Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Role of Medicinal Plants against Neurodegenerative Diseases

Author(s): Ritika Luthra and Arpita Roy*

Volume 23, Issue 1, 2022

Published on: 11 February, 2021

Page: [123 - 139] Pages: 17

DOI: 10.2174/1389201022666210211123539

Abstract

Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways plays a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by the depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for the prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.

Keywords: Neurodegeneration, oxidative stress, inflammatory stress, medicinal plants, phytocompounds, treatment.

Graphical Abstract
[1]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330 ] [PMID: 15031734]
[2]
Brown, R.C.; Lockwood, A.H.; Sonawane, B.R. Neurodegenerative diseases: An overview of environmental risk factors. Environ. Health Perspect., 2005, 113(9), 1250-1256.
[http://dx.doi.org/10.1289/ehp.7567 ] [PMID: 16140637]
[3]
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443(7113), 780-786.
[http://dx.doi.org/10.1038/nature05291 ] [PMID: 17051204]
[4]
Mosconi, L.; Brys, M.; Switalski, R.; Mistur, R.; Glodzik, L.; Pirraglia, E.; Tsui, W.; De Santi, S.; de Leon, M.J. Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19067-19072.
[http://dx.doi.org/10.1073/pnas.0705036104 ] [PMID: 18003925]
[5]
Beal, M.F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol., 2005, 58(4), 495-505.
[http://dx.doi.org/10.1002/ana.20624 ] [PMID: 16178023]
[6]
Hung, C.W.; Chen, Y.C.; Hsieh, W.L.; Chiou, S.H.; Kao, C.L. Ageing and neurodegenerative diseases. Ageing Res. Rev., 2010, 9(1)(Suppl. 1), S36-S46.
[http://dx.doi.org/10.1016/j.arr.2010.08.006 ] [PMID: 20732460]
[7]
Brettschneider, J.; Del Tredici, K.; Lee, V.M.Y.; Trojanowski, J.Q. Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat. Rev. Neurosci., 2015, 16(2), 109-120.
[http://dx.doi.org/10.1038/nrn3887 ] [PMID: 25588378]
[8]
Alexander, G.E. An emerging role for imaging white matter in the preclinical risk for Alzheimer disease linking β-amyloid to myelin. JAMA Neurol., 2017, 74(1), 17-19.
[http://dx.doi.org/10.1001/jamaneurol.2016.4123 ] [PMID: 27842149]
[9]
Sharma, M.; Deogaonkar, M.; Rezai, A. Assessment of potential targets for deep brain stimulation in patients with Alzheimer’s disease. J. Clin. Med. Res., 2015, 7(7), 501-505.
[http://dx.doi.org/10.14740/jocmr2127w ] [PMID: 26015813]
[11]
GBD 2015 Neurological Disorders Collaborator Group. Global, Regional, and National Burden of Neurological Disorders During 1990-2015. Lancet Neurol., 2017, 16(11), 877-897.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5 ] [PMID: 28931491]
[12]
Panza, F.; Frisardi, V.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Imbimbo, B.P.; Santamato, A.; Vendemiale, G.; Seripa, D.; Pilotto, A.; Capurso, A.; Solfrizzi, V. Late-life depression, mild cognitive impairment, and dementia: Possible continuum? Am. J. Geriatr. Psychiatry, 2010, 18(2), 98-116.
[http://dx.doi.org/10.1097/JGP.0b013e3181b0fa13 ] [PMID: 20104067]
[13]
Finkel, S.I.; Costa e Silva, J.; Cohen, G.; Miller, S.; Sartorius, N. Behavioral and psychological signs and symptoms of dementia: A consensus statement on current knowledge and implications for research and treatment. Int. Psychogeriatr., 1996, 8(3)(Suppl. 3), 497-500.
[PMID: 9154615]
[14]
Prusiner, S.B. Shattuck lecture-neurodegenerative diseases and prions. N. Engl. J. Med., 2001, 344(20), 1516-1526.
[http://dx.doi.org/10.1056/NEJM200105173442006 ] [PMID: 11357156]
[15]
Friedlander, R.M. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med., 2003, 348(14), 1365-1375.
[http://dx.doi.org/10.1056/NEJMra022366 ] [PMID: 12672865]
[16]
Desai, A.K.; Grossberg, G.T. Diagnosis and treatment of Alzheimer’s disease. Neurology, 2005, 64(12)(Suppl. 3), S34-S39.
[http://dx.doi.org/10.1212/WNL.64.12_suppl_3.S34 ] [PMID: 15994222]
[17]
Mizuno, Y. Recent research progress in and future perspective on treatment of Parkinson’s disease. Integr. Med. Int., 2014, 1, 67-79.
[http://dx.doi.org/10.1159/000365571]
[18]
Crane, P.K.; Doody, R.S. Donepezil treatment of patients with MCI: a 48-week randomized, placebo- controlled trial. Neurology, 2009, 73(18), 1514-1515.
[http://dx.doi.org/10.1212/WNL.0b013e3181bd6c25 ] [PMID: 19884584]
[19]
Tizabi, Y.; Hurley, L.L.; Qualls, Z.; Akinfiresoye, L. Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression. Molecules, 2014, 19(12), 20864-20879.
[http://dx.doi.org/10.3390/molecules191220864 ] [PMID: 25514226]
[20]
Chaudhuri, K.R.; Schapira, A.H.V. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol., 2009, 8(5), 464-474.
[http://dx.doi.org/10.1016/S1474-4422(09)70068-7 ] [PMID: 19375664]
[21]
Okun, M.S. Deep-brain stimulation--entering the era of human neural-network modulation. N. Engl. J. Med., 2014, 371(15), 1369-1373.
[http://dx.doi.org/10.1056/NEJMp1408779 ] [PMID: 25197963]
[22]
Traynor, B.J.; Bruijn, L.; Conwit, R.; Beal, F.; O’Neill, G.; Fagan, S.C.; Cudkowicz, M.E. Neuroprotective agents for clinical trials in ALS: A systematic assessment. Neurology, 2006, 67(1), 20-27.
[http://dx.doi.org/10.1212/01.wnl.0000223353.34006.54 ] [PMID: 16832072]
[23]
Ristori, G.; Romano, S.; Visconti, A.; Cannoni, S.; Spadaro, M.; Frontali, M.; Pontieri, F.E.; Vanacore, N.; Salvetti, M. Riluzole in cerebellar ataxia: A randomized, double-blind, placebo-controlled pilot trial. Neurology, 2010, 74(10), 839-845.
[http://dx.doi.org/10.1212/WNL.0b013e3181d31e23 ] [PMID: 20211908]
[24]
Armstrong, M.J.; Miyasaki, J.M. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology, 2012, 79(6), 597-603.
[http://dx.doi.org/10.1212/WNL.0b013e318263c443 ] [PMID: 22815556]
[25]
Schwarzschild, M.A.; Xu, K.; Oztas, E.; Petzer, J.P.; Castagnoli, K.; Castagnoli, N., Jr; Chen, J.F. Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson’s disease. Neurology, 2003, 61(11)(Suppl. 6), S55-S61.
[http://dx.doi.org/10.1212/01.WNL.0000095214.53646.72 ] [PMID: 14663012]
[26]
Marks, W.J., Jr; Ostrem, J.L.; Verhagen, L.; Starr, P.A.; Larson, P.S.; Bakay, R.A.; Taylor, R.; Cahn-Weiner, D.A.; Stoessl, A.J.; Olanow, C.W.; Bartus, R.T. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: An open-label, phase I trial. Lancet Neurol., 2008, 7(5), 400-408.
[http://dx.doi.org/10.1016/S1474-4422(08)70065-6 ] [PMID: 18387850]
[27]
Selvam, A.B. Inventory of vegetable crude drug samples housed in Botanical Survey of India, Howrah. Pharmacogn. Rev., 2008, 2, 61-94.
[28]
Roy, A.; Jauhari, N.; Bharadvaja, N. Medicinal plants as a potential source of chemopreventive agents.Anticancer Plants: Natural Products and Biotechnological Implements; Springer: Singapore, 2018, pp. 109-139.
[http://dx.doi.org/10.1007/978-981-10-8064-7_6]
[29]
Venkatesan, R.; Ji, E.; Kim, S.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review BioMed Res. Int., 2015., 2015.https://www.hindawi.com/journals/bmri/2015/814068814068
[http://dx.doi.org/10.1155/2015/814068]
[30]
United States Pharmacopeia and National Formulary, USP 25, NF 19; United States Pharmacopeial Convention Inc.: Rockville, 2002.
[31]
Pharmacopoeia of the People’s Republic of China. English ed.,. , 2000.
[32]
32. The Japanese Pharmacopeia, Fourteenth ed., JP XIII; The Society of Japanese Pharmacopeia, Japan,, 2001.
[33]
Huie, C.W. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem., 2002, 373(1-2), 23-30.
[http://dx.doi.org/10.1007/s00216-002-1265-3 ] [PMID: 12012169]
[34]
Suzara, S.; Costa, D.A.; Gariepyb, Y.; Rochaa, S.C.S.; Raghavanb, V. Spilanthol extraction using microwave: Calibration curve for gas chromatography. Chem. Eng. Trans., 2013, 32, 1783-1788.
[35]
Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 2010, 120, 1185-1192.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.063]
[36]
Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 2010, 15(12), 8813-8826.
[http://dx.doi.org/10.3390/molecules15128813 ] [PMID: 21131901]
[37]
Nussbaum, R.L.; Ellis, C.E.; Nussbaum, R.L.; Ellis, C.E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med., 2003, 348(14), 1356-1364.
[http://dx.doi.org/10.1056/NEJM2003ra020003 ] [PMID: 12672864]
[38]
Jayaprakasam, B.; Padmanabhan, K.; Nair, M.G. Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother. Res., 2010, 24(6), 859-863.
[http://dx.doi.org/10.1002/ptr.3033 ] [PMID: 19957250]
[39]
Goswami, S.; Kumar, N.; Thawani, V.; Tiwari, M.; Thawani, M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int. J. Collab. Res. Intern. Med. Public Health, 2011, 3(4), 285-293.
[40]
Kongkeaw, C.; Dilokthornsakul, P.; Thanarangsarit, P.; Limpeanchob, N.; Norman Scholfield, C. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. Ethnopharmacol., 2014, 151(1), 528-535.
[41]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326.
[http://dx.doi.org/10.1089/rej.2013.1431 ] [PMID: 23772955]
[42]
Ahirwar, S.; Tembhre, M.; Gour, S.; Namdeo, A. Anticholinesterase efficacy of Bacopa monnieri against the brain regions of rat-a novel approach to therapy for Alzheimer’s disease. Asian J. Exp. Sci., 2012, 26(1), 65-70.
[43]
Le, X.; Pham, H.T.; Do, P.T. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: Possible involvement of glutamatergic and cholinergic systems. Neurochem. Res., 2013, 38(10), 2201-2215.
[44]
Holcomb, L.A.; Dhanasekaran, M.; Hitt, A.R.; Young, K.A.; Riggs, M.; Manyam, B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimers Dis., 2006, 9(3), 243-251.
[45]
Limpeanchob, N.; Jaipan, S.; Rattanakaruna, S.; Phrompittayarat, W.; Ingkaninan, K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol., 2008, 120(1), 112-117.
[http://dx.doi.org/10.1016/j.jep.2008.07.039]
[46]
Brimson, J.M.; Prasanth, M.I.; Plaingam, W.; Tencomnao, T. Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med., 2019, 10(5), 460-470.
[http://dx.doi.org/10.1016/j.jtcme.2019.10.001 ] [PMID: 32953562]
[47]
Wang, J.; Tan, L.; Yu, J.T. Prevention trials in alzheimer’s disease: current status and future perspectives. J. Alzheimers Dis., 2016, 50(4), 927-945.
[http://dx.doi.org/10.3233/JAD-150826 ] [PMID: 26836177]
[48]
Bastianetto, S.; Ramassamy, C.; Doré, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur. J. Neurosci., 2000, 12(6), 1882-1890.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x ] [PMID: 10886329]
[49]
Luo, Y.; Smith, J.V.; Paramasivam, V.; Burdick, A.; Curry, K.J.; Buford, J.P.; Khan, I.; Netzer, W.J.; Xu, H.; Butko, P. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12197-12202.
[http://dx.doi.org/10.1073/pnas.182425199 ] [PMID: 12213959]
[50]
Colciaghi, F.; Borroni, B.; Zimmermann, M.; Bellone, C.; Longhi, A.; Padovani, A.; Cattabeni, F.; Christen, Y.; Di Luca, M. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol. Dis., 2004, 16(2), 454-460.
[http://dx.doi.org/10.1016/j.nbd.2004.03.011 ] [PMID: 15193301]
[51]
Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750.
[http://dx.doi.org/10.1002/jnr.20025 ] [PMID: 14994335]
[52]
Zhang, C.; Browne, A.; Child, D.; Tanzi, R.E. Curcumin decreases amyloid-β peptide levels by attenuating the maturation of amyloid-β precursor protein. J. Biol. Chem., 2010, 285(37), 28472-28480.
[http://dx.doi.org/10.1074/jbc.M110.133520 ] [PMID: 20622013]
[53]
Shytle, R.D.; Bickford, P.C.; Rezai-zadeh, K.; Hou, L.; Zeng, J.; Tan, J.; Sanberg, P.R.; Sanberg, C.D.; Roschek, B., Jr; Fink, R.C.; Alberte, R.S. Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr. Alzheimer Res., 2009, 6(6), 564-571.
[http://dx.doi.org/10.2174/156720509790147115 ] [PMID: 19715544]
[54]
Kumar, S.; Harris, R.J.; Seal, C.J.; Okello, E.J. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother. Res., 2012, 26(1), 113-117.
[http://dx.doi.org/10.1002/ptr.3512 ] [PMID: 21567509]
[55]
Park, C.H.; Choi, S.H.; Koo, J.W.; Seo, J.H.; Kim, H.S.; Jeong, S.J.; Suh, Y.H. Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J. Neurosci. Res., 2002, 70(3), 484-492.
[http://dx.doi.org/10.1002/jnr.10429 ] [PMID: 12391609]
[56]
Huang, S.H.; Lin, C.M.; Chiang, B.H. Protective effects of Angelica sinensis extract on amyloid β-peptide-induced neurotoxicity. Phytomedicine, 2008, 15(9), 710-721.
[http://dx.doi.org/10.1016/j.phymed.2008.02.022 ] [PMID: 18448320]
[57]
Zhang, Z.J. Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci., 2004, 75(14), 1659-1699.
[http://dx.doi.org/10.1016/j.lfs.2004.04.014 ] [PMID: 15268969]
[58]
Rho, S.; Kang, M.; Choi, B.; Sim, D.; Lee, J.; Lee, E.; Cho, C.; Oh, J-W.; Park, S.; Ko, S.; Shin, M.; Hong, M.; Bae, H. Effects of Yukmijihwang-tang derivatives (YMJd), a memory enhancing herbal extract, on the gene-expression profile in the rat hippocampus. Biol. Pharm. Bull., 2005, 28(1), 87-93.
[http://dx.doi.org/10.1248/bpb.28.87 ] [PMID: 15635169]
[59]
Liu, J.X.; Cong, W.H.; Xu, L.; Wang, J.N. Effect of combination of extracts of ginseng and Ginkgo biloba on acetylcholine in amyloid beta-protein-treated rats determined by an improved HPLC. Acta Pharmacol. Sin., 2004, 25(9), 1118-1123.
[PMID: 15339385]
[60]
Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications., 2018, 21, 3-26.
[PMID: 30702842]
[61]
Greeshma, R.; Lingling, T.; Jayarama, R.V.; Hariharan, E.; Asif, S.; Tai-Ping, F.; Seeram, R. Role of medicinal plants in neurodegenerative diseases. Biomanuf Rev, 2017, 2, 2.
[http://dx.doi.org/10.1007/s40898-017-0004-7]
[62]
DeMaagd, G.; Philip, A. .Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T, 2015, 40(8), 504-532, 532.,
[PMID: 26236139]
[63]
Liu, A.K.L.; Chang, R.C-C.; Pearce, R.K.B.; Gentleman, S.M. Nucleus basalis of Meynert revisited: Anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol., 2015, 129(4), 527-540.
[http://dx.doi.org/10.1007/s00401-015-1392-5 ] [PMID: 25633602]
[64]
Kim, W.S.; Kågedal, K.; Halliday, G.M. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res. Ther., 2014, 6(5), 73.
[http://dx.doi.org/10.1186/s13195-014-0073-2 ] [PMID: 25580161]
[65]
Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry, 1992, 55(3), 181-184.
[http://dx.doi.org/10.1136/jnnp.55.3.181 ] [PMID: 1564476]
[66]
Herrera, A.; Muñoz, P.; Steinbusch, H.W.M.; Segura-Aguilar, J. Are dopamine oxidation metabolites involved in the loss of dopaminergic neurons in the nigrostriatal system in Parkinson’s disease? ACS Chem. Neurosci., 2017, 8(4), 702-711.
[http://dx.doi.org/10.1021/acschemneuro.7b00034 ] [PMID: 28233992]
[67]
Ghiglieri, V.; Calabrese, V.; Calabresi, P. Alpha-synuclein: From early synaptic dysfunction to neurodegeneration. Front. Neurol., 2018, 9, 295.
[http://dx.doi.org/10.3389/fneur.2018.00295 ] [PMID: 29780350]
[68]
Swathi, G.; Visweswari, G.; Rajendra, W. Evaluation of rotenone induced Parkinson’s disease on glutamate metabolism and protective strategies of Bacopa monnieri. Int. J. Plant Ani. Environ. Sci., 2013, 3, 62-67.
[69]
Hung, K.C.; Huang, H.J.; Wang, Y.T.; Lin, A.M. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. J. Ethnopharmacol., 2016, 194, 522-529.
[http://dx.doi.org/10.1016/j.jep.2016.10.040 ] [PMID: 27742410]
[70]
Kim, D.S.; Kim, J.Y.; Han, Y. Curcuminoids in neurodegenerative diseases. Recent Patents CNS Drug Discov., 2012, 7(3), 184-204.
[http://dx.doi.org/10.2174/157488912803252032 ] [PMID: 22742420]
[71]
Singh, P.K.; Kotia, V.; Ghosh, D.; Mohite, G.M.; Kumar, A.; Maji, S.K. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem. Neurosci., 2013, 4(3), 393-407.
[http://dx.doi.org/10.1021/cn3001203 ] [PMID: 23509976]
[72]
Ji, H.F.; Shen, L. The multiple pharmaceutical potential of curcumin in Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(2), 369-373.
[http://dx.doi.org/10.2174/18715273113129990077 ] [PMID: 23844695]
[73]
Ono, K.; Yamada, M. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J. Neurochem., 2006, 97(1), 105-115.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03707.x ] [PMID: 16524383]
[74]
Morshedi, D.; Aliakbari, F.; Tayaranian-Marvian, A.; Fassihi, A.; Pan-Montojo, F.; Pérez-Sánchez, H. Cuminaldehyde as the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. J. Food Sci., 2015, 80(10), H2336-H2345.
[http://dx.doi.org/10.1111/1750-3841.13016 ] [PMID: 26351865]
[75]
Šneideris, T.; Baranauskienė, L.; Cannon, J.G.; Rutkienė, R.; Meškys, R.; Smirnovas, V. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives. PeerJ, 2015, 3e1271
[http://dx.doi.org/10.7717/peerj.1271 ] [PMID: 26421240]
[76]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034 ] [PMID: 28835392]
[77]
Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol., 2008, 15(6), 558-566.
[http://dx.doi.org/10.1038/nsmb.1437 ] [PMID: 18511942]
[78]
Kosuru, R.Y.; Roy, A.; Das, S.K.; Bera, S. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success? Mol. Nutr. Food Res., 2018, 62(1), 62.
[http://dx.doi.org/10.1002/mnfr.201700699 ] [PMID: 29178387]
[79]
Blainski, A.; Lopes, G.C.; de Mello, J.C. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 2013, 18(6), 6852-6865.
[http://dx.doi.org/10.3390/molecules18066852 ] [PMID: 23752469]
[80]
Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem., 2018, 18(15), 1283-1293.
[http://dx.doi.org/10.2174/1389557518666180330114010 ] [PMID: 29600764]
[81]
Liu, Y.; Carver, J.A.; Calabrese, A.N.; Pukala, T.L. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim. Biophys. Acta, 2014, 1844(9), 1481-1485.
[http://dx.doi.org/10.1016/j.bbapap.2014.04.013 ] [PMID: 24769497]
[82]
Caruana, M.; Cauchi, R.; Vassallo, N. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease. Front. Nutr., 2016, 3, 31.
[http://dx.doi.org/10.3389/fnut.2016.00031 ] [PMID: 27570766]
[83]
Ur Rasheed, M.S.; Tripathi, M.K.; Mishra, A.K.; Shukla, S.; Singh, M.P. Resveratrol protects from toxin-induced Parkinsonism: A plethora of proofs hitherto petty translational value. Mol. Neurobiol., 2016, 53(5), 2751-2760.
[http://dx.doi.org/10.1007/s12035-015-9124-3 ] [PMID: 25691456]
[84]
Wu, Y.; Li, X.; Zhu, J.X.; Xie, W.; Le, W.; Fan, Z.; Jankovic, J.; Pan, T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals, 2011, 19(3), 163-174.
[http://dx.doi.org/10.1159/000328516 ] [PMID: 21778691]
[85]
Beppe, G.J.; Dongmo, A.B.; Foyet, H.S.; Tsabang, N.; Olteanu, Z.; Cioanca, O.; Hancianu, M.; Dimo, T.; Hritcu, L. Memory-enhancing activities of the aqueous extract of Albizia adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. BMC Complement. Altern. Med., 2014, 14, 142.
[http://dx.doi.org/10.1186/1472-6882-14-142 ] [PMID: 24884469]
[86]
Singsai, K.; Akaravichien, T.; Kukongviriyapan, V.; Sattayasai, J. Protective effects of Streblus asper leaf extract on H2O2-induced ROS in SK-N-sh cells and MPTPinduced Parkinson’s disease-like symptoms in C57bl/6 mouse. Evid. Based Compl. Alternative. Med., 2015, , 2015.
[87]
Fisone, G.; Borgkvist, A.; Usiello, A. Caffeine as a psychomotor stimulant: Mechanism of action. Cell. Mol. Life Sci., 2004, 61(7-8), 857-872.
[http://dx.doi.org/10.1007/s00018-003-3269-3 ] [PMID: 15095008]
[88]
Chen, J.F.; Steyn, S.; Staal, R.; Petzer, J.P.; Xu, K.; Van Der Schyf, C.J.; Castagnoli, K.; Sonsalla, P.K.; Castagnoli, N., Jr; Schwarzschild, M.A. 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J. Biol. Chem., 2002, 277(39), 36040-36044.
[http://dx.doi.org/10.1074/jbc.M206830200 ] [PMID: 12130655]
[89]
Aguiar, L.M.V.; Nobre, H.V., Jr; Macêdo, D.S.; Oliveira, A.A.; Freitas, R.M.; Vasconcelos, S.M.; Cunha, G.M.; Sousa, F.C.; Viana, G.S. Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol. Biochem. Behav., 2006, 84(3), 415-419.
[http://dx.doi.org/10.1016/j.pbb.2006.05.027 ] [PMID: 16844208]
[90]
Kim, K.M.; Chun, S.B.; Koo, M.S.; Choi, W.J.; Kim, T.W.; Kwon, Y.G.; Chung, H.T.; Billiar, T.R.; Kim, Y.M. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic. Biol. Med., 2001, 30(7), 747-756.
[http://dx.doi.org/10.1016/S0891-5849(01)00460-9 ] [PMID: 11275474]
[91]
Garcia, N.S.; Medina-Campos, O.N.; Pedraza-Chaverri, J. S-Allylcysteine, a garlic compound, protects against oxidative stress in1-methyl-4-phenylpyridinium- induced parkinsonism in mice. J. Nutr. Biochem., 2011, 22(10), 934-944.
[92]
An, C.P.; Cheng, W. Review on mechanisms and symptoms of depression in TCM (Traditional Chinese Medicine). Inf. Tradit. Chin. Med., 2007, 24, 12-14.
[93]
Kim, H.G.; Ju, M.S.; Shim, J.S.; Kim, M.C.; Lee, S.H.; Huh, Y.; Kim, S.Y.; Oh, M.S. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br. J. Nutr., 2010, 104(1), 8-16.
[http://dx.doi.org/10.1017/S0007114510000218 ] [PMID: 20187987]
[94]
Zheng, Z.P.; Cheng, K.W.; Chao, J.; Wu, J.; Wang, M. Tyrosinase inhibitors from paper mulberry. Food Chem., 2008, 106, 529-535.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.037]
[95]
Radad, K.; Moldzio, R.; Taha, M.; Rausch, W.D. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother. Res., 2009, 23(5), 696-700.
[http://dx.doi.org/10.1002/ptr.2708 ] [PMID: 19089849]
[96]
MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P. Myers. RH.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, SA. James, M; Groat, N.; MacFar-lane, H.; Jenkins, B; Anderson, MA.; Wexler, NS.; Gusellat, JF. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72, 963-971.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E]
[97]
Folstein, S.E. Huntington’s disease: A disorder of families; Johns Hopkins University Press: Baltimore, 1989.
[98]
Brandt, J.; Butters, N. The neuropsychology of Huntington’s disease. Trends Neurosci., 1986, 9, 118-120.
[http://dx.doi.org/10.1016/0166-2236(86)90039-1]
[99]
Brandt, J.; Folstein, S.E.; Folstein, M.F. Differential cognitive impairment in Alzheimer’s disease and Huntington’s disease. Ann. Neurol., 1988, 23(6), 555-561.
[http://dx.doi.org/10.1002/ana.410230605 ] [PMID: 2970248]
[100]
Mahdy, H.M.; Tadros, M.G.; Mohamed, M.R.; Karim, A.M.; Khalifa, A.E. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem. Int., 2011, 59(6), 770-778.
[http://dx.doi.org/10.1016/j.neuint.2011.07.012 ] [PMID: 21827809]
[101]
Kumar, P.; Kumar, A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J. Med. Food, 2009, 12(3), 591-600.
[http://dx.doi.org/10.1089/jmf.2008.0028 ] [PMID: 19627208]
[102]
Kumar, P.; Kumar, A. Effects of root extract of Withania somnifera in 3-Nitropropionic acid-induced cognitive dysfunction and oxidative damage in rats. Int. J. Health Res., 2008, 1, 139-149.
[103]
Kumar, P.; Padi, S.S.; Naidu, P.S.; Kumar, A. Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find. Exp. Clin. Pharmacol., 2007, 29(1), 19-25.
[http://dx.doi.org/10.1358/mf.2007.29.1.1063492 ] [PMID: 17344940]
[104]
Wu, J.; Jeong, H.K.; Bulin, S.E.; Kwon, S.W.; Park, J.H.; Bezprozvanny, I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J. Neurosci. Res., 2009, 87(8), 1904-1912.
[http://dx.doi.org/10.1002/jnr.22017 ] [PMID: 19185022]
[105]
Shinomol, G.K. Muralidhara, Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neurotoxicology, 2008, 29(6), 948-957.
[http://dx.doi.org/10.1016/j.neuro.2008.09.009 ] [PMID: 18930762]
[106]
Allison, A.C.; Cacabelos, R.; Lombardi, V.R.; Alvarez, X.A.; Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, 25(7), 1341-1357.
[http://dx.doi.org/10.1016/S0278-5846(01)00192-0 ] [PMID: 11513350]
[107]
Kim, D.H.; Shin, E.K.; Kim, Y.H.; Lee, B.W.; Jun, J.G.; Park, J.H.; Kim, J.K. Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. Eur. J. Clin. Invest., 2009, 39(9), 819-827.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02186.x ] [PMID: 19549173]
[108]
Lee, J.H.; Choi, K.J.; Seo, W.D.; Jang, S.Y.; Kim, M.; Lee, B.W.; Kim, J.Y.; Kang, S.; Park, K.H.; Lee, Y.S.; Bae, S. Enhancement of radiation sensitivity in lung cancer cells by celastrol is mediated by inhibition of Hsp90. Int. J. Mol. Med., 2011, 27(3), 441-446.
[PMID: 21249311]
[109]
Cleren, C.; Calingasan, N.Y.; Chen, J.; Beal, M.F. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J. Neurochem., 2005, 94(4), 995-1004.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03253.x ] [PMID: 16092942]
[110]
Zhang, Y.Q.; Sarge, K.D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med. (Berl.), 2007, 85(12), 1421-1428.
[http://dx.doi.org/10.1007/s00109-007-0251-9 ] [PMID: 17943263]
[111]
Kumar, P.; Kalonia, H.; Kumar, A. Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J. Asian Nat. Prod. Res., 2009, 11(5), 439-450.
[http://dx.doi.org/10.1080/10286020902862194 ] [PMID: 19504387]
[112]
Hsu, D.Z.; Wan, C.H.; Hsu, H.F.; Lin, Y.M.; Liu, M.Y. The prophylactic protective effect of sesamol against ferric-nitrilotriacetate-induced acute renal injury in mice. Food Chem. Toxicol., 2008, 46(8), 2736-2741.
[http://dx.doi.org/10.1016/j.fct.2008.04.029 ] [PMID: 18539378]
[113]
Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 1995, 80(1), 155-165.
[http://dx.doi.org/10.1016/0092-8674(95)90460-3 ] [PMID: 7813012]
[114]
Lefebvre, S.; Burlet, P.; Liu, Q.; Bertrandy, S.; Clermont, O.; Munnich, A.; Dreyfuss, G.; Melki, J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet., 1997, 16(3), 265-269.
[http://dx.doi.org/10.1038/ng0797-265 ] [PMID: 9207792]
[115]
Lorson, C.L.; Strasswimmer, J.; Yao, J.M.; Baleja, J.D.; Hahnen, E.; Wirth, B.; Le, T.; Burghes, A.H.; Androphy, E.J. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat. Genet., 1998, 19(1), 63-66.
[http://dx.doi.org/10.1038/ng0598-63 ] [PMID: 9590291]
[116]
Pellizzoni, L.; Charroux, B.; Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11167-11172.
[http://dx.doi.org/10.1073/pnas.96.20.11167 ] [PMID: 10500148]
[117]
Anderson, S.L.; Qiu, J.; Rubin, B.Y. EGCG corrects aberrant splicing of IKAP mRNA in cells from patients with familial dysautonomia. Biochem. Biophys. Res. Commun., 2003, 310(2), 627-633.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.019 ] [PMID: 14521957]
[118]
Skommer, J.; Wlodkowic, D.; Pelkonen, J. Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4. Exp. Hematol., 2007, 35(1), 84-95.
[http://dx.doi.org/10.1016/j.exphem.2006.09.006 ] [PMID: 17198877]
[119]
Sakla, M.S.; Lorson, C.L. Induction of full-length survival motor neuron by polyphenol botanical compounds. Hum. Genet., 2008, 122(6), 635-643.
[http://dx.doi.org/10.1007/s00439-007-0441-0 ] [PMID: 17962980]
[120]
Lynch, K.W.; Maniatis, T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev., 1996, 10(16), 2089-2101.
[http://dx.doi.org/10.1101/gad.10.16.2089 ] [PMID: 8769651]
[121]
Jarrett, J.T.; Lansbury, P.T. Jr Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 1993, 73(6), 1055-1058.
[http://dx.doi.org/10.1016/0092-8674(93)90635-4 ] [PMID: 8513491]
[122]
Kupfer, L.; Hinrichs, W.; Groschup, M.H. Prion protein misfolding. Curr. Mol. Med., 2009, 9(7), 826-835.
[http://dx.doi.org/10.2174/156652409789105543 ] [PMID: 19860662]
[123]
Eiden, M.; Leidel, F.; Strohmeier, B.; Fast, C.; Groschup, M.H. A medicinal herb Scutellaria lateriflora inhibits PrP replication in vitro and delays the onset of prion disease in mice. Front. Psychiatry, 2012, 3, 9.
[http://dx.doi.org/10.3389/fpsyt.2012.00009]
[124]
Hoffman, E.P.; Brown, R.H., Jr; Kunkel, L.M. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell, 1987, 51(6), 919-928.
[http://dx.doi.org/10.1016/0092-8674(87)90579-4 ] [PMID: 3319190]
[125]
Terrill, J.R.; Radley-Crabb, H.G.; Iwasaki, T.; Lemckert, F.A.; Arthur, P.G.; Grounds, M.D. Oxidative stress and pathology in muscular dystrophies: Focus on protein thiol oxidation and dysferlinopathies. FEBS J., 2013, 280(17), 4149-4164.
[http://dx.doi.org/10.1111/febs.12142 ] [PMID: 23332128]
[126]
Renjini, R.; Gayathri, N.; Nalini, A. Srinivas, Bharath MM. Oxidative damage in muscular correlates with the severity of the pathology: role of glutathione metabolism. Neurochem. Res., 2012, 37(4), 885-898.
[http://dx.doi.org/10.1007/s11064-011-0683-z ] [PMID: 22219131]
[127]
Buetler, T.M.; Renard, M.; Offord, E.A.; Schneider, H.; Ruegg, U.T. Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am. J. Clin. Nutr., 2002, 75(4), 749-753.
[http://dx.doi.org/10.1093/ajcn/75.4.749 ] [PMID: 11916763]
[128]
Matilla-Dueñas, A.; Corral-Juan, M.; Volpini, V.; Sanchez, I. The spinocerebellar ataxias: clinical aspects and molecular genetics. Adv. Exp. Med. Biol., 2012, 724, 351-374.
[http://dx.doi.org/10.1007/978-1-4614-0653-2_27 ] [PMID: 22411256]
[129]
Gatchel, J.R.; Zoghbi, H.Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet., 2005, 6(10), 743-755.
[http://dx.doi.org/10.1038/nrg1691 ] [PMID: 16205714]
[130]
Solans, A.; Zambrano, A.; Rodríguez, M.; Barrientos, A. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum. Mol. Genet., 2006, 15(20), 3063-3081.
[http://dx.doi.org/10.1093/hmg/ddl248 ] [PMID: 16968735]
[131]
Bennett, E.J.; Shaler, T.A.; Woodman, B.; Ryu, K.Y.; Zaitseva, T.S.; Becker, C.H.; Bates, G.P.; Schulman, H.; Kopito, R.R. Global changes to the ubiquitin system in Huntington’s disease. Nature, 2007, 448(7154), 704-708.
[http://dx.doi.org/10.1038/nature06022 ] [PMID: 17687326]
[132]
Chafekar, S.M.; Duennwald, M.L. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS One, 2012, 7(5)e37929
[http://dx.doi.org/10.1371/journal.pone.0037929 ] [PMID: 22649566]
[133]
Kemper, K.J.; Vohra, S.; Walls, R. Task Force on Complementary and Alternative Medicine; Provisional Section on Complementary, Holistic, and Integrative Medicine. American Academy of Pediatrics. The use of complementary and alternative medicine in pediatrics. Pediatrics, 2008, 122(6), 1374-1386.
[http://dx.doi.org/10.1542/peds.2008-2173 ] [PMID: 19047261]
[134]
Manoharan, S.; Essa, M.M.; Vinoth, A.; Kowsalya, R.; Manimaran, A.; Selvasundaram, R. Alzheimer’s disease and medicinal plants: An overview. Adv. Neurobiol., 2016, 12, 95-105.
[http://dx.doi.org/10.1007/978-3-319-28383-8_6 ] [PMID: 27651250]
[135]
Keyvan, D.; Damien, D.H.J.; Heikk, I.V.; Raimo, H. Plants as potential sources for drug development against Alzheimer’s disease. Int. J. Biomed. Pharm. Sci., 2007, 1, 83-104.
[136]
Yao, Z.X.; Han, Z.; Drieu, K.; Papadopoulos, V. Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem., 2004, 15(12), 749-756.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.008 ] [PMID: 15607648]
[137]
Sakina, M.R.; Dandiya, P.C. A psycho-neuropharmacological profile of Centella asiatica extract. Fitoterapia, 1990, 61, 291-296.
[138]
Nalini, K.; Aroor, A.R.; Karanth, K.S.; Rao, A. Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia, 1992, 63, 232-237.
[139]
Rubio, J.; Qiong, W.; Liu, X.; Jiang, Z.; Dang, H.; Chen, S.L. Aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice. Evid. Based Complement. Alternat. Med., 2011, 2011253958
[PMID: 18955369]
[140]
Bilge, S.; Ilkay, O. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure Appl. Chem., 2005, 77, 53-64.
[http://dx.doi.org/10.1351/pac200577010053]
[141]
Jain, S.; Shukla, S.D.; Sharma, K.; Bhatnagar, M. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat. Phytother. Res., 2001, 15(6), 544-548.
[http://dx.doi.org/10.1002/ptr.802 ] [PMID: 11536389]
[142]
Chaurasia, S.S.; Panda, S.; Kar, A. Withania somnifera root extract in the regulation of lead-induced oxidative damage in male mouse. Pharmacol. Res., 2000, 41(6), 663-666.
[http://dx.doi.org/10.1006/phrs.1999.0634 ] [PMID: 10816336]
[143]
Gacche, R.N.; Dhole, N.A. Antioxidant and possible anti-inflammatory potential of selected medicinal plants prescribed in the Indian traditional system of medicine. Pharm. Biol., 2006, 44, 383-395.
[http://dx.doi.org/10.1080/13880200600751691]
[144]
Tohda, C.; Kuboyama, T.; Komatsu, K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport, 2000, 11(9), 1981-1985.
[http://dx.doi.org/10.1097/00001756-200006260-00035 ] [PMID: 10884056]
[145]
Tawab, M.A.; Bahr, U.; Karas, M.; Wurglics, M.; Schubert-Zsilavecz, M. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos., 2003, 31(8), 1065-1071.
[http://dx.doi.org/10.1124/dmd.31.8.1065 ] [PMID: 12867496]
[146]
Imbimbo, B.P. Therapeutic potential of gamma-secretase inhibitors and modulators. Curr. Top. Med. Chem., 2008, 8(1), 54-61.
[http://dx.doi.org/10.2174/156802608783334015 ] [PMID: 18220933]
[147]
Moneim, A.E. Oxidant/Antioxidant imbalance and the risk of Alzheimer’s disease. Curr. Alzheimer Res., 2015, 12(4), 335-349.
[http://dx.doi.org/10.2174/1567205012666150325182702 ] [PMID: 25817254]
[148]
Koo, K.A.; Sung, S.H.; Kim, Y.C. A new neuroprotective pinusolide derivative from the leaves of Biota orientalis. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 834-836.
[http://dx.doi.org/10.1248/cpb.50.834 ] [PMID: 12045342]
[149]
Gong, B.; Vitolo, O.V.; Trinchese, F.; Liu, S.; Shelanski, M.; Arancio, O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest., 2004, 114(11), 1624-1634.
[http://dx.doi.org/10.1172/JCI22831 ] [PMID: 15578094]
[150]
Ingole, S.R.; Rajput, S.K.; Sharma, S.S. cognition enhancers: Current strategies and future perspectives. CRIPS, 2008, 9(3), 89.
[151]
Li, L.; Xue, Z.; Chen, L.; Chen, X.; Wang, H.; Wang, X. Puerarin suppression of Abeta1- 42-induced primary cortical neuron death is largely dependent on ERbeta. Brain Res., 2017, 1657, 87-94.
[152]
Shinomol, G.K.; Mythri, R.B.; Srinivas Bharath, M.M. Muralidhara, Bacopa monnieri extract offsets rotenone-induced cytotoxicity in dopaminergic cells and oxidative impairments in mice brain. Cell. Mol. Neurobiol., 2012, 32(3), 455-465.
[http://dx.doi.org/10.1007/s10571-011-9776-0 ] [PMID: 22160863]
[153]
Siddique, Y.H.; Mujtaba, S.F.; Faisa, M.; Jyoti, S.; Naz, F. The effect of Bacopa monnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Eur. J. Integr. Med., 2014, 6, 571-580.
[http://dx.doi.org/10.1016/j.eujim.2014.05.007]
[154]
Prakash, J.; Chouhan, S.; Yadav, S.K.; Westfall, S.; Rai, S.N.; Singh, S.P. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem. Res., 2014, 39(12), 2527-2536.
[http://dx.doi.org/10.1007/s11064-014-1443-7 ] [PMID: 25403619]
[155]
Prakash, J.; Yadav, S.K.; Chouhan, S.; Singh, S.P. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem. Res., 2013, 38(5), 972-980.
[http://dx.doi.org/10.1007/s11064-013-1005-4 ] [PMID: 23430469]
[156]
El-Ghazaly, M.A.; Sadik, N.A.H.; Rashed, E.R.; Abd-El-Fattah, A.A. Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson’s disease. Toxicol. Ind. Health, 2015, 31(12), 1128-1143.
[http://dx.doi.org/10.1177/0748233713487251 ] [PMID: 23696346]
[157]
Rojas, P.; Serrano-García, N.; Mares-Sámano, J.J.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ogren, S.O. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur. J. Neurosci., 2008, 28(1), 41-50.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06314.x ] [PMID: 18662333]
[158]
Dhanasekaran, M.; Tharakan, B.; Manyam, B.V. Antiparkinson drug--Mucuna pruriens shows antioxidant and metal chelating activity. Phytother. Res., 2008, 22(1), 6-11.
[http://dx.doi.org/10.1002/ptr.2109 ] [PMID: 18064727]
[159]
Jansen, R.L.M.; Brogan, B.; Whitworth, A.J.; Okello, E.J. Effects of five Ayurvedic herbs on locomotor behaviour in a Drosophila melanogaster Parkinson’s disease model. Phytother. Res., 2014, 28(12), 1789-1795.
[http://dx.doi.org/10.1002/ptr.5199 ] [PMID: 25091506]
[160]
Yadav, S.K.; Prakash, J.; Chouhan, S.; Singh, S.P. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem. Int., 2013, 62(8), 1039-1047.
[http://dx.doi.org/10.1016/j.neuint.2013.03.015 ] [PMID: 23562769]
[161]
van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762.
[http://dx.doi.org/10.1007/s12035-016-9843-0 ] [PMID: 27003823]
[162]
Mythri, R.B.; Bharath, M.M. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995 ] [PMID: 22211691]
[163]
Jagatha, B.; Mythri, R.B.; Vali, S.; Bharath, M.M.S. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic. Biol. Med., 2008, 44(5), 907-917.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011 ] [PMID: 18166164]
[164]
Guo, S.; Yan, J.; Yang, T.; Yang, X.; Bezard, E.; Zhao, B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol. Psychiatry, 2007, 62(12), 1353-1362.
[http://dx.doi.org/10.1016/j.biopsych.2007.04.020 ] [PMID: 17624318]
[165]
Kim, J.S.; Kim, J.M. O, J.J.; Jeon, B.S. Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J. Clin. Neurosci., 2010, 17(9), 1165-1168.
[http://dx.doi.org/10.1016/j.jocn.2010.01.042 ] [PMID: 20541420]
[166]
Tanaka, K.; Miyake, Y.; Fukushima, W.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; Sakae, N.; Fukuyama, H.; Hirota, Y.; Nagai, M. Fukuoka Kinki Parkinson’s Disease Study Group. Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Parkinsonism Relat. Disord., 2011, 17(6), 446-450.
[http://dx.doi.org/10.1016/j.parkreldis.2011.02.016 ] [PMID: 21458354]
[167]
Xu, Q.; Langley, M. Neurorescue effect of EGCG in an animal model of Parkinson’s disease. FASEB J., 2016, 30(1), 1174.
[168]
Anandhan, A.; Tamilselvam, K.; Radhiga, T.; Rao, S.; Essa, M.M.; Manivasagam, T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res., 2012, 1433, 104-113.
[http://dx.doi.org/10.1016/j.brainres.2011.11.021 ] [PMID: 22138428]
[169]
Chaturvedi, R.K.; Shukla, S.; Seth, K.; Chauhan, S.; Sinha, C.; Shukla, Y.; Agrawal, A.K. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol. Dis., 2006, 22(2), 421-434.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008 ] [PMID: 16480889]
[170]
Suganuma, H.; Hirano, T.; Arimoto, Y.; Inakuma, T. Effect of tomato intake on striatal monoamine level in a mouse model of experimental Parkinson’s disease. J. Nutr. Sci. Vitaminol. (Tokyo), 2002, 48(3), 251-254.
[http://dx.doi.org/10.3177/jnsv.48.251 ] [PMID: 12350086]
[171]
Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med., 1999, 27(5-6), 612-616.
[http://dx.doi.org/10.1016/S0891-5849(99)00107-0 ] [PMID: 10490282]
[172]
Kitts, D.D.; Wijewickreme, A.N.; Hu, C. Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem., 2000, 203(1-2), 1-10.
[http://dx.doi.org/10.1023/A:1007078414639 ] [PMID: 10724326]
[173]
Lee, H.J.; Noh, Y.H.; Lee, D.Y.; Kim, Y.S.; Kim, K.Y.; Chung, Y.H.; Lee, W.B.; Kim, S.S. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur. J. Cell Biol., 2005, 84(11), 897-905.
[http://dx.doi.org/10.1016/j.ejcb.2005.07.003 ] [PMID: 16323286]
[174]
Cheng, Y.; He, G.; Mu, X.; Zhang, T.; Li, X.; Hu, J.; Xu, B.; Du, G. Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci. Lett., 2008, 441(1), 16-20.
[http://dx.doi.org/10.1016/j.neulet.2008.05.116 ] [PMID: 18586394]
[175]
Cheng, M.C.; Li, C.Y.; Ko, H.C.; Ko, F.N.; Lin, Y.L.; Wu, T.S. Antidepressant principles of the roots of Polygala tenuifolia. J. Nat. Prod., 2006, 69(9), 1305-1309.
[http://dx.doi.org/10.1021/np060207r ] [PMID: 16989524]
[176]
Kawashima, K.; Miyako, D.; Ishino, Y.; Makino, T.; Saito, K.; Kano, Y. Anti-stress effects of 3,4,5-trimethoxycinnamic acid, an active constituent of roots of Polygala tenuifolia (Onji). Biol. Pharm. Bull., 2004, 27(8), 1317-1319.
[http://dx.doi.org/10.1248/bpb.27.1317 ] [PMID: 15305046]
[177]
Zhang, Z.T.; Cao, X.B.; Xiong, N.; Wang, H.C.; Huang, J.S.; Sun, S.G.; Wang, T. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol. Sin., 2010, 31(8), 900-906.
[http://dx.doi.org/10.1038/aps.2010.77 ] [PMID: 20644549]
[178]
Vohora, D.; Pal, S.N.; Pillai, K.K. Protection from phenytoin-induced cognitive deficit by Bacopa monniera, a reputed Indian nootropic plant. J. Ethnopharmacol., 2000, 71(3), 383-390.
[http://dx.doi.org/10.1016/S0378-8741(99)00213-5 ] [PMID: 10940574]
[179]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine, 2005, 12(4), 305-317.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008 ] [PMID: 15898709]
[180]
Bhattacharya, S.K.; Bhattacharya, A.; Kumar, A.; Ghosal, S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother. Res., 2000, 14(3), 174-179.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174:AID-PTR624>3.0.CO;2-O ] [PMID: 10815010]
[181]
Randriamampionona, D.; Diallo, B.; Rakotoniriana, F.; Rabemanantsoa, C.; Cheuk, K.; Corbisier, A.M.; Mahillon, J.; Ratsimamanga, S.; El Jaziri, M. Comparative analysis of active constituents in Centella asiatica samples from Madagascar: Application for ex situ conservation and clonal propagation. Fitoterapia, 2007, 78(7-8), 482-489.
[http://dx.doi.org/10.1016/j.fitote.2007.03.016 ] [PMID: 17560738]

© 2024 Bentham Science Publishers | Privacy Policy