Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Crosstalk of Long Non-coding RNAs and EMT: Searching the Missing Pieces of an Incomplete Puzzle for Lung Cancer Therapy

Author(s): Milad Ashrafizadeh, Md Shahinozzaman, Sima Orouei, Vahideh Zarrin, Kiavash Hushmandi, Farid Hashemi, Anuj Kumar, Saeed Samarghandian, Masoud Najafi* and Ali Zarrabi*

Volume 21, Issue 8, 2021

Published on: 02 February, 2021

Page: [640 - 665] Pages: 26

DOI: 10.2174/1568009621666210203110305

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Lung cancer has the first place among cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore the regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer.

Introduction: LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells.

Methods: Different databases, including Google Scholar, Pubmed and Science direct, were searched for collecting articles using keywords such as “LncRNA”, “EMT”, and “Lung cancer”.

Results: There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor- promoting lncRNAs triggering EMT in lung cancer and enhancing their migration.

Conclusion: LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling the migration of lung cancer cells.

Keywords: Lung cancer, long non-coding RNA, epithelial-to-mesenchymal transition, metastasis, cancer therapy, microRNA, cadherin.

Graphical Abstract
[1]
Li, W.; Zhang, M.; Huang, C.; Meng, J.; Yin, X.; Sun, G. Genetic variants of DNA repair pathway genes on lung cancer risk. Pathol. Res. Pract., 2019, 215(10), 152548.
[http://dx.doi.org/10.1016/j.prp.2019.152548] [PMID: 31337555]
[2]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[3]
Corrao, G.; Marvaso, G.; Ferrara, R.; Lo Russo, G.; Gugliandolo, S.G.; Piperno, G.; Spaggiari, L.; De Marinis, F.; Orecchia, R.; Garassino, M.C.; Jereczek-Fossa, B.A. Stereotatic radiotherapy in metastatic non-small cell lung cancer: Combining immunotherapy and radiotherapy with a focus on liver metastases. Lung Cancer, 2020, 142, 70-79.
[http://dx.doi.org/10.1016/j.lungcan.2020.02.017] [PMID: 32120227]
[4]
Dezube, A.R.; Jaklitsch, M.T. New evidence supporting lung cancer screening with low dose CT & surgical implications. Eur. J. Surg. Oncol., 2020, 46(6), 982-990.
[http://dx.doi.org/10.1016/j.ejso.2020.02.015] [PMID: 32113886]
[5]
Henschke, C.I.; Yankelevitz, D.F.; Libby, D.M.; Pasmantier, M.W.; Smith, J.P.; Miettinen, O.S. International early lung cancer action program investigators. Survival of patients with stage I lung cancer detected on CT screening. N. Engl. J. Med., 2006, 355(17), 1763-1771.
[http://dx.doi.org/10.1056/NEJMoa060476] [PMID: 17065637]
[6]
Hecht, S.S.; Carmella, S.G.; Murphy, S.E.; Stepanov, I.; Balbo, S.; Hatsukami, D.K.; Yuan, J-M.; Park, S.L.; Stram, D.O.; Haiman, C. Tobacco smoke toxicant and carcinogen biomarkers and lung cancer susceptibility in smokers. J. Thorac. Oncol., 2016, 11, S7-S8.
[http://dx.doi.org/10.1016/j.jtho.2015.12.011]
[7]
Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med., 2011, 365(5), 395-409.
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[8]
Steiger, D.; Han, D.; Yip, R.; Li, K.; Chen, X.; Liu, L.; Liu, J.; Ma, T.; Siddiqi, F.; Yankelevitz, D.F.; Henschke, C.I. Increased main pulmonary artery diameter and main pulmonary artery to ascending aortic diameter ratio in smokers undergoing lung cancer screening. Clin. Imaging, 2020, 63, 16-23.
[http://dx.doi.org/10.1016/j.clinimag.2019.11.011] [PMID: 32120308]
[9]
Chen, K.; Cheng, G.; Zhang, F.; Zhu, G.; Xu, Y.; Yu, X.; Huang, Z.; Fan, Y. PD-L1 expression and T cells infiltration in patients with uncommon EGFR-mutant non-small cell lung cancer and the response to immunotherapy. Lung Cancer, 2020, 142, 98-105.
[http://dx.doi.org/10.1016/j.lungcan.2020.02.010] [PMID: 32120230]
[10]
Khorrami, M.; Bera, K.; Leo, P.; Vaidya, P.; Patil, P.; Thawani, R.; Velu, P.; Rajiah, P.; Alilou, M.; Choi, H.; Feldman, M.D.; Gilkeson, R.C.; Linden, P.; Fu, P.; Pass, H.; Velcheti, V.; Madabhushi, A. Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: Multi-site study. Lung Cancer, 2020, 142, 90-97.
[http://dx.doi.org/10.1016/j.lungcan.2020.02.018] [PMID: 32120229]
[11]
Hirpara, D.H.; Gupta, V.; Davis, L.E.; Zhao, H.; Hallet, J.; Mahar, A.L.; Sutradhar, R.; Doherty, M.; Louie, A.V.; Kidane, B.; Darling, G.; Coburn, N.G. Severe symptoms persist for Up to one year after diagnosis of stage I-III lung cancer: An analysis of province-wide patient reported outcomes. Lung Cancer, 2020, 142, 80-89.
[http://dx.doi.org/10.1016/j.lungcan.2020.02.014] [PMID: 32120228]
[12]
Kim, D.; Lee, Y-S.; Kim, D-H.; Bae, S-C. Lung cancer staging and associated genetic and epigenetic events. Mol. Cells, 2020, 43(1), 1-9.
[PMID: 31999917]
[13]
McEvoy, S.H.; Halpenny, D.F.; Viteri-Jusué, A.; Hayes, S.A.; Plodkowski, A.J.; Riely, G.J.; Ginsberg, M.S. Investigation of patterns of nodal metastases in BRAF mutant lung cancer. Lung Cancer, 2017, 108, 62-65.
[http://dx.doi.org/10.1016/j.lungcan.2017.02.024] [PMID: 28625649]
[14]
Cadranel, J.; Mauguen, A.; Faller, M.; Zalcman, G.; Buisine, M-P.; Westeel, V.; Longchampt, E.; Wislez, M.; Coudert, B.; Daniel, C.; Chetaille, B.; Michiels, S.; Blons, H.; Solassol, J.; De Fraipont, F.; Foucher, P.; Urban, T.; Lacroix, L.; Poulot, V.; Quoix, E.; Antoine, M.; Danton, G.; Morin, F.; Chouaid, C.; Pignon, J.P. Impact of systematic EGFR and KRAS mutation evaluation on progression-free survival and overall survival in patients with advanced non-small-cell lung cancer treated by erlotinib in a French prospective cohort (ERMETIC project- part 2). J. Thorac. Oncol., 2012, 7(10), 1490-1502.
[http://dx.doi.org/10.1097/JTO.0b013e318265b2b5] [PMID: 22982650]
[15]
Tsai, T-H.; Wu, S-G.; Hsieh, M-S.; Yu, C-J.; Yang, J.C-H.; Shih, J-Y. Clinical and prognostic implications of RET rearrangements in metastatic lung adenocarcinoma patients with malignant pleural effusion. Lung Cancer, 2015, 88(2), 208-214.
[http://dx.doi.org/10.1016/j.lungcan.2015.02.018] [PMID: 25773866]
[16]
Cappuzzo, F.; Marchetti, A.; Skokan, M.; Rossi, E.; Gajapathy, S.; Felicioni, L.; Del Grammastro, M.; Sciarrotta, M.G.; Buttitta, F.; Incarbone, M.; Toschi, L.; Finocchiaro, G.; Destro, A.; Terracciano, L.; Roncalli, M.; Alloisio, M.; Santoro, A.; Varella-Garcia, M. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol., 2009, 27(10), 1667-1674.
[http://dx.doi.org/10.1200/JCO.2008.19.1635] [PMID: 19255323]
[17]
Go, H.; Jeon, Y.K.; Park, H.J.; Sung, S-W.; Seo, J-W.; Chung, D.H. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J. Thorac. Oncol., 2010, 5(3), 305-313.
[http://dx.doi.org/10.1097/JTO.0b013e3181ce3d1d] [PMID: 20107422]
[18]
Riquet, M.; Le Pimpec-Barthes, F.; Danel, C. Axillary lymph node metastases from bronchogenic carcinoma. Ann. Thorac. Surg., 1998, 66(3), 920-922.
[http://dx.doi.org/10.1016/S0003-4975(98)00556-6] [PMID: 9768952]
[19]
Satoh, H.; Ishikawa, H.; Kagohashi, K.; Kurishima, K.; Sekizawa, K. Axillary lymph node metastasis in lung cancer. Med. Oncol., 2009, 26(2), 147-150.
[http://dx.doi.org/10.1007/s12032-008-9097-4] [PMID: 18821066]
[20]
Rajagopal, T.; Talluri, S.; Akshaya, R.; Dunna, N.R. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin. Chim. Acta, 2019.
[PMID: 31901481]
[21]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[22]
Tamang, S.; Acharya, V.; Roy, D.; Sharma, R.; Aryaa, A.; Sharma, U.; Khandelwal, A.; Prakash, H.; Vasquez, K.M.; Jain, A. SNHG12: an lncRNA as a potential therapeutic target and biomarker for human cancer. Front. Oncol., 2019, 9, 901.
[http://dx.doi.org/10.3389/fonc.2019.00901] [PMID: 31620362]
[23]
Mo, S.; Zhang, L.; Dai, W.; Han, L.; Wang, R.; Xiang, W.; Wang, Z.; Li, Q.; Yu, J.; Yuan, J.; Cai, S.; Cai, G. Antisense lncRNA LDLRAD4-AS1 promotes metastasis by decreasing the expression of LDLRAD4 and predicts a poor prognosis in colorectal cancer. Cell Death Dis., 2020, 11(2), 155.
[http://dx.doi.org/10.1038/s41419-020-2338-y] [PMID: 32111819]
[24]
Yang, H.; Lin, H.C.; Liu, H.; Gan, D.; Jin, W.; Cui, C.; Yan, Y.; Qian, Y.; Han, C.; Wang, Z. A 6 lncRNA-based risk score system for predicting the recurrence of colon adenocarcinoma patients. Front. Oncol., 2020, 10, 81.
[http://dx.doi.org/10.3389/fonc.2020.00081] [PMID: 32117736]
[25]
Zhang, S.; Zhang, G.; Liu, J. Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS, 2016, 124(8), 649-658.
[http://dx.doi.org/10.1111/apm.12555] [PMID: 27272214]
[26]
Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385), 339-346.
[http://dx.doi.org/10.1038/nature10887] [PMID: 22337053]
[27]
Chandra Gupta, S.; Nandan Tripathi, Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int. J. Cancer, 2017, 140(9), 1955-1967.
[http://dx.doi.org/10.1002/ijc.30546] [PMID: 27925173]
[28]
Salerno, D.; Chiodo, L.; Alfano, V.; Floriot, O.; Cottone, G.; Paturel, A.; Pallocca, M.; Plissonnier, M.L.; Jeddari, S.; Belloni, L.; Zeisel, M.; Levrero, M.; Guerrieri, F. Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut, 2020, 69(11), 2016-2024.
[http://dx.doi.org/10.1136/gutjnl-2019-319637] [PMID: 32114505]
[29]
Alsunusi, S.; Kumosani, T.A.; Glabe, C.G.; Huwait, E.A.; Moselhy, S.S. In vitro study of the mechanism of intraneuronal β-amyloid aggregation in Alzheimer’s disease. Arch. Physiol. Biochem., 2020, 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1722707] [PMID: 32046518]
[30]
Ke, J.; Shen, Z.; Hu, W.; Li, M.; Shi, Y.; Xie, Z.; Wu, D. LncRNA DCST1-AS1 was upregulated in endometrial carcinoma and may sponge miR-92a-3p to upregulate notch1. Cancer Manag. Res., 2020, 12, 1221-1227.
[http://dx.doi.org/10.2147/CMAR.S234891] [PMID: 32110096]
[31]
Qin, X.; Zhu, S.; Chen, Y.; Chen, D.; Tu, W.; Zou, H. Long non-coding RNA (LncRNA) CASC15 Is upregulated in diabetes-induced chronic renal failure and regulates podocyte apoptosis. Med. Sci. Monit., 2020, 26, e919415.
[http://dx.doi.org/10.12659/MSM.919415] [PMID: 32053576]
[32]
Zha, T.; Su, F.; Liu, X.; Yang, C.; Liu, L. Role of long non-coding RNA (LncRNA) LINC-PINT downregulation in cardiomyopathy and retinopathy progression among patients with type 2 diabetes. Med. Sci. Monit., 2019, 25, 8509-8514.
[http://dx.doi.org/10.12659/MSM.918358] [PMID: 31711064]
[33]
Wake, T.; Tabuchi, H.; Funaki, K.; Ito, D.; Yamagata, B.; Yoshizaki, T.; Nakahara, T.; Jinzaki, M.; Yoshimasu, H.; Tanahashi, I.; Shimazaki, H.; Mimura, M. Disclosure of amyloid status for risk of alzheimer disease to cognitively normal research participants with subjective cognitive decline: a longitudinal study. Am. J. Alzheimers Dis. Other Demen., 2020, 35, 1533317520904551.
[http://dx.doi.org/10.1177/1533317520904551] [PMID: 32052640]
[34]
Ge, Y.; Song, X.; Liu, J.; Liu, C.; Xu, C. The combined therapy of berberine treatment with lncRNA BACE1-AS depletion attenuates Aβ25-35 induced neuronal injury through regulating the expression of miR-132-3p in neuronal cells. Neurochem. Res., 2020, 45(4), 741-751.
[http://dx.doi.org/10.1007/s11064-019-02947-6] [PMID: 31898085]
[35]
Gu, R.; Wang, L.; Tang, M.; Li, S.R.; Liu, R.; Hu, X. LncRNA Rpph1 protects amyloid-beta induced neuronal injury in SK-N-SH cells via miR-122/Wnt1 axis. Int. J. Neurosci., 2019, 130(5), 1-11.
[PMID: 31718352]
[36]
Haemmig, S.; Yang, D.; Sun, X.; Das, D.; Ghaffari, S.; Molinaro, R.; Chen, L.; Deng, Y.; Freeman, D.; Moullan, N.; Tesmenitsky, Y.; Wara, A.K.M.K.; Simion, V.; Shvartz, E.; Lee, J.F.; Yang, T.; Sukova, G.; Marto, J.A.; Stone, P.H.; Lee, W.L.; Auwerx, J.; Libby, P.; Feinberg, M.W. Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci. Transl. Med., 2020, 12(531), 12.
[http://dx.doi.org/10.1126/scitranslmed.aaw1868] [PMID: 32075942]
[37]
Tang, X.H.; Li, H.; Zheng, X.S.; Lu, M.S.; An, Y.; Zhang, X.L. CRM197 reverses paclitaxel resistance by inhibiting the NAC-1/Gadd45 pathway in paclitaxel-resistant ovarian cancer cells. Cancer Med., 2019, 8(14), 6426-6436.
[http://dx.doi.org/10.1002/cam4.2512] [PMID: 31490008]
[38]
Yang, W.; Xiao, W.; Cai, Z.; Jin, S.; Li, T. miR-1269b drives cisplatin resistance of human non-small cell lung cancer via modulating the PTEN/PI3K/AKT signaling pathway. OncoTargets Ther., 2020, 13, 109-118.
[http://dx.doi.org/10.2147/OTT.S225010] [PMID: 32021259]
[39]
Chen, L.; Ren, P.; Zhang, Y.; Gong, B.; Yu, D.; Sun, X. Long non‑coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR‑21/PTEN/Akt axis. Oncol. Rep., 2020, 43(3), 897-907.
[http://dx.doi.org/10.3892/or.2020.7467] [PMID: 32020207]
[40]
Mao, W.; Li, T. LncRNA MACC1-AS1 promotes lung adenocarcinoma cell proliferation by downregulating PTEN. Cancer Biother. Radiopharm., 2020, 35(4), 313-318.
[http://dx.doi.org/10.1089/cbr.2019.3020] [PMID: 32109147]
[41]
Chen, L.; Zhang, D.; Ding, T.; Liu, F.; Xu, X.; Tian, Y.; Xiao, J.; Shen, H. LncRNA NR2F2-AS1 upregulates Rac1 to increase cancer stemness in clear cell renal cell carcinoma. Cancer Biother. Radiopharm., 2020, 35(4), 301-306.
[http://dx.doi.org/10.1089/cbr.2019.3319] [PMID: 32109138]
[42]
Guo, M.; Lin, B.; Li, G.; Lin, J.; Jiang, X. LncRNA TDRG1 promotes the proliferation, migration, and invasion of cervical cancer cells by sponging miR-214-5p to target SOX4. J. Recept. Signal Transduct. Res., 2020, 40(3), 281-293.
[http://dx.doi.org/10.1080/10799893.2020.1731537] [PMID: 32106739]
[43]
Wei, Y.; Wang, Z.; Zong, Y.; Deng, D.; Chen, P.; Lu, J. LncRNA MFI2-AS1 promotes HCC progression and metastasis by acting as a competing endogenous RNA of miR-134 to upregulate FOXM1 expression. Biomed. Pharmacother., 2020, 125, 109890.
[http://dx.doi.org/10.1016/j.biopha.2020.109890] [PMID: 32106369]
[44]
Ma, Z.; Gu, G.; Pan, W.; Chen, X. LncRNA PCAT6 accelerates the progression and chemoresistance of cervical cancer through up-regulating ZEB1 by sponging miR-543. OncoTargets Ther., 2020, 13, 1159-1170.
[http://dx.doi.org/10.2147/OTT.S232354] [PMID: 32103984]
[45]
Luo, C.; Quan, Z.; Zhong, B.; Zhang, M.; Zhou, B.; Wang, S.; Luo, X.; Tang, C. lncRNA XIST promotes glioma proliferation and metastasis through miR-133a/SOX4. Exp. Ther. Med., 2020, 19(3), 1641-1648.
[http://dx.doi.org/10.3892/etm.2020.8426] [PMID: 32104215]
[46]
Liu, X.; Zhou, Y.; Ning, Y.E.; Gu, H.; Tong, Y.; Wang, N. mir-195-5p inhibits malignant progression of cervical cancer by targeting YAP1. OncoTargets Ther., 2020, 13, 931-944.
[http://dx.doi.org/10.2147/OTT.S227826] [PMID: 32099397]
[47]
Tian, X.; Zheng, Y.; Yin, K.; Ma, J.; Tian, J.; Zhang, Y.; Mao, L.; Xu, H.; Wang, S. LncRNA AK036396 inhibits maturation and accelerates immunosuppression of polymorphonuclear myeloid-derived suppressor cells by enhancing the stability of ficolin B. Cancer Immunol. Res., 2020, 8(4), 565-577.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0595] [PMID: 32102837]
[48]
Jin, X.; Liu, X.; Zhang, Z.; Guan, Y. lncRNA CCAT1 acts as a microRNA-218 sponge to increase gefitinib resistance in NSCLC by targeting HOXA1. Mol. Ther. Nucleic Acids, 2020, 19, 1266-1275.
[http://dx.doi.org/10.1016/j.omtn.2020.01.006] [PMID: 32084702]
[49]
Jafarzadeh, M.; Tavallaie, M.; Soltani, B.M.; Hajipoor, S.; Hosseini, S.M. LncRNA HSPC324 plays role in lung development and tumorigenesis. Genomics, 2020, 112(3), 2615-2622.
[http://dx.doi.org/10.1016/j.ygeno.2020.02.012] [PMID: 32068121]
[50]
Tulchinsky, E.; Demidov, O.; Kriajevska, M.; Barlev, N.A.; Imyanitov, E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(1), 29-39.
[http://dx.doi.org/10.1016/j.bbcan.2018.10.003] [PMID: 30419315]
[51]
Zhu, X.; Chen, L.; Liu, L.; Niu, X. EMT-mediated acquired EGFR-TKI resistance in NSCLC: mechanisms and strategies. Front. Oncol., 2019, 9, 1044.
[http://dx.doi.org/10.3389/fonc.2019.01044] [PMID: 31681582]
[52]
Hou, W; Hu, S; Li, C; Ma, H; Wang, Q; Meng, G; Guo, T; Zhang, J. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer. Biomed Res. Int., 2019, 2019
[53]
Eapen, M.S.; Sharma, P.; Thompson, I.E.; Lu, W.; Myers, S.; Hansbro, P.M.; Sohal, S.S. Heparin-binding epidermal growth factor (HB-EGF) drives EMT in patients with COPD: implications for disease pathogenesis and novel therapies. Lab. Invest., 2019, 99(2), 150-157.
[http://dx.doi.org/10.1038/s41374-018-0146-0] [PMID: 30451982]
[54]
Otsuki, Y.; Saya, H.; Arima, Y. Prospects for new lung cancer treatments that target EMT signaling. Dev. Dyn., 2018, 247(3), 462-472.
[http://dx.doi.org/10.1002/dvdy.24596] [PMID: 28960588]
[55]
Kitai, H.; Ebi, H. Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases, 2017, 8(3), 172-176.
[http://dx.doi.org/10.1080/21541248.2016.1210369] [PMID: 27392325]
[56]
Kumar, A.; Golani, A.; Kumar, L.D. EMT in breast cancer metastasis: an interplay of microRNAs, signaling pathways and circulating tumor cells. Front. Biosci., 2020, 25, 979-1010.
[http://dx.doi.org/10.2741/4844] [PMID: 32114421]
[57]
Zhang, M.; Du, H.; Wang, L.; Yue, Y.; Zhang, P.; Huang, Z.; Lv, W.; Ma, J.; Shao, Q.; Ma, M.; Liang, X.; Yang, T.; Wang, W.; Zeng, J.; Chen, G.; Wang, X.; Fan, J. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem. Biol. Interact., 2020, 320, 109022.
[http://dx.doi.org/10.1016/j.cbi.2020.109022] [PMID: 32112862]
[58]
Sun, Y.; Han, C. Long non-coding RNA TMPO-AS1 promotes cell migration and invasion by sponging miR-140-5p and inducing SOX4-mediated EMT in gastric cancer. Cancer Manag. Res., 2020, 12, 1261-1268.
[http://dx.doi.org/10.2147/CMAR.S235898] [PMID: 32110100]
[59]
Huang, W.; Liu, C.; Liu, F.; Liu, Z.; Lai, G.; Yi, J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem. Funct., 2020, 38(3), 249-256.
[http://dx.doi.org/10.1002/cbf.3443] [PMID: 32107809]
[60]
Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell, 2016, 166(1), 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[61]
Gurzu, S.; Turdean, S.; Kovecsi, A.; Contac, A.O.; Jung, I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update. World J. Clin. Cases, 2015, 3(5), 393-404.
[http://dx.doi.org/10.12998/wjcc.v3.i5.393] [PMID: 25984514]
[62]
Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer, 2018, 18(2), 128-134.
[http://dx.doi.org/10.1038/nrc.2017.118] [PMID: 29326430]
[63]
Chen, Q.; Zhou, L.; Ye, X.; Tao, M.; Wu, J. miR-145-5p suppresses proliferation, metastasis and EMT of colorectal cancer by targeting CDCA3. Pathol. Res. Pract., 2020, 216(4), 152872.
[http://dx.doi.org/10.1016/j.prp.2020.152872] [PMID: 32107086]
[64]
Zhang, G.; Feng, W.; Wu, J. Down-regulation of SEPT9 inhibits glioma progression through suppressing TGF-β-induced epithelial-mesenchymal transition (EMT). Biomed. Pharmacother., 2020, 125, 109768.
[http://dx.doi.org/10.1016/j.biopha.2019.109768] [PMID: 32106387]
[65]
Tanabe, S.; Quader, S.; Cabral, H.; Ono, R. Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Front. Pharmacol., 2020, 11, 904.
[http://dx.doi.org/10.3389/fphar.2020.00904] [PMID: 32625096]
[66]
Krebs, A.M.; Mitschke, J.; Lasierra Losada, M.; Schmalhofer, O.; Boerries, M.; Busch, H.; Boettcher, M.; Mougiakakos, D.; Reichardt, W.; Bronsert, P.; Brunton, V.G.; Pilarsky, C.; Winkler, T.H.; Brabletz, S.; Stemmler, M.P.; Brabletz, T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol., 2017, 19(5), 518-529.
[http://dx.doi.org/10.1038/ncb3513] [PMID: 28414315]
[67]
Wahl, G.M.; Spike, B.T. Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer, 2017, 3, 14.
[http://dx.doi.org/10.1038/s41523-017-0012-z] [PMID: 28649654]
[68]
Loret, N.; Denys, H.; Tummers, P.; Berx, G. The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers (Basel), 2019, 11(6), 11.
[http://dx.doi.org/10.3390/cancers11060838] [PMID: 31213009]
[69]
Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT factors and metabolic pathways in cancer. Front. Oncol., 2020, 10, 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[70]
Derynck, R.; Weinberg, R.A. EMT and cancer: more than meets the eye. Dev. Cell, 2019, 49(3), 313-316.
[http://dx.doi.org/10.1016/j.devcel.2019.04.026] [PMID: 31063750]
[71]
Eger, A.; Stockinger, A.; Park, J.; Langkopf, E.; Mikula, M.; Gotzmann, J.; Mikulits, W.; Beug, H.; Foisner, R. Beta-catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene, 2004, 23(15), 2672-2680.
[http://dx.doi.org/10.1038/sj.onc.1207416] [PMID: 14755243]
[72]
Karhadkar, S.S.; Bova, G.S.; Abdallah, N.; Dhara, S.; Gardner, D.; Maitra, A.; Isaacs, J.T.; Berman, D.M.; Beachy, P.A. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 2004, 431(7009), 707-712.
[http://dx.doi.org/10.1038/nature02962] [PMID: 15361885]
[73]
Xie, L.; Law, B.K.; Chytil, A.M.; Brown, K.A.; Aakre, M.E.; Moses, H.L. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia, 2004, 6(5), 603-610.
[http://dx.doi.org/10.1593/neo.04241] [PMID: 15548370]
[74]
Tao, L.; Shu-Ling, W.; Jing-Bo, H.; Ying, Z.; Rong, H.; Xiang-Qun, L.; Wen-Jie, C.; Lin-Fu, Z. MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelialmesenchymal transition (EMT) through targeting c-Myc. Biomed. Pharmacother., 2020, 125, 109962.
[http://dx.doi.org/10.1016/j.biopha.2020.109962] [PMID: 32106373]
[75]
Wang, H.; Ma, N.; Li, W.; Wang, Z. MicroRNA-96-5p promotes proliferation, invasion and EMT of oral carcinoma cells by directly targeting FOXF2. Biol. Open, 2020, 9(3), bio049478.
[http://dx.doi.org/10.1242/bio.049478] [PMID: 32014885]
[76]
Chen, J.; Tong, W.; Liao, M.; Chen, D. Inhibition of arachidonate lipoxygenase12 targets lung cancer through inhibiting EMT and suppressing RhoA and NF-κB activity. Biochem. Biophys. Res. Commun., 2020, 524(4), 803-809.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.166] [PMID: 32037090]
[77]
Gao, F.; Tian, J. FOXK1, regulated by miR-365-3p, promotes cell growth and EMT indicates unfavorable prognosis in breast cancer. OncoTargets Ther., 2020, 13, 623-634.
[http://dx.doi.org/10.2147/OTT.S212702] [PMID: 32021304]
[78]
Wei, S.; Zheng, Y.; Jiang, Y.; Li, X.; Geng, J.; Shen, Y.; Li, Q.; Wang, X.; Zhao, C.; Chen, Y.; Qian, Z.; Zhou, J.; Li, W. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine, 2019, 44, 182-193.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.032] [PMID: 31160270]
[79]
Chen, S.; Luo, Y.; Cui, L.; Yang, Q. miR-96-5p regulated TGF-β/SMAD signaling pathway and suppressed endometrial cell viability and migration via targeting TGFBR1. Cell Cycle, 2020, 19(14), 1740-1753.
[http://dx.doi.org/10.1080/15384101.2020.1777804] [PMID: 32635855]
[80]
Meyer-Schaller, N.; Heck, C.; Tiede, S.; Yilmaz, M.; Christofori, G. Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration. Breast Cancer Res., 2018, 20(1), 118.
[http://dx.doi.org/10.1186/s13058-018-1043-6] [PMID: 30285803]
[81]
Cai, J.; Tian, A.X.; Wang, Q.S.; Kong, P.Z.; Du, X.; Li, X.Q.; Feng, Y.M. FOXF2 suppresses the FOXC2-mediated epithelial-mesenchymal transition and multidrug resistance of basal-like breast cancer. Cancer Lett., 2015, 367(2), 129-137.
[http://dx.doi.org/10.1016/j.canlet.2015.07.001] [PMID: 26210254]
[82]
Fan, Y.; Sheng, W.; Meng, Y.; Cao, Y.; Li, R. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 393-407.
[http://dx.doi.org/10.1080/21691401.2019.1709852] [PMID: 31913710]
[83]
Jin, M.; Ren, J.; Luo, M.; You, Z.; Fang, Y.; Han, Y.; Li, G.; Liu, H. Long noncoding RNA JPX correlates with poor prognosis and tumor progression in non-small cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis, 2019.
[84]
Wen, Z.; Lian, L.; Ding, H.; Hu, Y.; Xiao, Z.; Xiong, K.; Yang, Q. LncRNA ANCR promotes hepatocellular carcinoma metastasis through upregulating HNRNPA1 expression. RNA Biol., 2020, 17(3), 381-394.
[http://dx.doi.org/10.1080/15476286.2019.1708547] [PMID: 31868085]
[85]
Sun, Y.; Zhou, Q.; Li, J.; Zhao, C.; Yu, Z.; Zhu, Q. LncRNA RP11-422N16.3 inhibits cell proliferation and EMT, and induces apoptosis in hepatocellular carcinoma cells by sponging miR-23b-3p. OncoTargets Ther., 2019, 12, 10943-10961.
[http://dx.doi.org/10.2147/OTT.S232243] [PMID: 31849497]
[86]
Guo, J.; Chen, Z.; Jiang, H.; Yu, Z.; Peng, J.; Xie, J.; Li, Z.; Wu, W.; Cheng, Z.; Xiao, K. The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway. Cancer Cell Int., 2019, 19, 312.
[http://dx.doi.org/10.1186/s12935-019-1010-z] [PMID: 31787849]
[87]
Zhang, M.; Wang, S.; Yi, A.; Qiao, Y. microRNA-665 is down-regulated in gastric cancer and inhibits proliferation, invasion, and EMT by targeting PPP2R2A. Cell Biochem. Funct., 2020, 38(4), 409-418.
[http://dx.doi.org/10.1002/cbf.3485] [PMID: 31923339]
[88]
Feng, F.; Cheng, P.; Wang, C.; Wang, Y.; Wang, W. Polyphyllin I and VII potentiate the chemosensitivity of A549/DDP cells to cisplatin by enhancing apoptosis, reversing EMT and suppressing the CIP2A/AKT/mTOR signaling axis. Oncol. Lett., 2019, 18(5), 5428-5436.
[http://dx.doi.org/10.3892/ol.2019.10895] [PMID: 31612051]
[89]
Bu, X.; Zhang, A.; Chen, Z.; Zhang, X.; Zhang, R.; Yin, C.; Zhang, J.; Zhang, Y.; Yan, Y. Migration of gastric cancer is suppressed by recombinant Newcastle disease virus (rL-RVG) via regulating α7-nicotinic acetylcholine receptors/ERK- EMT. BMC Cancer, 2019, 19(1), 976.
[http://dx.doi.org/10.1186/s12885-019-6225-9] [PMID: 31640627]
[90]
Yu, X.; Ye, X.; Lin, H.; Feng, N.; Gao, S.; Zhang, X.; Wang, Y.; Yu, H.; Deng, X.; Qian, B. Knockdown of long non-coding RNA LCPAT1 inhibits autophagy in lung cancer. Cancer Biol. Med., 2018, 15(3), 228-237.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0150] [PMID: 30197790]
[91]
Gao, S.; Lin, H.; Yu, W.; Zhang, F.; Wang, R.; Yu, H.; Qian, B. LncRNA LCPAT1 is involved in DNA damage induced by CSE. Biochem. Biophys. Res. Commun., 2019, 508(2), 512-515.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.171] [PMID: 30509493]
[92]
Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C.A., III; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C.J.L.; Forouzanfar, M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017, 389(10082), 1907-1918.
[http://dx.doi.org/10.1016/S0140-6736(17)30505-6] [PMID: 28408086]
[93]
Strak, M.; Janssen, N.; Beelen, R.; Schmitz, O.; Karssenberg, D.; Houthuijs, D.; van den Brink, C.; Dijst, M.; Brunekreef, B.; Hoek, G. Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts. Environ. Res., 2017, 156, 364-373.
[http://dx.doi.org/10.1016/j.envres.2017.03.050] [PMID: 28395240]
[94]
Lin, H.; Zhang, X.; Feng, N.; Wang, R.; Zhang, W.; Deng, X.; Wang, Y.; Yu, X.; Ye, X.; Li, L.; Qian, Y.; Yu, H.; Qian, B. LncRNA LCPAT1 mediates smoking/particulate matter 2.5-induced cell autophagy and epithelial-mesenchymal transition in lung cancer cells via RCC2. Cell. Physiol. Biochem., 2018, 47(3), 1244-1258.
[http://dx.doi.org/10.1159/000490220] [PMID: 29913439]
[95]
Yu, J.L.; Gao, X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 1688-1696.
[PMID: 32141535]
[96]
Hazari, Y.; Bravo-San Pedro, J.M.; Hetz, C.; Galluzzi, L.; Kroemer, G. Autophagy in hepatic adaptation to stress. J. Hepatol., 2020, 72(1), 183-196.
[http://dx.doi.org/10.1016/j.jhep.2019.08.026] [PMID: 31849347]
[97]
Chai, W.H.; Li, Y.R.; Lin, S.H.; Chao, Y.H.; Chen, C.H.; Chan, P.C.; Lin, C.H. Antihelminthic niclosamide induces autophagy and delayed apoptosis in human non-small lung cancer cells in vitro and in vivo. Anticancer Res., 2020, 40(3), 1405-1417.
[http://dx.doi.org/10.21873/anticanres.14082] [PMID: 32132037]
[98]
Liang, L.; Hui, K.; Hu, C.; Wen, Y.; Yang, S.; Zhu, P.; Wang, L.; Xia, Y.; Qiao, Y.; Sun, W.; Fei, J.; Chen, T.; Zhao, F.; Yang, B.; Jiang, X. Autophagy inhibition potentiates the anti-angiogenic property of multikinase inhibitor anlotinib through JAK2/STAT3/VEGFA signaling in non-small cell lung cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1)(Suppl. 2), 71.
[http://dx.doi.org/10.1186/s13046-019-1093-3] [PMID: 30755242]
[99]
Gao, H.; Yang, J.Y.; Tong, L.X.; Jin, H.; Liu, C.Z. Long noncoding RNA UCA1 promotes proliferation and metastasis of thyroid cancer cells by sponging miR-497-3p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 728-734.
[PMID: 32016975]
[100]
Li, Z.Y.; Wang, X.L.; Dang, Y.; Zhu, X.Z.; Zhang, Y.H.; Cai, B.X.; Zheng, L. Long non-coding RNA UCA1 promotes the progression of paclitaxel resistance in ovarian cancer by regulating the miR-654-5p/SIK2 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 591-603.
[PMID: 32016960]
[101]
Zha, Z.; Han, Q.; Liu, W.; Huo, S. lncRNA GAS8-AS1 downregulates lncRNA UCA1 to inhibit osteosarcoma cell migration and invasion. J. Orthop. Surg. Res., 2020, 15(1), 38.
[http://dx.doi.org/10.1186/s13018-020-1550-x] [PMID: 32013985]
[102]
Cao, C.; Zhang, J.; Yang, C.; Xiang, L.; Liu, W. Silencing of long noncoding RNA UCA1 inhibits colon cancer invasion, migration and epithelial-mesenchymal transition and tumour formation by upregulating miR-185-5p in vitro and in vivo. Cell Biochem. Funct., 2020, 38(2), 176-184.
[http://dx.doi.org/10.1002/cbf.3454] [PMID: 31989667]
[103]
Cheng, N.; Cai, W.; Ren, S.; Li, X.; Wang, Q.; Pan, H.; Zhao, M.; Li, J.; Zhang, Y.; Zhao, C.; Chen, X.; Fei, K.; Zhou, C.; Hirsch, F.R. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget, 2015, 6(27), 23582-23593.
[http://dx.doi.org/10.18632/oncotarget.4361] [PMID: 26160838]
[104]
Huang, J.W.; Luo, X.Y.; Li, Z.H.; Lang, B.P. LncRNA NNT-AS1 regulates the progression of lung cancer through the NNT-AS1/miR-3666/E2F2 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 238-248.
[PMID: 31957837]
[105]
Wu, D.; Zhang, T.; Wang, J.; Zhou, J.; Pan, H.; Qu, P. Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression. Aging (Albany NY), 2019, 11(24), 12624-12640.
[http://dx.doi.org/10.18632/aging.102591] [PMID: 31848324]
[106]
Shen, T.; Li, Y.; Zhu, S.; Yu, J.; Zhang, B.; Chen, X.; Zhang, Z.; Ma, Y.; Niu, Y.; Shang, Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J. Exp. Clin. Cancer Res., 2020, 39(1), 36.
[http://dx.doi.org/10.1186/s13046-020-1542-z] [PMID: 32066485]
[107]
Yu, S.; Zhang, Y.; Li, Q.; Zhang, Z.; Zhao, G.; Xu, J. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis., 2019, 10(12), 949.
[http://dx.doi.org/10.1038/s41419-019-2168-y] [PMID: 31827075]
[108]
He, W.; Zhang, Y.; Xia, S. LncRNA NNT-AS1 promotes non-small cell lung cancer progression through regulating miR-22-3p/YAP1 axis. Thorac. Cancer, 2020, 11(3), 549-560.
[http://dx.doi.org/10.1111/1759-7714.13280] [PMID: 31923353]
[109]
Li, J.; Feng, L.; Tian, C.; Tang, Y.L.; Tang, Y.; Hu, F.Q. Long noncoding RNA-JPX predicts the poor prognosis of ovarian cancer patients and promotes tumor cell proliferation, invasion and migration by the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(23), 8135-8144.
[PMID: 30556851]
[110]
Wang, X.; Lu, B.; Dai, C.; Fu, Y.; Hao, K.; Zhao, B.; Chen, Z.; Fu, L. Caveolin-1 promotes chemoresistance of gastric cancer cells to cisplatin by activating WNT/β-catenin pathway. Front. Oncol., 2020, 10, 46.
[http://dx.doi.org/10.3389/fonc.2020.00046] [PMID: 32117718]
[111]
Zhao, A.; Zhang, Z.; Zhou, Y.; Li, X.; Li, X.; Ma, B.; Zhang, Q. β-Elemonic acid inhibits the growth of human Osteosarcoma through endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP activation and Wnt/β-catenin signal suppression. Phytomedicine, 2020, 69, 153183.
[http://dx.doi.org/10.1016/j.phymed.2020.153183] [PMID: 32113150]
[112]
Wang, L.; Zheng, C.; Wu, X.; Zhang, Y.; Yan, S.; Ruan, L.; Dai, H. Withdrawn: Circ-SOX4 promotes non-small cell lung cancer progression by activating the Wnt/β-catenin pathway. Mol. Oncol., 2020, 14(12), 3253.
[http://dx.doi.org/10.1002/1878-0261.12656] [PMID: 32112500]
[113]
Pan, J.; Fang, S.; Tian, H.; Zhou, C.; Zhao, X.; Tian, H.; He, J.; Shen, W.; Meng, X.; Jin, X.; Gong, Z. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol. Cancer, 2020, 19(1), 9.
[http://dx.doi.org/10.1186/s12943-020-1133-9] [PMID: 31941509]
[114]
Dong, G.; Pan, T.; Zhou, D.; Li, C.; Liu, J.; Zhang, J. FBXL19-AS1 promotes cell proliferation and inhibits cell apoptosis via miR-876-5p/FOXM1 axis in breast cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(11), 1106-1113.
[http://dx.doi.org/10.1093/abbs/gmz110] [PMID: 31696201]
[115]
Zhang, Y.; Xiao, X.; Zhou, W.; Hu, J.; Zhou, D. LIN28A-stabilized FBXL19-AS1 promotes breast cancer migration, invasion and EMT by regulating WDR66. In Vitro Cell. Dev. Biol. Anim., 2019, 55(6), 426-435.
[http://dx.doi.org/10.1007/s11626-019-00361-4] [PMID: 31140103]
[116]
Ding, Z.; Ye, P.; Yang, X.; Cai, H. LncRNA FBXL19-AS1 promotes breast cancer cells proliferation and invasion via acting as a molecular sponge to miR-718. Biosci. Rep., 2019, 39(4), 39.
[http://dx.doi.org/10.1042/BSR20182018] [PMID: 30886065]
[117]
Jiang, Q.; Cheng, L.; Ma, D.; Zhao, Y. FBXL19-AS1 exerts oncogenic function by sponging miR-431-5p to regulate RAF1 expression in lung cancer. Biosci. Rep., 2019, 39(1), 39.
[http://dx.doi.org/10.1042/BSR20181804] [PMID: 30610161]
[118]
Yu, D.J.; Li, Y.H.; Zhong, M. LncRNA FBXL19-AS1 promotes proliferation and metastasis via regulating epithelial-mesenchymal transition in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(11), 4800-4806.
[PMID: 31210311]
[119]
Dong, H.; Jian, P.; Yu, M.; Wang, L. Silencing of long noncoding RNA LEF1-AS1 prevents the progression of hepatocellular carcinoma via the crosstalk with microRNA-136-5p/WNK1. J. Cell. Physiol., 2020, 235(10), 6548-6562.
[http://dx.doi.org/10.1002/jcp.29503] [PMID: 32068261]
[120]
Lu, X.; Qiao, L.; Liu, Y. Long noncoding RNA LEF1-AS1 binds with HNRNPL to boost the proliferation, migration, and invasion in osteosarcoma by enhancing the mRNA stability of LEF1. J. Cell. Biochem., 2020, 121(10), 4064-4073.
[http://dx.doi.org/10.1002/jcb.29579] [PMID: 31930565]
[121]
Gao, L.M.; Xu, S.F.; Zheng, Y.; Wang, P.; Zhang, L.; Shi, S.S.; Wu, T.; Li, Y.; Zhao, J.; Tian, Q.; Yin, X.B.; Zheng, L. Long non- coding RNA H19 is responsible for the progression of lung adenocarcinoma by mediating methylation-dependent repression of CDH1 promoter. J. Cell. Mol. Med., 2019, 23(9), 6411-6428.
[http://dx.doi.org/10.1111/jcmm.14533] [PMID: 31317666]
[122]
Shen, H.; Sun, B.; Yang, Y.; Cai, X.; Bi, L.; Deng, L.; Zhang, L. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology, 2020, 108(4), 553-559.
[http://dx.doi.org/10.1007/s10266-020-00488-x] [PMID: 32016787]
[123]
Yang, J.; Lin, X.; Jiang, W.; Wu, J.; Lin, L. lncRNA LEF1-AS1 promotes malignancy in non-small-cell lung cancer by modulating the miR-489/SOX4 Axis. DNA Cell Biol., 2019, 38(9), 1013-1021.
[http://dx.doi.org/10.1089/dna.2019.4717] [PMID: 31386568]
[124]
Williams, G.T.; Farzaneh, F. Are snoRNAs and snoRNA host genes new players in cancer? Nat. Rev. Cancer, 2012, 12(2), 84-88.
[http://dx.doi.org/10.1038/nrc3195] [PMID: 22257949]
[125]
Zhu, Q.; Yang, H.; Cheng, P.; Han, Q. Bioinformatic analysis of the prognostic value of the lncRNAs encoding snoRNAs in hepatocellular carcinoma. Biofactors, 2019, 45(2), 244-252.
[http://dx.doi.org/10.1002/biof.1478] [PMID: 30537372]
[126]
Xu, R.; Feng, F.; Yu, X.; Liu, Z.; Lao, L. LncRNA SNHG4 promotes tumour growth by sponging miR-224-3p and predicts poor survival and recurrence in human osteosarcoma. Cell Prolif., 2018, 51(6), e12515.
[http://dx.doi.org/10.1111/cpr.12515] [PMID: 30152090]
[127]
Ke, S.B.; Qiu, H.; Chen, J.M.; Shi, W.; Han, C.; Gong, Y.; Chen, Y.S. ALG3 contributes to the malignancy of non-small cell lung cancer and is negatively regulated by MiR-98-5p. Pathol. Res. Pract., 2020, 216(3), 152761.
[http://dx.doi.org/10.1016/j.prp.2019.152761] [PMID: 31899049]
[128]
Guo, Z.; He, C.; Yang, F.; Qin, L.; Lu, X.; Wu, J. Long non-coding RNA-NEAT1, a sponge for miR-98-5p, promotes expression of oncogene HMGA2 in prostate cancer. Biosci. Rep., 2019, 39(9), 39.
[http://dx.doi.org/10.1042/BSR20190635] [PMID: 31481527]
[129]
Tang, Y.; Wu, L.; Zhao, M.; Zhao, G.; Mao, S.; Wang, L.; Liu, S.; Wang, X. LncRNA SNHG4 promotes the proliferation, migration, invasiveness, and epithelial-mesenchymal transition of lung cancer cells by regulating miR-98-5p. Biochem. Cell Biol., 2019, 97(6), 767-776.
[http://dx.doi.org/10.1139/bcb-2019-0065] [PMID: 31220419]
[130]
Brannan, C.I.; Dees, E.C.; Ingram, R.S.; Tilghman, S.M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol., 1990, 10(1), 28-36.
[http://dx.doi.org/10.1128/MCB.10.1.28] [PMID: 1688465]
[131]
Wang, X.; Pei, X.; Guo, G.; Qian, X.; Dou, D.; Zhang, Z.; Xu, X.; Duan, X. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J. Cell. Physiol., 2020, 235(10), 6896-6904.
[http://dx.doi.org/10.1002/jcp.29585] [PMID: 31994191]
[132]
Wu, Y.; Zhou, Y.; He, J.; Sun, H.; Jin, Z. Long non-coding RNA H19 mediates ovarian cancer cell cisplatin-resistance and migration during EMT. Int. J. Clin. Exp. Pathol., 2019, 12(7), 2506-2515.
[PMID: 31934077]
[133]
Zhang, Y.; Yan, J.; Li, C.; Wang, X.; Dong, Y.; Shen, X.; Zhang, X. LncRNA H19 induced by helicobacter pylori infection promotes gastric cancer cell growth via enhancing NF-κB-induced inflammation. J. Inflamm. (Lond.), 2019, 16, 23.
[http://dx.doi.org/10.1186/s12950-019-0226-y] [PMID: 31787851]
[134]
Zhao, Y.; Feng, C.; Li, Y.; Ma, Y.; Cai, R. LncRNA H19 promotes lung cancer proliferation and metastasis by inhibiting miR-200a function. Mol. Cell. Biochem., 2019, 460(1-2), 1-8.
[http://dx.doi.org/10.1007/s11010-019-03564-1] [PMID: 31187349]
[135]
Ling, Z-Q.; Li, P.; Ge, M-H.; Zhao, X.; Hu, F-J.; Fang, X-H.; Dong, Z-M.; Mao, W-M. Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int. J. Mol. Med., 2011, 27(5), 625-635.
[http://dx.doi.org/10.3892/ijmm.2011.640] [PMID: 21373750]
[136]
Zhou, S.; Zhang, Z.; Zheng, P.; Zhao, W.; Han, N. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4. Tumour Biol., 2017, 39(6), 1010428317705513.
[http://dx.doi.org/10.1177/1010428317705513] [PMID: 28631567]
[137]
Liu, B.; Sun, X. miR-25 promotes invasion of human non-small cell lung cancer via CDH1. Bioengineered, 2019, 10(1), 271-281.
[http://dx.doi.org/10.1080/21655979.2019.1632668] [PMID: 31208279]
[138]
Zhang, W.; Su, X.; Li, S.; Liu, Z.; Wang, Q.; Zeng, H. Low serum exosomal miR-484 expression predicts unfavorable prognosis in ovarian cancer. Cancer Biomark., 2020, 27(4), 485-491.
[http://dx.doi.org/10.3233/CBM-191123] [PMID: 32065786]
[139]
Li, N.; Yang, G.; Luo, L.; Ling, L.; Wang, X.; Shi, L.; Lan, J.; Jia, X.; Zhang, Q.; Long, Z.; Liu, J.; Hu, W.; He, Z.; Liu, H.; Liu, W.; Zheng, G. lncRNA THAP9-AS1 promotes pancreatic ductal adenocarcinoma growth and leads to a poor clinical outcome via sponging miR-484 and interacting with YAP. Clin. Cancer Res., 2020, 26(7), 1736-1748.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0674] [PMID: 31831555]
[140]
Hu, Y.; Wu, F.; Liu, Y.; Zhao, Q.; Tang, H. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin. Epigenetics, 2019, 11(1), 186.
[http://dx.doi.org/10.1186/s13148-019-0786-y] [PMID: 31810492]
[141]
Zhang, Q.; Li, X.; Li, X.; Li, X.; Chen, Z. LncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells. J. Cell. Biochem., 2018, 119(6), 4447-4457.
[http://dx.doi.org/10.1002/jcb.26537] [PMID: 29219208]
[142]
Zhang, H.; Meng, H.; Huang, X.; Tong, W.; Liang, X.; Li, J.; Zhang, C.; Chen, M. lncRNA MIR4435-2HG promotes cancer cell migration and invasion in prostate carcinoma by upregulating TGF-β1. Oncol. Lett., 2019, 18(4), 4016-4021.
[http://dx.doi.org/10.3892/ol.2019.10757] [PMID: 31516603]
[143]
Gong, J.; Xu, X.; Zhang, X.; Zhou, Y. LncRNA MIR4435-2HG is a potential early diagnostic marker for ovarian carcinoma. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(9), 953-959.
[http://dx.doi.org/10.1093/abbs/gmz085] [PMID: 31435668]
[144]
Wang, H.; Wu, M.; Lu, Y.; He, K.; Cai, X.; Yu, X.; Lu, J.; Teng, L. LncRNA MIR4435-2HG targets desmoplakin and promotes growth and metastasis of gastric cancer by activating Wnt/β- catenin signaling. Aging (Albany NY), 2019, 11(17), 6657-6673.
[http://dx.doi.org/10.18632/aging.102164] [PMID: 31484163]
[145]
Qu, T.; Zhao, Y.; Chen, Y.; Jin, S.; Fang, Y.; Jin, X.; Sun, L.; Ma, Y. Down-regulated MAC30 expression inhibits breast cancer cell invasion and EMT by suppressing Wnt/β-catenin and PI3K/Akt signaling pathways. Int. J. Clin. Exp. Pathol., 2019, 12(5), 1888-1896.
[PMID: 31934012]
[146]
Lin, Y.; Jian, Z.; Jin, H.; Wei, X.; Zou, X.; Guan, R.; Huang, J. Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis., 2020, 11(1), 34.
[http://dx.doi.org/10.1038/s41419-019-2188-7] [PMID: 31949128]
[147]
Qian, H.; Chen, L.; Huang, J.; Wang, X.; Ma, S.; Cui, F.; Luo, L.; Ling, L.; Luo, K.; Zheng, G. The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling. J. Mol. Med. (Berl.), 2018, 96(8), 753-764.
[http://dx.doi.org/10.1007/s00109-018-1654-5] [PMID: 29872866]
[148]
Eser, P.Ö.; Jänne, P.A. TGFβ pathway inhibition in the treatment of non-small cell lung cancer. Pharmacol. Ther., 2018, 184, 112-130.
[http://dx.doi.org/10.1016/j.pharmthera.2017.11.004] [PMID: 29129643]
[149]
Massagué, J. TGFbeta in Cancer. Cell, 2008, 134(2), 215-230.
[http://dx.doi.org/10.1016/j.cell.2008.07.001] [PMID: 18662538]
[150]
Padua, D.; Massagué, J. Roles of TGFbeta in metastasis. Cell Res., 2009, 19(1), 89-102.
[http://dx.doi.org/10.1038/cr.2008.316] [PMID: 19050696]
[151]
Fischer, K.R.; Durrans, A.; Lee, S.; Sheng, J.; Li, F.; Wong, S.T.; Choi, H.; El Rayes, T.; Ryu, S.; Troeger, J.; Schwabe, R.F.; Vahdat, L.T.; Altorki, N.K.; Mittal, V.; Gao, D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015, 527(7579), 472-476.
[http://dx.doi.org/10.1038/nature15748] [PMID: 26560033]
[152]
Smith, A.L.; Robin, T.P.; Ford, H.L. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin. Cancer Res., 2012, 18(17), 4514-4521.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3224] [PMID: 22711703]
[153]
Akhurst, R.J.; Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov., 2012, 11(10), 790-811.
[http://dx.doi.org/10.1038/nrd3810] [PMID: 23000686]
[154]
Huang, E.Y.; Lin, H.; Wang, C.J.; Chanchien, C.C.; Ou, Y.C. Impact of treatment time-related factors on prognoses and radiation proctitis after definitive chemoradiotherapy for cervical cancer. Cancer Med., 2016, 5(9), 2205-2212.
[http://dx.doi.org/10.1002/cam4.794] [PMID: 27416796]
[155]
Mondal, T.; Subhash, S.; Vaid, R.; Enroth, S.; Uday, S.; Reinius, B.; Mitra, S.; Mohammed, A.; James, A.R.; Hoberg, E.; Moustakas, A.; Gyllensten, U.; Jones, S.J.; Gustafsson, C.M.; Sims, A.H.; Westerlund, F.; Gorab, E.; Kanduri, C. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun., 2015, 6, 7743.
[http://dx.doi.org/10.1038/ncomms8743] [PMID: 26205790]
[156]
Arase, M.; Horiguchi, K.; Ehata, S.; Morikawa, M.; Tsutsumi, S.; Aburatani, H.; Miyazono, K.; Koinuma, D. Transforming growth factor-β-induced lncRNA-Smad7 inhibits apoptosis of mouse breast cancer JygMC(A) cells. Cancer Sci., 2014, 105(8), 974-982.
[http://dx.doi.org/10.1111/cas.12454] [PMID: 24863656]
[157]
Lu, Z.; Li, Y.; Che, Y.; Huang, J.; Sun, S.; Mao, S.; Lei, Y.; Li, N.; Sun, N.; He, J. The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer Lett., 2018, 432, 156-168.
[http://dx.doi.org/10.1016/j.canlet.2018.06.013] [PMID: 29908210]
[158]
Yuan, J.H.; Yang, F.; Wang, F.; Ma, J.Z.; Guo, Y.J.; Tao, Q.F.; Liu, F.; Pan, W.; Wang, T.T.; Zhou, C.C.; Wang, S.B.; Wang, Y.Z.; Yang, Y.; Yang, N.; Zhou, W.P.; Yang, G.S.; Sun, S.H. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014, 25(5), 666-681.
[http://dx.doi.org/10.1016/j.ccr.2014.03.010] [PMID: 24768205]
[159]
Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin. Cancer Res., 2014, 20(6), 1531-1541.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1455] [PMID: 24449823]
[160]
Wang, Z.; Wang, P.; Cao, L.; Li, F.; Duan, S.; Yuan, G.; Xiao, L.; Guo, L.; Yin, H.; Xie, D.; Zhu, J.; Chen, X.; Zhang, M. Long intergenic non-coding RNA 01121 promotes breast cancer cell proliferation, Migration, and Invasion via the miR-150-5p/HMGA2 axis. Cancer Manag. Res., 2019, 11, 10859-10870.
[http://dx.doi.org/10.2147/CMAR.S230367] [PMID: 31920395]
[161]
AlMutairi, M.; Parine, N.R.; Shaik, J.P.; Aldhaian, S.; Azzam, N.A.; Aljebreen, A.M.; Alharbi, O.; Almadi, M.A.; Al-Balbeesi, A.O.; Alanazi, M. Association between polymorphisms in PRNCR1 and risk of colorectal cancer in the Saudi population. PLoS One, 2019, 14(9), e0220931.
[http://dx.doi.org/10.1371/journal.pone.0220931] [PMID: 31487296]
[162]
Liao, Z.B.; Tan, X.L.; Dong, K.S.; Zhang, H.W.; Chen, X.P.; Chu, L.; Zhang, B.X. miRNA-448 inhibits cell growth by targeting BCL-2 in hepatocellular carcinoma. Dig. Liver Dis., 2019, 51(5), 703-711.
[http://dx.doi.org/10.1016/j.dld.2018.09.021] [PMID: 30316787]
[163]
Qi, H.; Wang, H.; Pang, D. miR-448 promotes progression of non-small-cell lung cancer via targeting SIRT1. Exp. Ther. Med., 2019, 18(3), 1907-1913.
[http://dx.doi.org/10.3892/etm.2019.7738] [PMID: 31410153]
[164]
Gao, J.; Feng, X.; Wang, F.; Wang, J.; Wang, H.; Li, H.; Zhang, W.; Hao, L.; Shi, Z. microRNA-448 inhibits the progression of non-small-cell lung cancer through regulating IRS2. J. Cell. Biochem., 2019, 120(8), 13453-13463.
[http://dx.doi.org/10.1002/jcb.28619] [PMID: 30912183]
[165]
Cheng, D.; Bao, C.; Zhang, X.; Lin, X.; Huang, H.; Zhao, L. LncRNA PRNCR1 interacts with HEY2 to abolish miR-448-mediated growth inhibition in non-small cell lung cancer. Biomed. Pharmacother., 2018, 107, 1540-1547.
[http://dx.doi.org/10.1016/j.biopha.2018.08.105] [PMID: 30257372]
[166]
Abdel Ghafar, M.T.; Gharib, F.; Abdel-Salam, S.; Elkhouly, R.A.; Elshora, A.; Shalaby, K.H.; El-Guindy, D.; El-Rashidy, M.A.; Soliman, N.A.; Abu-Elenin, M.M.; Allam, A.A. Role of serum Metadherin mRNA expression in the diagnosis and prediction of survival in patients with colorectal cancer. Mol. Biol. Rep., 2020, 47(4), 2509-2519.
[http://dx.doi.org/10.1007/s11033-020-05334-5] [PMID: 32088817]
[167]
Ding, Y.; Li, X.; Zhang, Y.; Zhang, J. Long non-coding RNA cancer susceptibility 9 (CASC9) up-regulates the expression of ERBB2 by inhibiting miR-193a-5p in colorectal cancer. Cancer Manag. Res., 2020, 12, 1281-1292.
[http://dx.doi.org/10.2147/CMAR.S234620] [PMID: 32110102]
[168]
Meng, L.; Chen, Q.; Chen, Z.; Wang, Y.; Ji, B.; Yu, X.; Ge, J. microRNA-1471 suppresses glioma cell growth and invasion by repressing metadherin expression. Int. J. Clin. Exp. Pathol., 2018, 11(12), 5909-5915.
[PMID: 31949678]
[169]
Guo, R.; Hu, T.; Liu, Y.; He, Y.; Cao, Y. Long non-coding RNA PRNCR1 modulates non-small cell lung cancer cells proliferation, apoptosis, migration, invasion and EMT through PRNCR1/miR-126-5p/MTDH axis. Biosci. Rep., 2020, 40(7), p.BSR20193153.
[http://dx.doi.org/10.1042/BSR20193153]
[170]
Chen, Y.; Li, Y.; Gao, H. Long noncoding RNA CASC9 promotes the proliferation and metastasis of papillary thyroid cancer via sponging miR-488-3p. Cancer Med., 2020, 9(5), 1830-1841.
[http://dx.doi.org/10.1002/cam4.2839] [PMID: 31943867]
[171]
Liu, L.; Zhang, Y.; Wang, J.; Su, H.; Zhao, Y. Long non-coding RNA CASC9 knockdown inhibits the progression of nasopharyngeal carcinoma by regulating miR-145. Int. J. Clin. Exp. Pathol., 2019, 12(11), 4024-4033.
[PMID: 31933798]
[172]
Yang, L.G.; Cao, M.Z.; Zhang, J.; Li, X.Y.; Sun, Q.L. LncRNA XIST modulates HIF-1A/AXL signaling pathway by inhibiting miR-93-5p in colorectal cancer. Mol. Genet. Genomic Med., 2020, 8(4), e1112.
[http://dx.doi.org/10.1002/mgg3.1112] [PMID: 32061057]
[173]
Jiang, Z.; Zhang, Y.; Chen, X.; Wu, P.; Chen, D. Long non-coding RNA LINC00673 silencing inhibits proliferation and drug resistance of prostate cancer cells via decreasing KLF4 promoter methylation. J. Cell. Mol. Med., 2020, 24(2), 1878-1892.
[http://dx.doi.org/10.1111/jcmm.14883] [PMID: 31881124]
[174]
Su, X.; Li, G.; Liu, W. The long noncoding RNA cancer susceptibility candidate 9 promotes nasopharyngeal carcinogenesis via stabilizing HIF1α. DNA Cell Biol., 2017, 36(5), 394-400.
[http://dx.doi.org/10.1089/dna.2016.3615] [PMID: 28398871]
[175]
Jin, Y.; Xie, H.; Duan, L.; Zhao, D.; Ding, J.; Jiang, G. Long non-coding RNA CASC9 and HIF-1α form a positive feedback loop to facilitate cell proliferation and metastasis in lung cancer. OncoTargets Ther., 2019, 12, 9017-9027.
[http://dx.doi.org/10.2147/OTT.S226078] [PMID: 31802910]
[176]
Qiao, K.; Ning, S.; Wan, L.; Wu, H.; Wang, Q.; Zhang, X.; Xu, S.; Pang, D. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 418.
[http://dx.doi.org/10.1186/s13046-019-1421-7] [PMID: 31623640]
[177]
Hassan, S.K.; Mousa, A.M.; El-Sammad, N.M.; Abdel-Halim, A.H.; Khalil, W.K.B.; Elsayed, E.A.; Anwar, N.; Linscheid, M.W.; Moustafa, E.S.; Hashim, A.N.; Nawwar, M. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol. Rep., 2019, 6, 1071-1085.
[http://dx.doi.org/10.1016/j.toxrep.2019.10.004] [PMID: 31660294]
[178]
Hassanin, A.A.I.; Tavera-Garcia, M.; Moorthy, B.; Zhou, G.D.; Ramos, K.S. Lung genotoxicity of benzo(a)pyrene in vivo involves reactivation of LINE-1 retrotransposon and early reprogramming of oncogenic regulatory networks. Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 317(6), L816-L822.
[http://dx.doi.org/10.1152/ajplung.00304.2019] [PMID: 31596105]
[179]
Gao, M.; Zhang, P.; Huang, L.; Shao, H.; Duan, S.; Li, C.; Zhang, Q.; Wang, W.; Wu, Y.; Wang, J.; Liu, H.; Feng, F. Is NLRP3 or NLRP6 inflammasome activation associated with inflammation-related lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide? Ecotoxicol. Environ. Saf., 2019, 185, 109687.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109687] [PMID: 31561077]
[180]
Wu, Y.; Niu, Y.; Leng, J.; Xu, J.; Chen, H.; Li, H.; Wang, L.; Hu, J.; Xia, D.; Wu, Y. Benzo(a)pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673. Toxicol. Lett., 2020, 320, 37-45.
[http://dx.doi.org/10.1016/j.toxlet.2019.11.024] [PMID: 31778776]
[181]
Tian, W.; Zhu, W.; Jiang, J. miR-150-5p suppresses the stem cell- like characteristics of glioma cells by targeting the Wnt/β-catenin signaling pathway. Cell Biol. Int., 2020, 44(5), 1156-1167.
[http://dx.doi.org/10.1002/cbin.11314] [PMID: 32009256]
[182]
Lou, T.; Ke, K.; Zhang, L.; Miao, C.; Liu, Y. LncRNA PART1 facilitates the malignant progression of colorectal cancer via miR-150-5p/LRG1 axis. J. Cell. Biochem., 2020, 121(10), 4271-4281.
[http://dx.doi.org/10.1002/jcb.29635] [PMID: 31898365]
[183]
Wang, S.; Tang, D.; Wang, W.; Yang, Y.; Wu, X.; Wang, L.; Wang, D. circLMTK2 acts as a sponge of miR-150-5p and promotes proliferation and metastasis in gastric cancer. Mol. Cancer, 2019, 18(1), 162.
[http://dx.doi.org/10.1186/s12943-019-1081-4] [PMID: 31722712]
[184]
Hwang, S.T.; Yang, M.H.; Kumar, A.P.; Sethi, G.; Ahn, K.S. Corilagin represses epithelial to mesenchymal transition process through modulating wnt/β-catenin signaling cascade. Biomolecules, 2020, 10(10), 1406.
[http://dx.doi.org/10.3390/biom10101406] [PMID: 33027960]
[185]
Lee, J.H.; Mohan, C.D.; Deivasigamani, A.; Jung, Y.Y.; Rangappa, S.; Basappa, S.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Garg, M.; Lin, Z-X.; Rangappa, K.S.; Sethi, G.; Hui, K.M.; Ahn, K.S. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J. Adv. Res., 2020, 26, 83-94.
[http://dx.doi.org/10.1016/j.jare.2020.07.004] [PMID: 33133685]
[186]
Tian, W.; Lei, N.; Guo, R.; Yuan, Z.; Chang, L. Long non-coding RNA DANCR promotes cervical cancer growth via activation of the Wnt/β-catenin signaling pathway. Cancer Cell Int., 2020, 20, 61.
[http://dx.doi.org/10.1186/s12935-020-1139-9] [PMID: 32123519]
[187]
Lian, J.; Zhang, H.; Wei, F.; Li, Q.; Lu, Y.; Yu, B.; Yu, L.; Liang, X.; Wen, Y.; Jin, K.; Tang, J.; Xie, W. Long non-coding RNA DANCR promotes colorectal tumor growth by binding to lysine acetyltransferase 6A. Cell. Signal., 2020, 67, 109502.
[http://dx.doi.org/10.1016/j.cellsig.2019.109502] [PMID: 31863900]
[188]
Pan, Z.; Wu, C.; Li, Y.; Li, H.; An, Y.; Wang, G.; Dai, J.; Wang, Q. LncRNA DANCR silence inhibits SOX5-medicated progression and autophagy in osteosarcoma via regulating miR-216a-5p. Biomed. Pharmacother., 2020, 122, 109707.
[http://dx.doi.org/10.1016/j.biopha.2019.109707] [PMID: 31918278]
[189]
Nie, F.Q.; Sun, M.; Yang, J.S.; Xie, M.; Xu, T.P.; Xia, R.; Liu, Y.W.; Liu, X.H.; Zhang, E.B.; Lu, K.H.; Shu, Y.Q. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol. Cancer Ther., 2015, 14(1), 268-277.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0492] [PMID: 25504755]
[190]
Zhang, E.; He, X.; Yin, D.; Han, L.; Qiu, M.; Xu, T.; Xia, R.; Xu, L.; Yin, R.; De, W. Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis., 2016, 7, e2109-e2109.
[http://dx.doi.org/10.1038/cddis.2015.356] [PMID: 26913601]
[191]
Qi, F.; Liu, X.; Wu, H.; Yu, X.; Wei, C.; Huang, X.; Ji, G.; Nie, F.; Wang, K. Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J. Hematol. Oncol., 2017, 10(1), 48.
[http://dx.doi.org/10.1186/s13045-017-0420-4] [PMID: 28209205]
[192]
Guo, L.; Gu, J.; Hou, S.; Liu, D.; Zhou, M.; Hua, T.; Zhang, J.; Ge, Z.; Xu, J. Long non-coding RNA DANCR promotes the progression of non-small-cell lung cancer by inhibiting p21 expression. OncoTargets Ther., 2018, 12, 135-146.
[http://dx.doi.org/10.2147/OTT.S186607] [PMID: 30613152]
[193]
Mi, H.; Wang, X.; Wang, F.; Li, L.; Zhu, M.; Wang, N.; Xiong, Y.; Gu, Y. SNHG15 contributes to cisplatin resistance in breast cancer through sponging miR-381. OncoTargets Ther., 2020, 13, 657-666.
[http://dx.doi.org/10.2147/OTT.S223321] [PMID: 32021307]
[194]
Sun, X.; Bai, Y.; Yang, C.; Hu, S.; Hou, Z.; Wang, G. Long noncoding RNA SNHG15 enhances the development of colorectal carcinoma via functioning as a ceRNA through miR-141/SIRT1/Wnt/β-catenin axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2536-2544.
[http://dx.doi.org/10.1080/21691401.2019.1621328] [PMID: 31213086]
[195]
Saeinasab, M.; Bahrami, A.R.; González, J.; Marchese, F.P.; Martinez, D.; Mowla, S.J.; Matin, M.M.; Huarte, M. SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. J. Exp. Clin. Cancer Res., 2019, 38(1), 172.
[http://dx.doi.org/10.1186/s13046-019-1169-0] [PMID: 31014355]
[196]
Li, M.; Bian, Z.; Jin, G.; Zhang, J.; Yao, S.; Feng, Y.; Wang, X.; Yin, Y.; Fei, B.; You, Q.; Huang, Z. LncRNA-SNHG15 enhances cell proliferation in colorectal cancer by inhibiting miR-338-3p. Cancer Med., 2019, 8(5), 2404-2413.
[http://dx.doi.org/10.1002/cam4.2105] [PMID: 30945457]
[197]
Dong, Y.Z.; Meng, X.M.; Li, G.S. Long non-coding RNA SNHG15 indicates poor prognosis of non-small cell lung cancer and promotes cell proliferation and invasion. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2671-2679.
[PMID: 29771418]
[198]
Sun, X-J.; Wang, Q.; Guo, B.; Liu, X-Y.; Wang, B. Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids. Oncotarget, 2017, 8(21), 34236-34244.
[http://dx.doi.org/10.18632/oncotarget.15880] [PMID: 28404955]
[199]
Liang, X.; Ma, L.; Long, X.; Wang, X. LncRNA expression profiles and validation in keloid and normal skin tissue. Int. J. Oncol., 2015, 47(5), 1829-1838.
[http://dx.doi.org/10.3892/ijo.2015.3177] [PMID: 26397149]
[200]
Dai, L.; Li, J.; Tsay, J.J.; Yie, T.A.; Munger, J.S.; Pass, H.; Rom, W.N.; Tan, E.M.; Zhang, J.Y. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. OncoImmunology, 2017, 6(5), e1310359.
[http://dx.doi.org/10.1080/2162402X.2017.1310359] [PMID: 28638733]
[201]
Dowling, P.; Pollard, D.; Larkin, A.; Henry, M.; Meleady, P.; Gately, K.; O’Byrne, K.; Barr, M.P.; Lynch, V.; Ballot, J.; Crown, J.; Moriarty, M.; O’Brien, E.; Morgan, R.; Clynes, M. Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in tumour tissue and blood samples from patients diagnosed with lung cancer. Mol. Biosyst., 2015, 11(3), 743-752.
[http://dx.doi.org/10.1039/C4MB00384E] [PMID: 25483567]
[202]
Yu, P.F.; Kang, A.R.; Jing, L.J.; Wang, Y.M. Long non-coding RNA CACNA1G-AS1 promotes cell migration, invasion and epithelial-mesenchymal transition by HNRNPA2B1 in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(4), 993-1002.
[PMID: 29509247]
[203]
Lang, C.; Dai, Y.; Wu, Z.; Yang, Q.; He, S.; Zhang, X.; Guo, W.; Lai, Y.; Du, H.; Wang, H.; Ren, D.; Peng, X. SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis. Mol. Oncol., 2020, 14(4), 808-828.
[http://dx.doi.org/10.1002/1878-0261.12634] [PMID: 31925912]
[204]
Liu, Y.; Tao, Z.; Qu, J.; Zhou, X.; Zhang, C. Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun., 2017, 491(2), 374-381.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.093] [PMID: 28728844]
[205]
Liu, Q.; Wu, Y.; Xiao, J.; Zou, J. Long non-coding RNA prostate cancer-associated transcript 7 (PCAT7) induces poor prognosis and promotes tumorigenesis by inhibiting mir-134-5p in non-small-cell lung (NSCLC). Med. Sci. Monit., 2017, 23, 6089-6098.
[http://dx.doi.org/10.12659/MSM.907904] [PMID: 29275424]
[206]
Eger, A.; Aigner, K.; Sonderegger, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Berx, G.; Cano, A.; Beug, H.; Foisner, R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 2005, 24(14), 2375-2385.
[http://dx.doi.org/10.1038/sj.onc.1208429] [PMID: 15674322]
[207]
Vandewalle, C.; Comijn, J.; De Craene, B.; Vermassen, P.; Bruyneel, E.; Andersen, H.; Tulchinsky, E.; Van Roy, F.; Berx, G. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res., 2005, 33(20), 6566-6578.
[http://dx.doi.org/10.1093/nar/gki965] [PMID: 16314317]
[208]
Zhang, P.; Sun, Y.; Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 2015, 14(4), 481-487.
[http://dx.doi.org/10.1080/15384101.2015.1006048] [PMID: 25607528]
[209]
Larsen, J.E.; Nathan, V.; Osborne, J.K.; Farrow, R.K.; Deb, D.; Sullivan, J.P.; Dospoy, P.D.; Augustyn, A.; Hight, S.K.; Sato, M.; Girard, L.; Behrens, C.; Wistuba, I.I.; Gazdar, A.F.; Hayward, N.K.; Minna, J.D. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J. Clin. Invest., 2016, 126(9), 3219-3235.
[http://dx.doi.org/10.1172/JCI76725] [PMID: 27500490]
[210]
Fu, R.; Li, Y.; Jiang, N.; Ren, B.X.; Zang, C.Z.; Liu, L.J.; Lv, W.C.; Li, H.M.; Weiss, S.; Li, Z.Y.; Lu, T.; Wu, Z.Q. Inactivation of endothelial ZEB1 impedes tumor progression and sensitizes tumors to conventional therapies. J. Clin. Invest., 2020, 130(3), 1252-1270.
[http://dx.doi.org/10.1172/JCI131507] [PMID: 32039918]
[211]
Wang, H.; Qian, J.; Xia, X.; Ye, B. Long non-coding RNA OIP5-AS1 serves as an oncogene in laryngeal squamous cell carcinoma by regulating miR-204-5p/ZEB1 axis. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(11), 2177-2184.
[http://dx.doi.org/10.1007/s00210-020-01811-7] [PMID: 32009213]
[212]
Liu, A.; Zuo, Z.; Liu, L.; Liu, L. Down-regulation of NTSR3 inhibits growth, metastasis, and PI3K/AKT and MAPK signaling pathways in colorectal cancer cells. Biochem. Cell Biol., 2020.
[http://dx.doi.org/10.1139/bcb-2019-0351]
[213]
Peng, Y.K.; Pu, K.; Su, H.X.; Zhang, J.; Zheng, Y.; Ji, R.; Guo, Q.H.; Wang, Y.P.; Guan, Q.L.; Zhou, Y.N. Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1142-1151.
[PMID: 32096170]
[214]
Liu, Y.; Lu, C.; Fan, L.; Wang, J.; Li, T.; Liu, Z.; Sheng, J.; Qian, R.; Duan, A.; Lu, D. MiR-199a-5p targets ZEB1 to inhibit the epithelial-mesenchymal transition of ovarian ectopic endometrial stromal cells via PI3K/Akt/mTOR signal pathway in vitro and in vivo. Reprod. Sci., 2020, 27(1), 110-118.
[http://dx.doi.org/10.1007/s43032-019-00016-5] [PMID: 32046378]
[215]
Pan, H.; Jiang, T.; Cheng, N.; Wang, Q.; Ren, S.; Li, X.; Zhao, C.; Zhang, L.; Cai, W.; Zhou, C. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget, 2016, 7(31), 49948-49960.
[http://dx.doi.org/10.18632/oncotarget.10521] [PMID: 27409677]
[216]
Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[217]
Shao, G.; Zhao, Z.; Zhao, W.; Hu, G.; Zhang, L.; Li, W.; Xing, C.; Zhang, X. Long non-coding RNA MALAT1 activates autophagy and promotes cell proliferation by downregulating microRNA-204 expression in gastric cancer. Oncol. Lett., 2020, 19(1), 805-812.
[PMID: 31897197]
[218]
Song, J.; Su, Z.Z.; Shen, Q.M. Long non-coding RNA MALAT1 regulates proliferation, apoptosis, migration and invasion via miR-374b-5p/SRSF7 axis in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 1853-1862.
[PMID: 32141554]
[219]
Liu, F.; Qiu, F.; Fu, M.; Chen, H.; Wang, H. Propofol reduces epithelial to mesenchymal transition, invasion and migration of gastric cancer cells through the MicroRNA-195-5p/snail axis. Med. Sci. Monit., 2020, 26, e920981.
[http://dx.doi.org/10.12659/MSM.920981] [PMID: 32115570]
[220]
Zhang, Y.F.; Li, C.S.; Zhou, Y.; Lu, X.H. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci., 2020, 244, 117280.
[http://dx.doi.org/10.1016/j.lfs.2020.117280] [PMID: 31926239]
[221]
Hao, T.; Wang, Z.; Yang, J.; Zhang, Y.; Shang, Y.; Sun, J. MALAT1 knockdown inhibits prostate cancer progression by regulating miR-140/BIRC6 axis. Biomed. Pharmacother., 2020, 123, 109666.
[http://dx.doi.org/10.1016/j.biopha.2019.109666] [PMID: 31935634]
[222]
Wu, J.; Weng, Y.; He, F.; Liang, D.; Cai, L. LncRNA MALAT-1 competitively regulates miR-124 to promote EMT and development of non-small-cell lung cancer. Anticancer Drugs, 2018, 29(7), 628-636.
[http://dx.doi.org/10.1097/CAD.0000000000000626] [PMID: 29782349]
[223]
Chen, G.; Yang, Z.; Feng, M.; Wang, Z. microRNA-217 suppressed epithelial-to-mesenchymal transition through targeting PTPN14 in gastric cancer. Biosci. Rep., 2020, 40(1), 40.
[http://dx.doi.org/10.1042/BSR20193176] [PMID: 31793993]
[224]
Miao, S.; Mao, X.; Zhao, S.; Song, K.; Xiang, C.; Lv, Y.; Jiang, H.; Wang, L.; Li, B.; Yang, X.; Yuan, Z.; Xiu, C.; Meng, H.; Sun, J. miR-217 inhibits laryngeal cancer metastasis by repressing AEG-1 and PD-L1 expression. Oncotarget, 2017, 8(37), 62143-62153.
[http://dx.doi.org/10.18632/oncotarget.19121] [PMID: 28977933]
[225]
Lu, L.; Luo, F.; Liu, Y.; Liu, X.; Shi, L.; Lu, X.; Liu, Q. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial-mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol. Appl. Pharmacol., 2015, 289(2), 276-285.
[http://dx.doi.org/10.1016/j.taap.2015.09.016] [PMID: 26415832]
[226]
Wang, J.; Shao, N.; Ding, X.; Tan, B.; Song, Q.; Wang, N.; Jia, Y.; Ling, H.; Cheng, Y. Crosstalk between transforming growth factor-β signaling pathway and long non-coding RNAs in cancer. Cancer Lett., 2016, 370(2), 296-301.
[http://dx.doi.org/10.1016/j.canlet.2015.11.007] [PMID: 26577807]
[227]
Lu, G.; Zhang, Y. Long non-coding RNA ATB promotes human non-small cell lung cancer proliferation and metastasis by suppressing miR-141-3p. PLoS One, 2020, 15(2), e0229118.
[http://dx.doi.org/10.1371/journal.pone.0229118] [PMID: 32092085]
[228]
Yuan, D.; Qian, H.; Guo, T.; Ye, J.; Jin, C.; Liu, X.; Jiang, L.; Wang, X.; Lin, M.; Yu, H. LncRNA-ATB promotes the tumorigenesis of ovarian cancer via targeting miR-204-3p. OncoTargets Ther., 2020, 13, 573-583.
[http://dx.doi.org/10.2147/OTT.S230552] [PMID: 32021299]
[229]
Lin, H.; Yang, L.; Tian, F.; Nie, S.; Zhou, H.; Liu, J.; Chen, W. Up-regulated LncRNA-ATB regulates the growth and metastasis of cholangiocarcinoma via miR-200c signals. OncoTargets Ther., 2019, 12, 7561-7571.
[http://dx.doi.org/10.2147/OTT.S217676] [PMID: 31571907]
[230]
Cao, Y.; Luo, X.; Ding, X.; Cui, S.; Guo, C. LncRNA ATB promotes proliferation and metastasis in A549 cells by down-regulation of microRNA-494. J. Cell. Biochem., 2018, 119(8), 6935-6942.
[http://dx.doi.org/10.1002/jcb.26894] [PMID: 29693289]
[231]
Chang, Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp. Ther. Med., 2019, 18(2), 1189-1195.
[http://dx.doi.org/10.3892/etm.2019.7642] [PMID: 31316613]
[232]
Jia, G.; Tang, Y.; Deng, G.; Fang, D.; Xie, J.; Yan, L.; Chen, Z. miR-590-5p promotes liver cancer growth and chemotherapy resistance through directly targeting FOXO1. Am. J. Transl. Res., 2019, 11(4), 2181-2193.
[PMID: 31105827]
[233]
Li, J.; Xia, R.; Liu, T.; Cai, X.; Geng, G. LncRNA-ATB promotes lung squamous carcinoma cell proliferation, migration, and invasion by targeting microRNA-590-5p/NF90 axis. DNA Cell Biol., 2020, 39(3), 459-473.
[http://dx.doi.org/10.1089/dna.2019.5193] [PMID: 31934791]
[234]
Cheng, Y. FEZF1-AS1 is a key regulator of cell cycle, epithelial-mesenchymal transition and Wnt/β-catenin signaling in nasopharyngeal carcinoma cells. Biosci. Rep., 2019, 39(1), 39.
[http://dx.doi.org/10.1042/BSR20180906] [PMID: 30355645]
[235]
Wu, X.; Zhang, P.; Zhu, H.; Li, S.; Chen, X.; Shi, L. Long noncoding RNA FEZF1-AS1 indicates a poor prognosis of gastric cancer and promotes tumorigenesis via activation of Wnt signaling pathway. Biomed. Pharmacother., 2017, 96, 1103-1108.
[http://dx.doi.org/10.1016/j.biopha.2017.11.113] [PMID: 29239821]
[236]
Zhang, H.H.; Li, A.H. Long non-coding RNA FEZF1-AS1 is up-regulated and associated with poor prognosis in patients with cervical cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(11), 3357-3362.
[PMID: 29917186]
[237]
Xu, L.; Hou, T.J.; Yang, P. Mechanism of lncRNA FEZF1-AS1 in promoting the occurrence and development of oral squamous cell carcinoma through targeting miR-196a. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(15), 6505-6515.
[PMID: 31378890]
[238]
Zhu, L.F.; Song, L.D.; Xu, Q.; Zhan, J.F. Highly expressed long non-coding RNA FEZF1-AS1 promotes cells proliferation and metastasis through Notch signaling in prostate cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5122-5132.
[PMID: 31298365]
[239]
Sun, Z.; Gao, S.; Xuan, L.; Liu, X. Long non-coding RNA FEZF1-AS1 induced progression of ovarian cancer via regulating miR-130a-5p/SOX4 axis. J. Cell. Mol. Med., 2020, 24(7), 4275-4285.
[http://dx.doi.org/10.1111/jcmm.15088] [PMID: 32135030]
[240]
He, R.; Zhang, F.H.; Shen, N. LncRNA FEZF1-AS1 enhances epithelial-mesenchymal transition (EMT) through suppressing E- cadherin and regulating WNT pathway in non-small cell lung cancer (NSCLC). Biomed. Pharmacother., 2017, 95, 331-338.
[http://dx.doi.org/10.1016/j.biopha.2017.08.057] [PMID: 28858731]
[241]
Guo, T.; Yuan, X.; Liu, D.F.; Peng, S.H.; Xu, A.M. LncRNA HOXA11-AS promotes migration and invasion through modulating miR-148a/WNT1/β-catenin pathway in gastric cancer. Neoplasma, 2020, 67(3), 492-500.
[http://dx.doi.org/10.4149/neo_2020_190722N653] [PMID: 32009419]
[242]
Gao, M.; Li, H.; Bi, Y.; Zhang, Z.; Wang, S.; Li, J.; Yang, Z.; Lv, X.; Zhou, B.; Yin, Z. The polymorphisms of lncRNA HOXA11-AS and the risk of lung cancer in Northeastern Chinese population. J. Cancer, 2020, 11(3), 592-598.
[http://dx.doi.org/10.7150/jca.35411] [PMID: 31942182]
[243]
Yin, X.; Zhang, J.; Li, C.; Zhang, Z.; Jin, T.; Song, L.; Zhang, R.; Wang, W.; Tao, Y.; Wang, X. LncRNA HOXA11-AS accumulation-induced microRNA-761 downregulation regulates cell growth by targeting TRIM29 in papillary thyroid cancer. Am. J. Transl. Res., 2019, 11(11), 6826-6837.
[PMID: 31814890]
[244]
Bai, Y.; Lang, L.; Zhao, W.; Niu, R. Long non-coding RNA HOXA11-AS promotes non-small cell lung cancer tumorigenesis through microRNA-148a-3p/DNMT1 regulatory axis. OncoTargets Ther., 2019, 12, 11195-11206.
[http://dx.doi.org/10.2147/OTT.S198367] [PMID: 31908486]
[245]
Chen, J.H.; Zhou, L.Y.; Xu, S.; Zheng, Y.L.; Wan, Y.F.; Hu, C.P. Overexpression of lncRNA HOXA11-AS promotes cell epithelial-mesenchymal transition by repressing miR-200b in non-small cell lung cancer. Cancer Cell Int., 2017, 17, 64.
[http://dx.doi.org/10.1186/s12935-017-0433-7] [PMID: 28615992]
[246]
Zhang, R.; Wang, J.; Jia, E.; Zhang, J.; Liu, N.; Chi, C. lncRNA BCAR4 sponges miR‑370‑3p to promote bladder cancer progression via Wnt signaling. Int. J. Mol. Med., 2020, 45(2), 578-588.
[PMID: 31894304]
[247]
Wang, Z.; Wang, L.; Liang, Z.; Xi, Y. Long non-coding RNA BCAR4 promotes growth, invasion and tumorigenicity by targeting miR-2276 to upregulate MMP7 expression in glioma. OncoTargets Ther., 2019, 12, 10963-10973.
[http://dx.doi.org/10.2147/OTT.S226026] [PMID: 31849498]
[248]
Wei, L.; Yi, Z.; Guo, K.; Long, X. Long noncoding RNA BCAR4 promotes glioma cell proliferation via EGFR/PI3K/AKT signaling pathway. J. Cell. Physiol., 2019, 234(12), 23608-23617.
[http://dx.doi.org/10.1002/jcp.28929] [PMID: 31173355]
[249]
Ouyang, S.; Zhou, X.; Chen, Z.; Wang, M.; Zheng, X.; Xie, M. LncRNA BCAR4, targeting to miR-665/STAT3 signaling, maintains cancer stem cells stemness and promotes tumorigenicity in colorectal cancer. Cancer Cell Int., 2019, 19, 72.
[http://dx.doi.org/10.1186/s12935-019-0784-3] [PMID: 30962766]
[250]
Li, N.; Gao, W.J.; Liu, N.S. LncRNA BCAR4 promotes proliferation, invasion and metastasis of non-small cell lung cancer cells by affecting epithelial-mesenchymal transition. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(9), 2075-2086.
[PMID: 28537678]
[251]
Huang, W.; Huang, F.; Lei, Z.; Luo, H. LncRNA SNHG11 promotes proliferation, migration, apoptosis, and autophagy by regulating hsa-miR-184/AGO2 in HCC. OncoTargets Ther., 2020, 13, 413-421.
[http://dx.doi.org/10.2147/OTT.S237161] [PMID: 32021286]
[252]
Liu, F.; Ai, F.Y.; Zhang, D.C.; Tian, L.; Yang, Z.Y.; Liu, S.J. LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a. Cancer Med., 2020, 9(3), 1079-1091.
[http://dx.doi.org/10.1002/cam4.2746] [PMID: 31802650]
[253]
Rojas-Sanchez, G.; Cotzomi-Ortega, I.; Pazos-Salazar, N.G.; Reyes-Leyva, J.; Maycotte, P. Autophagy and its relationship to epithelial to mesenchymal transition: When autophagy inhibition for cancer therapy turns counterproductive. Biology (Basel), 2019, 8(4), 8.
[http://dx.doi.org/10.3390/biology8040071] [PMID: 31554173]
[254]
Liu, W.; Jiang, D.; Gong, F.; Huang, Y.; Luo, Y.; Rong, Y.; Wang, J.; Ge, X.; Ji, C.; Fan, J.; Cai, W. miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis., 2020, 11(2), 93.
[http://dx.doi.org/10.1038/s41419-020-2270-1] [PMID: 32024814]
[255]
Deng, X.; Feng, N.; Zheng, M.; Ye, X.; Lin, H.; Yu, X.; Gan, Z.; Fang, Z.; Zhang, H.; Gao, M.; Zheng, Z.J.; Yu, H.; Ding, W.; Qian, B. PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 112-125.
[http://dx.doi.org/10.1016/j.bbagen.2016.11.009] [PMID: 27836757]
[256]
Qian, B.; Wang, X.; Mao, C.; Jiang, Y.; Shi, Y.; Chen, L.; Liu, S.; Wang, B.; Pan, S.; Tao, Y.; Shi, H. Long non-coding RNA linc01433 promotes migration and invasion in non-small cell lung cancer. Thorac. Cancer, 2018, 9(5), 589-597.
[http://dx.doi.org/10.1111/1759-7714.12623] [PMID: 29532622]
[257]
Zeng, Liang YK, Xiao YS, Wei XL, Lin HY, Wu Y, Bai JW, Chen M, Zhang GJ. Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triple-negative breast cancer cells. Int. J. Cancer, 2020.
[258]
Yu, H.; Xie, Y.; Zhou, Z.; Wu, Z.; Dai, X.; Xu, B. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway. Technol. Cancer Res. Treat., 2019, 18, 1533033819870781.
[http://dx.doi.org/10.1177/1533033819870781] [PMID: 31888414]
[259]
Cai, W.; Wu, B.; Li, Z.; He, P.; Wang, B.; Cai, A.; Zhang, X. LncRNA NBR2 inhibits epithelial-mesenchymal transition by regulating Notch1 signaling in osteosarcoma cells. J. Cell. Biochem., 2018.
[PMID: 30187965]
[260]
Xie, J.; Lin, L.S.; Huang, X.Y.; Gan, R.H.; Ding, L.C.; Su, B.H.; Zhao, Y.; Lu, Y.G.; Zheng, D.L. The NOTCH1-HEY1 pathway regulates self-renewal and epithelial-mesenchymal transition of salivary adenoid cystic carcinoma cells. Int. J. Biol. Sci., 2020, 16(4), 598-610.
[http://dx.doi.org/10.7150/ijbs.36407] [PMID: 32025208]
[261]
Gao, Y.P.; Li, Y.; Li, H.J.; Zhao, B. LncRNA NBR2 inhibits EMT progression by regulating Notch1 pathway in NSCLC. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7950-7958.
[PMID: 31599420]
[262]
Lu, X.C.; Zhou, H.Y.; Wu, J.; Jin, Y.; Yao, X.M.; Wu, X.Y. LncRNA LINP1 promotes proliferation and inhibits apoptosis of gastric cancer cells by repressing RBM5. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 137-144.
[PMID: 31957826]
[263]
Li, Y.; Hou, C.Z.; Dong, Y.L.; Zhu, L.; Xu, H. Long noncoding RNA LINP1 promoted proliferation and invasion of ovarian cancer via inhibiting KLF6. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 36-42.
[PMID: 31957816]
[264]
Ma, T.; Liang, Y.; Li, Y.; Song, X.; Zhang, N.; Li, X.; Chen, B.; Zhao, W.; Wang, L.; Yang, Q. LncRNA LINP1 confers tamoxifen resistance and negatively regulated by ER signaling in breast cancer. Cell. Signal., 2020, 68, 109536.
[http://dx.doi.org/10.1016/j.cellsig.2020.109536] [PMID: 31927036]
[265]
Kamato, D.; Burch, M.L.; Piva, T.J.; Rezaei, H.B.; Rostam, M.A.; Xu, S.; Zheng, W.; Little, P.J.; Osman, N. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell. Signal., 2013, 25(10), 2017-2024.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.001] [PMID: 23770288]
[266]
Zhang, C.; Hao, Y.; Wang, Y.; Xu, J.; Teng, Y.; Yang, X. TGF-β/SMAD4-regulated LncRNA-LINP1 inhibits epithelial-mesenchymal transition in lung cancer. Int. J. Biol. Sci., 2018, 14(12), 1715-1723.
[http://dx.doi.org/10.7150/ijbs.27197] [PMID: 30416386]
[267]
Rae, FK; Hooper, JD; Nicol, DL; Clements, JA Characterization of a novel gene, STAG1/PMEPA1, upregulated in renal cell carcinoma and other solid tumors. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 2001, 32, 44-53.
[268]
Liu, B.; Sun, L.; Liu, Q.; Gong, C.; Yao, Y.; Lv, X.; Lin, L.; Yao, H.; Su, F.; Li, D.; Zeng, M.; Song, E. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 2015, 27(3), 370-381.
[http://dx.doi.org/10.1016/j.ccell.2015.02.004] [PMID: 25759022]
[269]
Liu, D.; Shi, X. Long non-coding RNA NKILA inhibits proliferation and migration of lung cancer via IL-11/STAT3 signaling. Int. J. Clin. Exp. Pathol., 2019, 12(7), 2595-2603.
[PMID: 31934087]
[270]
Luo, L.H.; Rao, L.; Luo, L.F.; Chen, K.; Ran, R.Z.; Liu, X.L. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc. Res., 2020, 129, 103968.
[http://dx.doi.org/10.1016/j.mvr.2019.103968] [PMID: 31862380]
[271]
Lyu, X.; Ma, Y.; Wu, F.; Wang, L.; Wang, L. LncRNA NKILA Inhibits retinoblastoma by downregulating lncRNA XIST. Curr. Eye Res., 2019, 44(9), 975-979.
[http://dx.doi.org/10.1080/02713683.2019.1606253] [PMID: 30995132]
[272]
Lu, Z.; Li, Y.; Wang, J.; Che, Y.; Sun, S.; Huang, J.; Chen, Z.; He, J. Long non-coding RNA NKILA inhibits migration and invasion of non-small cell lung cancer via NF-κB/Snail pathway. J. Exp. Clin. Cancer Res., 2017, 36, 1-13.
[http://dx.doi.org/10.1186/s13046-017-0518-0]
[273]
Wang, D.Y.; Li, N.; Cui, Y.L. Long Non-coding RNA CCAT1 Sponges miR-454 to promote chemoresistance of ovarian cancer cells to cisplatin by regulation of surviving. Cancer Res. Treat., 2020, 52(3), 798-814.
[http://dx.doi.org/10.4143/crt.2019.498] [PMID: 32124583]
[274]
Chen, J.; Li, Y.; Li, Z.; Cao, L. LncRNA MST1P2/miR-133b axis affects the chemoresistance of bladder cancer to cisplatin-based therapy via Sirt1/p53 signaling. J. Biochem. Mol. Toxicol., 2020, 34(4), e22452.
[http://dx.doi.org/10.1002/jbt.22452] [PMID: 32052927]
[275]
Yamada, K.; Saito, H.; Kondo, T.; Murakami, S.; Masuda, N.; Yamamoto, M.; Igawa, S.; Katono, K.; Takiguchi, Y.; Iwasawa, S.; Kurimoto, R.; Okamoto, H.; Shimokawa, T.; Hosomi, Y.; Takagi, Y.; Kishi, K.; Ohba, M.; Oshita, F.; Watanabe, K. Multicenter phase II study of nedaplatin and irinotecan for patients with squamous cell carcinoma of the lung: Thoracic Oncology Research Group 0910. Anticancer Res., 2015, 35(12), 6705-6711.
[PMID: 26637886]
[276]
Xu, H.F.; Shi, D.M.; Zhu, X.Q. A study of effect of lncRNA MVIH on sensitivity of gastric cancer cells to gemcitabine. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(21), 9651-9659.
[PMID: 31773716]
[277]
Wang, Y.; Wu, Y.; Xiao, K.; Zhao, Y.; Lv, G.; Xu, S.; Wu, F. RPS24c isoform facilitates tumor angiogenesis via promoting the stability of MVIH in colorectal cancer. Curr. Mol. Med., 2019.
[http://dx.doi.org/10.2174/1566524019666191203123943] [PMID: 31797757]
[278]
Zhang, Y.; Lin, S.; Yang, X.; Zhang, X. Prognostic and Clinicopathological Significance of lncRNA MVIH in Cancer Patients. J. Cancer, 2019, 10(6), 1503-1510.
[http://dx.doi.org/10.7150/jca.28541] [PMID: 31031860]
[279]
Lei, B.; Xu, S.P.; Liang, X.S.; Li, Y.W.; Zhang, J.F.; Zhang, G.Q.; Pang, D. Long non-coding RNA MVIH is associated with poor prognosis and malignant biological behavior in breast cancer. Tumour Biol., 2016, 37(4), 5257-5264.
[http://dx.doi.org/10.1007/s13277-015-4360-8] [PMID: 26555546]
[280]
Jing, C.; Wang, Z.; Lou, R.; Wu, J.; Shi, C.; Chen, D.; Ma, R.; Liu, S.; Cao, H.; Feng, J. Nedaplatin reduces multidrug resistance of non-small cell lung cancer by downregulating the expression of long non-coding RNA MVIH. J. Cancer, 2020, 11(3), 559-569.
[http://dx.doi.org/10.7150/jca.35792] [PMID: 31942179]
[281]
Yang, X.; Zhang, S.; He, C.; Xue, P.; Zhang, L.; He, Z.; Zang, L.; Feng, B.; Sun, J.; Zheng, M. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol. Cancer, 2020, 19(1), 46.
[http://dx.doi.org/10.1186/s12943-020-1146-4] [PMID: 32111213]
[282]
Cui, C.L.; Li, Y.N.; Cui, X.Y.; Wu, X. lncRNA XIST promotes the progression of laryngeal squamous cell carcinoma by sponging miR‑144 to regulate IRS1 expression. Oncol. Rep., 2020, 43(2), 525-535.
[PMID: 31894287]
[283]
Wang, S.; Li, G. RETRACTED ARTICLE: LncRNA XIST inhibits ovarian cancer cell growth and metastasis via regulating miR-150-5p/PDCD4 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol., 2020.
[http://dx.doi.org/10.1007/s00210-020-01808-2] [PMID: 31930432]
[284]
Qiu, H.B.; Yang, K.; Yu, H.Y.; Liu, M. Downregulation of long non-coding RNA XIST inhibits cell proliferation, migration, invasion and EMT by regulating miR-212-3p/CBLL1 axis in non-small cell lung cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(19), 8391-8402.
[PMID: 31646569]
[285]
Chen, W.; Du, J.; Li, X.; Zhi, Z.; Jiang, S. microRNA-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis. Pharmacogenomics, 2020, 21(3), 195-207.
[http://dx.doi.org/10.2217/pgs-2019-0122] [PMID: 31967512]
[286]
Duan, J.; Lu, G.; Li, Y.; Zhou, S.; Zhou, D.; Tao, H. miR-137 functions as a tumor suppressor gene in pituitary adenoma by targeting AKT2. Int. J. Clin. Exp. Pathol., 2019, 12(5), 1557-1564.
[PMID: 31933973]
[287]
Lee, S.J.; Jeong, J.H.; Kang, S.H.; Kang, J.; Kim, E.A.; Lee, J.; Jung, J.H.; Park, H.Y.; Chae, Y.S. MicroRNA-137 inhibits cancer progression by targeting Del-1 in triple-negative breast cancer cells. Int. J. Mol. Sci., 2019, 20(24), 20.
[http://dx.doi.org/10.3390/ijms20246162] [PMID: 31817673]
[288]
Du, F.; Yu, L.; Wu, Y.; Wang, S.; Yao, J.; Zheng, X.; Xie, S.; Zhang, S.; Lu, X.; Liu, Y.; Chen, W. miR-137 alleviates doxorubicin resistance in breast cancer through inhibition of epithelial-mesenchymal transition by targeting DUSP4. Cell Death Dis., 2019, 10(12), 922.
[http://dx.doi.org/10.1038/s41419-019-2164-2] [PMID: 31801953]
[289]
Wang, X.; Zhang, G.; Cheng, Z.; Dai, L.; Jia, L.; Jing, X.; Wang, H.; Zhang, R.; Liu, M.; Jiang, T.; Yang, Y.; Yang, M. Knockdown of LncRNA-XIST suppresses proliferation and TGF-β1-induced EMT in NSCLC through the notch-1 pathway by regulation of miR-137. Genet. Test. Mol. Biomarkers, 2018, 22(6), 333-342.
[http://dx.doi.org/10.1089/gtmb.2018.0026] [PMID: 29812958]
[290]
Xu, R.; Zhou, F.; Yu, T.; Xu, G.; Zhang, J.; Wang, Y.; Zhao, L.; Liu, N. MicroRNA-940 inhibits epithelial-mesenchymal transition of glioma cells via targeting ZEB2. Am. J. Transl. Res., 2019, 11(12), 7351-7363.
[PMID: 31934283]
[291]
Cui, J.; Pan, G.; He, Q.; Yin, L.; Guo, R.; Bi, H. MicroRNA-545 targets ZEB2 to inhibit the development of non-small cell lung cancer by inactivating Wnt/β-catenin pathway. Oncol. Lett., 2019, 18(3), 2931-2938.
[http://dx.doi.org/10.3892/ol.2019.10619] [PMID: 31452774]
[292]
Li, C.; Wan, L.; Liu, Z.; Xu, G.; Wang, S.; Su, Z.; Zhang, Y.; Zhang, C.; Liu, X.; Lei, Z.; Zhang, H.T. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett., 2018, 418, 185-195.
[http://dx.doi.org/10.1016/j.canlet.2018.01.036] [PMID: 29339211]
[293]
Wei, S.; Wang, K. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia. Exp. Hematol. Oncol., 2016, 5, 30.
[http://dx.doi.org/10.1186/s40164-016-0059-9] [PMID: 27999732]
[294]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M-C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[295]
He, W.; Cai, Q.; Sun, F.; Zhong, G.; Wang, P.; Liu, H.; Luo, J.; Yu, H.; Huang, J.; Lin, T. linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim. Biophys. Acta, 2013, 1832(10), 1528-1537.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.010] [PMID: 23688781]
[296]
Huang, L.; Li, X.; Gao, W. Long non-coding RNA linc-ITGB1 promotes cell proliferation, migration, and invasion in human hepatoma carcinoma by up-regulating ROCK1. Biosci. Rep., 2018, 38(5), 38.
[http://dx.doi.org/10.1042/BSR20181289] [PMID: 30279202]
[297]
Wan, W.B.; Kong, Q.L. Knockdown of long noncoding RNA linc-ITGB1 inhibits tumor metastasis in colorectal cancer through suppressing BDNF. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(15), 6453-6458.
[PMID: 31378884]
[298]
Guo, L.; Sun, C.; Xu, S.; Xu, Y.; Dong, Q.; Zhang, L.; Li, W.; Wang, X.; Ying, G.; Guo, F. Knockdown of long non-coding RNA linc-ITGB1 inhibits cancer stemness and epithelial-mesenchymal transition by reducing the expression of Snail in non-small cell lung cancer. Thorac. Cancer, 2019, 10(2), 128-136.
[http://dx.doi.org/10.1111/1759-7714.12911] [PMID: 30485693]
[299]
Song, J.; Chen, X.; Tian, Q.; Lun, L.; Wang, Q.; Wang, H.; Li, X.; Liu, Z.; Tian, L.; Jing, X.; Zhang, Y.; Tian, R. The value of lncRNA GHET1 as a prognostic factor for survival of chinese cancer outcome: A meta-analysis. Dis. Markers, 2019, 2019, 5824190.
[http://dx.doi.org/10.1155/2019/5824190] [PMID: 31885739]
[300]
Liu, Z.; Luo, S.; Wu, M.; Huang, C.; Shi, H.; Song, X. LncRNA GHET1 promotes cervical cancer progression through regulating AKT/mTOR and Wnt/β-catenin signaling pathways. Biosci. Rep., 2020, 40(1), 40.
[http://dx.doi.org/10.1042/BSR20191265] [PMID: 31682716]
[301]
Jiang, Y.F.; Zhang, H.Y.; Ke, J.; Shen, H.; Ou, H.B.; Liu, Y. Overexpression of LncRNA GHET1 predicts an unfavourable survival and clinical parameters of patients in various cancers. J. Cell. Mol. Med., 2019, 23(8), 4891-4899.
[http://dx.doi.org/10.1111/jcmm.14486] [PMID: 31251476]
[302]
Li, B.; Xie, D.; Zhang, H. Long non-coding RNA GHET1 contributes to chemotherapeutic resistance to Gemcitabine in bladder cancer. Cancer Chemother. Pharmacol., 2019, 84(1), 187-194.
[http://dx.doi.org/10.1007/s00280-019-03873-8] [PMID: 31115606]
[303]
Guan, Z.B.; Cao, Y.S.; Li, Y.; Tong, W.N.; Zhuo, A.S. Knockdown of lncRNA GHET1 suppresses cell proliferation, invasion and LATS1/YAP pathway in non small cell lung cancer. Cancer Biomark., 2018, 21(3), 557-563.
[http://dx.doi.org/10.3233/CBM-170431] [PMID: 29286919]
[304]
Lin, H.; Zhang, X.; Feng, N.; Wang, R.; Zhang, W.; Deng, X.; Wang, Y.; Yu, X.; Ye, X.; Li, L.; Qian, Y.; Yu, H.; Qian, B. LncRNA LCPAT1 mediates smoking/ particulate matter 2.5-Induced cell autophagy and epithelial-mesenchymal transition in lung cancer cells via RCC2. Cell. Physiol. Biochem., 2018, 47(3), 1244-1258.
[http://dx.doi.org/10.1159/000490220] [PMID: 29913439]
[305]
Lu, W.; Zhang, H.; Niu, Y.; Wu, Y.; Sun, W.; Li, H.; Kong, J.; Ding, K.; Shen, H.M.; Wu, H.; Xia, D.; Wu, Y. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol. Cancer, 2017, 16(1), 118.
[http://dx.doi.org/10.1186/s12943-017-0685-9] [PMID: 28697764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy