer’s disease. Pharmaceuticals (Basel, Switzerland) 2020; 13(424): 1-22.
[49]
Li N, Yue L, Wang J, Wan Z, Bu W. MicroRNA-24 alleviates isoflurane-induced neurotoxicity in rat hippocampus via attenuation of oxidative stress. Biochem Cell Biol 2020; 98(2): 208-18.
[50]
Maiese K. The mechanistic Target of Rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[51]
Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and human health-a focus on oxidative stress, inflammation and disease. Antioxidants (Basel, Switzerland) 2020; 9(5): 366.
[52]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[53]
Furtado GE, Letieri RV, Caldo A, et al. Sustaining efficient immune functions with regular physical exercise in the COVID-19 era and beyond. Eur J Clin Invest 2021; 2021e13485
[54]
Izzo C, Vitillo P, Di Pietro P, et al. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life (Basel) 2021; 11(1): 60.
[55]
Li R, Wang B, Wu C, et al. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12(1): 107.
[56]
Chen JR, Lazarenko OP, Shankar K, Blackburn ML, Badger TM, Ronis MJ. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/beta-catenin signaling. J Bone Miner Res 2010; 25(5): 1117-27.
[57]
Choudhury TD, Das N, Chattopadhyay A, Datta AG. Effect of oxidative stress and erythropoietin on cytoskeletal protein and lipid organization in human erythrocytes. Pol J Pharmacol 1999; 51(4): 341-50.
[58]
Kumral A, Tugyan K, Gonenc S, et al. Protective effects of erythropoietin against ethanol-induced apoptotic neurodegenaration and oxidative stress in the developing C57BL/6 mouse brain. Brain Res Dev Brain Res 2005; 160(2): 146-56.
[59]
Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 2003; 74(4): 577-88.
[60]
Zima T, Fialova L, Mestek O, et al. Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 2001; 8(1): 59-70.
[61]
Ieraci A, Herrera DG. Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med 2006; 3(4)e101
[62]
Maiese K. New insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci (Landmark ed) 2020; 25: 1925-73.
[63]
Feng Y, Wang Y, Jiang C, et al. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells. Life Sci 2017; 181: 62-9.
[64]
Poljsak B, Milisav I. NAD(+) as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity and health span. Rejuvenation Res 2016; 19(5): 406-15.
[65]
Cheng J, North BJ, Zhang T, et al. The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell 2018; 17(5)e12801
[66]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[67]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.