Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Mad2-Binding Protein p31comet as a Potential Target for Human Cancer Therapy

Author(s): Ana C. Henriques, Patrícia M. A. Silva, Bruno Sarmento and Hassan Bousbaa*

Volume 21, Issue 5, 2021

Published on: 28 January, 2021

Page: [401 - 415] Pages: 15

DOI: 10.2174/1568009621666210129095726

Price: $65

Abstract

The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents mitotic exit at the metaphase-to-anaphase transition until all chromosomes have established correct bipolar attachment to spindle microtubules. Activation of SAC relies on the assembly of the mitotic checkpoint complex (MCC), which requires conformational change from inactive open Mad2 (OMad2) to the active closed Mad2 (C-Mad2) at unattached kinetochores. The Mad2-binding protein p31comet plays a key role in controlling timely mitotic exit by promoting SAC silencing, through preventing Mad2 activation and promoting MCC disassembly. Besides, increasing evidences highlight the p31comet potential as target for cancer therapy. Here, we provide an updated overview of the functional significance of p31comet in mitotic progression, and discuss the potential of deregulated expression of p31comet in cancer and in therapeutic strategies.

Keywords: p31comet, mitosis, Mad2, spindle assembly checkpoint, mitotic checkpoint complex, cancer, therapeutic target.

Graphical Abstract
[1]
Kalous, J.; Jansová, D.; Šušor, A. Role of cyclin-dependent kinase 1 in translational regulation in the m-phase. Cells, 2020, 9(7), 1568.
[http://dx.doi.org/10.3390/cells9071568] [PMID: 32605021]
[2]
Serpico, A.F.; Grieco, D. Recent advances in understanding the role of Cdk1 in the Spindle Assembly Checkpoint. F1000 Res., 2020, 9, 57.
[http://dx.doi.org/10.12688/f1000research.21185.1] [PMID: 32047615]
[3]
Pesenti, M.E.; Weir, J.R.; Musacchio, A. Progress in the structural and functional characterization of kinetochores. Curr. Opin. Struct. Biol., 2016, 37, 152-163.
[http://dx.doi.org/10.1016/j.sbi.2016.03.003] [PMID: 27039078]
[4]
Kops, G.J.P.L.; Gassmann, R. Crowning the Kinetochore: The Fibrous Corona in Chromosome Segregation. Trends Cell Biol., 2020, 30(8), 653-667.
[http://dx.doi.org/10.1016/j.tcb.2020.04.006] [PMID: 32386879]
[5]
Henriques, A. C.; Ribeiro, D.; Pedrosa, J.; Sarmento, B.; Silva, P. M. A.; Bousbaa, H. Mitosis inhibitors in anticancer therapy: when blocking the exit becomes a solution. Cancer Lett., 2019.
[6]
Dou, Z.; Prifti, D.K.; Gui, P.; Liu, X.; Elowe, S.; Yao, X. Recent progress on the localization of the spindle assembly checkpoint machinery to kinetochores. Cells, 2019, 8(3), 278.
[http://dx.doi.org/10.3390/cells8030278] [PMID: 30909555]
[7]
Mapelli, M.; Filipp, F.V.; Rancati, G.; Massimiliano, L.; Nezi, L.; Stier, G.; Hagan, R.S.; Confalonieri, S.; Piatti, S.; Sattler, M.; Musacchio, A. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J., 2006, 25(6), 1273-1284.
[http://dx.doi.org/10.1038/sj.emboj.7601033] [PMID: 16525508]
[8]
Teichner, A.; Eytan, E.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Dumin, E.; Gromis, J.; Hershko, A. p31comet Promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc. Natl. Acad. Sci. USA, 2011, 108(8), 3187-3192.
[http://dx.doi.org/10.1073/pnas.1100023108] [PMID: 21300909]
[9]
Westhorpe, F.G.; Tighe, A.; Lara-Gonzalez, P.; Taylor, S.S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J. Cell Sci., 2011, 124(Pt 22), 3905-3916.
[http://dx.doi.org/10.1242/jcs.093286] [PMID: 22100920]
[10]
Hagan, R.S.; Manak, M.S.; Buch, H.K.; Meier, M.G.; Meraldi, P.; Shah, J.V.; Sorger, P.K. p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol. Biol. Cell, 2011, 22(22), 4236-4246.
[http://dx.doi.org/10.1091/mbc.e11-03-0216] [PMID: 21965286]
[11]
Eytan, E.; Wang, K.; Miniowitz-Shemtov, S.; Sitry-Shevah, D.; Kaisari, S.; Yen, T.J.; Liu, S.T.; Hershko, A. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12019-12024.
[http://dx.doi.org/10.1073/pnas.1412901111] [PMID: 25092294]
[12]
Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol., 2020, 99(4), 151075.
[http://dx.doi.org/10.1016/j.ejcb.2020.151075] [PMID: 32414588]
[13]
Borys, F.; Joachimiak, E.; Krawczyk, H.; Fabczak, H. Intrinsic and extrinsic factors affecting microtubule dynamics in normal and cancer cells. Molecules, 2020, 25(16), 3705.
[http://dx.doi.org/10.3390/molecules25163705] [PMID: 32823874]
[14]
Robinson, K.; Tiriveedhi, V. Perplexing role of p-glycoprotein in tumor microenvironment. Front. Oncol., 2020, 10, 265.
[http://dx.doi.org/10.3389/fonc.2020.00265] [PMID: 32195185]
[15]
Gascoigne, K.E.; Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 2008, 14(2), 111-122.
[http://dx.doi.org/10.1016/j.ccr.2008.07.002] [PMID: 18656424]
[16]
Weaver, B.A.A.; Cleveland, D.W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 2005, 8(1), 7-12.
[http://dx.doi.org/10.1016/j.ccr.2005.06.011] [PMID: 16023594]
[17]
Sinha, D.; Duijf, P.H.G.; Khanna, K.K. Mitotic slippage: an old tale with a new twist. Cell Cycle, 2019, 18(1), 7-15.
[http://dx.doi.org/10.1080/15384101.2018.1559557] [PMID: 30601084]
[18]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 2004, 6(1), 1-6.
[http://dx.doi.org/10.1016/S1476-5586(04)80047-2] [PMID: 15068665]
[19]
Ma, H.T.; Chan, Y.Y.; Chen, X.; On, K.F.; Poon, R.Y.C. Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J. Biol. Chem., 2012, 287(25), 21561-21569.
[http://dx.doi.org/10.1074/jbc.M112.364356] [PMID: 22544748]
[20]
Habu, T.; Matsumoto, T. p31comet inactivates the chemically induced mad2-dependent spindle assembly checkpoint and leads to resistance to anti-mitotic drugs. Springerplus, 2013, 2(1), 1-15.
[http://dx.doi.org/10.1186/2193-1801-2-562] [PMID: 23419944]
[21]
De Antoni, A.; Pearson, C.G.; Cimini, D.; Canman, J.C.; Sala, V.; Nezi, L.; Mapelli, M.; Sironi, L.; Faretta, M.; Salmon, E.D.; Musacchio, A. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol., 2005, 15(3), 214-225.
[http://dx.doi.org/10.1016/j.cub.2005.01.038] [PMID: 15694304]
[22]
Mapelli, M.; Musacchio, A. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol., 2007, 17(6), 716-725.
[http://dx.doi.org/10.1016/j.sbi.2007.08.011] [PMID: 17920260]
[23]
Gassmann, R.; Holland, A.J.; Varma, D.; Wan, X.; Civril, F.; Cleveland, D.W.; Oegema, K.; Salmon, E.D.; Desai, A. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev., 2010, 24(9), 957-971.
[http://dx.doi.org/10.1101/gad.1886810] [PMID: 20439434]
[24]
Chan, Y.W.; Fava, L.L.; Uldschmid, A.; Schmitz, M.H.A.; Gerlich, D.W.; Nigg, E.A.; Santamaria, A. Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. J. Cell Biol., 2009, 185(5), 859-874.
[http://dx.doi.org/10.1083/jcb.200812167] [PMID: 19468067]
[25]
Mansfeld, J.; Collin, P.; Collins, M.O.; Choudhary, J.S.; Pines, J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol., 2011, 13(10), 1234-1243.
[http://dx.doi.org/10.1038/ncb2347] [PMID: 21926987]
[26]
Uzunova, K.; Dye, B.T.; Schutz, H.; Ladurner, R.; Petzold, G.; Toyoda, Y.; Jarvis, M.A.; Brown, N.G.; Poser, I.; Novatchkova, M.; Mechtler, K.; Hyman, A.A.; Stark, H.; Schulman, B.A.; Peters, J-M. APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nat. Struct. Mol. Biol., 2012, 19(11), 1116-1123.
[http://dx.doi.org/10.1038/nsmb.2412] [PMID: 23007861]
[27]
Gene MAD2L1BP (MAD2L1 binding protein). https://www.ncbi.nlm.nih.gov/gene/9587
[28]
Habu, T.; Kim, S.H.; Weinstein, J.; Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J., 2002, 21(23), 6419-6428.
[http://dx.doi.org/10.1093/emboj/cdf659] [PMID: 12456649]
[29]
Nucleotide [MAD2L1-binding protein isoform 1]. Accession No. NM_001003690.1, Homo sapiens MAD2L1 binding protein (MAD2L1BP), transcript variant 1, mRNA. https://www.ncbi.nlm.nih.gov/nuccore/NM_001003690.1
[30]
Nucleotide [MAD2L1-binding protein isoform 2]. Accession No. NM_014628.3, Homo sapiens MAD2L1 binding protein (MAD2L1BP), transcript variant 2, mRNA. https://www.ncbi.nlm.nih.gov/nuccore/NM_014628.3
[31]
Yang, M.; Li, B.; Tomchick, D.R.; Machius, M.; Rizo, J.; Yu, H.; Luo, X. p31comet blocks Mad2 activation through structural mimicry. Cell, 2007, 131(4), 744-755.
[http://dx.doi.org/10.1016/j.cell.2007.08.048] [PMID: 18022368]
[32]
Rosenberg, S.C.; Corbett, K.D. The multifaceted roles of the HORMA domain in cellular signaling. J. Cell Biol., 2015, 211(4), 745-755.
[http://dx.doi.org/10.1083/jcb.201509076] [PMID: 26598612]
[33]
Date, D.A.; Burrows, A.C.; Venere, M.; Jackson, M.W.; Summers, M.K. Coordinated regulation of p31(Comet) and Mad2 expression is required for cellular proliferation. Cell Cycle, 2013, 12(24), 3824-3832.
[http://dx.doi.org/10.4161/cc.26811] [PMID: 24131926]
[34]
Hegemann, B.; Hutchins, J.R.A.; Hudecz, O.; Novatchkova, M.; Rameseder, J.; Sykora, M.M.; Liu, S.; Mazanek, M.; Lénárt, P.; Hériché, J-K.; Poser, I.; Kraut, N.; Hyman, A.A.; Yaffe, M.B.; Mechtler, K.; Peters, J-M. Systematic phosphorylation analysis of human mitotic protein complexes. Sci. Signal., 2011, 4(198), rs12-rs12.
[http://dx.doi.org/10.1126/scisignal.2001993] [PMID: 22067460]
[35]
Date, D.A.; Burrows, A.C.; Summers, M.K. Phosphorylation regulates the p31comet-mitotic arrest-deficient 2 (Mad2) interaction to promote spindle assembly checkpoint (SAC) activity. J. Biol. Chem., 2014, 289(16), 11367-11373.
[http://dx.doi.org/10.1074/jbc.M113.520841] [PMID: 24596092]
[36]
Xia, G.; Luo, X.; Habu, T.; Rizo, J.; Matsumoto, T.; Yu, H. Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J., 2004, 23(15), 3133-3143.
[http://dx.doi.org/10.1038/sj.emboj.7600322] [PMID: 15257285]
[37]
Tipton, A.R.; Wang, K.; Oladimeji, P.; Sufi, S.; Gu, Z.; Liu, S.T. Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol., 2012, 13(1), 15.
[http://dx.doi.org/10.1186/1471-2121-13-15] [PMID: 22712476]
[38]
Miniowitz-Shemtov, S.; Eytan, E.; Kaisari, S.; Sitry-Shevah, D.; Hershko, A. Mode of interaction of TRIP13 AAA-ATPase with the Mad2-binding protein p31comet and with mitotic checkpoint complexes. Proc. Natl. Acad. Sci. USA, 2015, 112(37), 11536-11540.
[http://dx.doi.org/10.1073/pnas.1515358112] [PMID: 26324890]
[39]
Ye, Q.; Rosenberg, S.C.; Moeller, A.; Speir, J.A.; Su, T.Y.; Corbett, K.D. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife, 2015, 4(4), 1-44.
[http://dx.doi.org/10.7554/eLife.07367] [PMID: 25918846]
[40]
Ma, H.T.; Poon, R.Y.C. TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint. Cell Rep., 2016, 14(5), 1086-1099.
[http://dx.doi.org/10.1016/j.celrep.2016.01.001] [PMID: 26832417]
[41]
Ye, Q.; Kim, D.H.; Dereli, I.; Rosenberg, S.C.; Hagemann, G.; Herzog, F.; Tóth, A.; Cleveland, D.W.; Corbett, K.D. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J., 2017, 36(16), 2419-2434.
[http://dx.doi.org/10.15252/embj.201797291] [PMID: 28659378]
[42]
Ma, H.T.; Poon, R.Y.C. TRIP13 functions in the establishment of the spindle assembly checkpoint by replenishing O-MAD2. Cell Rep., 2018, 22(6), 1439-1450.
[http://dx.doi.org/10.1016/j.celrep.2018.01.027] [PMID: 29425500]
[43]
Shin, H.J.; Park, E.R.; Yun, S.H.; Kim, S.H.; Jung, W.H.; Woo, S.R.; Joo, H.Y.; Jang, S.H.; Chung, H.Y.; Hong, S.H.; Cho, M.H.; Park, J.J.; Yun, M.; Lee, K.H. p31comet-induced cell death is mediated by binding and inactivation of Mad2. PLoS One, 2015, 10(11), e0141523.
[http://dx.doi.org/10.1371/journal.pone.0141523] [PMID: 26544187]
[44]
Sironi, L.; Mapelli, M.; Knapp, S.; De Antoni, A.; Jeang, K-T.; Musacchio, A. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J., 2002, 21(10), 2496-2506.
[http://dx.doi.org/10.1093/emboj/21.10.2496] [PMID: 12006501]
[45]
Miniowitz-Shemtov, S.; Eytan, E.; Ganoth, D.; Sitry-Shevah, D.; Dumin, E.; Hershko, A. Role of phosphorylation of Cdc20 in p31(comet)-stimulated disassembly of the mitotic checkpoint complex. Proc. Natl. Acad. Sci. USA, 2012, 109(21), 8056-8060.
[http://dx.doi.org/10.1073/pnas.1204081109] [PMID: 22566641]
[46]
Alfieri, C.; Chang, L.; Barford, D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature, 2018, 559(7713), 274-278.
[http://dx.doi.org/10.1038/s41586-018-0281-1] [PMID: 29973720]
[47]
Nelson, C.R.; Hwang, T.; Chen, P.H.; Bhalla, N. TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J. Cell Biol., 2015, 211(3), 503-516.
[http://dx.doi.org/10.1083/jcb.201505114] [PMID: 26527744]
[48]
Défachelles, L.; Russo, A. E.; Nelson, C. R.; Bhalla, N. PCH-2 TRIP13 regulates spindle checkpoint strength. Mol. Biol. Cell, 2020.
[49]
Balboni, M.; Yang, C.; Komaki, S.; Brun, J.; Schnittger, A. comet functions as a PCH2 cofactor in regulating the horma domain protein ASY1. Curr. Biol., 2020, 30(21), 4113-4127.e6.
[http://dx.doi.org/10.1016/j.cub.2020.07.089] [PMID: 32857973]
[50]
Ji, J.; Tang, D.; Shen, Y.; Xue, Z.; Wang, H.; Shi, W.; Zhang, C.; Du, G.; Li, Y.; Cheng, Z. p31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice. Proc. Natl. Acad. Sci. USA, 2016, 113(38), 10577-10582.
[http://dx.doi.org/10.1073/pnas.1607334113] [PMID: 27601671]
[51]
Giacopazzi, S.; Vong, D.; Devigne, A.; Bhalla, N. PCH-2 collaborates with CMT-1 to proofread meiotic homolog interactions. PLoS Genet., 2020, 16(7), e1008904.
[http://dx.doi.org/10.1371/journal.pgen.1008904] [PMID: 32730253]
[52]
Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; Lopez, R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, 47(W1), W636-W641.
[http://dx.doi.org/10.1093/nar/gkz268] [PMID: 30976793]
[53]
Hall, T. bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 41, 95-98.
[http://dx.doi.org/10.14601/Phytopathol_Mediterr-14998u1.29]
[54]
Sarangi, P.; Clairmont, C.S.; Galli, L.D.; Moreau, L.A.; D’Andrea, A.D. p31comet promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proc. Natl. Acad. Sci. USA, 2020, 117(43), 26795-26803.
[http://dx.doi.org/10.1073/pnas.2008830117] [PMID: 33051298]
[55]
Mo, M.; Arnaoutov, A.; Dasso, M. Phosphorylation of Xenopus p31(comet) potentiates mitotic checkpoint exit. Cell Cycle, 2015, 14(24), 3978-3985.
[http://dx.doi.org/10.1080/15384101.2015.1033590] [PMID: 25892037]
[56]
Kaisari, S.; Shomer, P.; Ziv, T.; Sitry-Shevah, D.; Miniowitz-Shemtov, S.; Teichner, A.; Hershko, A. Role of Polo-like kinase 1 in the regulation of the action of p31comet in the disassembly of mitotic checkpoint complexes. Proc. Natl. Acad. Sci. USA, 2019, 116(24), 11725-11730.
[http://dx.doi.org/10.1073/pnas.1902970116] [PMID: 31118282]
[57]
Hellmuth, S.; Gómez-H, L.; Pendás, A.M.; Stemmann, O. Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2. Nature, 2020, 580(7804), 536-541.
[http://dx.doi.org/10.1038/s41586-020-2182-3] [PMID: 32322060]
[58]
Choi, E.; Zhang, X.; Xing, C.; Yu, H. mitotic checkpoint regulators control insulin signaling and metabolic homeostasis. Cell, 2016, 166(3), 567-581.
[http://dx.doi.org/10.1016/j.cell.2016.05.074] [PMID: 27374329]
[59]
Sudakin, V.; Chan, G.K.T.; Yen, T.J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol., 2001, 154(5), 925-936.
[http://dx.doi.org/10.1083/jcb.200102093] [PMID: 11535616]
[60]
Vink, M.; Simonetta, M.; Transidico, P.; Ferrari, K.; Mapelli, M.; De Antoni, A.; Massimiliano, L.; Ciliberto, A.; Faretta, M.; Salmon, E.D.; Musacchio, A. In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr. Biol., 2006, 16(8), 755-766.
[http://dx.doi.org/10.1016/j.cub.2006.03.057] [PMID: 16631582]
[61]
Lok, T.M.; Wang, Y.; Xu, W.K.; Xie, S.; Ma, H.T.; Poon, R.Y.C. Mitotic slippage is determined by p31comet and the weakening of the spindle-assembly checkpoint. Oncogene, 2020, 39(13), 2819-2834.
[http://dx.doi.org/10.1038/s41388-020-1187-6] [PMID: 32029899]
[62]
Ma, H.T.; Poon, R.Y.C. How protein kinases co-ordinate mitosis in animal cells. Biochem. J., 2011, 435(1), 17-31.
[http://dx.doi.org/10.1042/BJ20100284] [PMID: 21406064]
[63]
Brulotte, M.L.; Jeong, B-C.; Li, F.; Li, B.; Yu, E.B.; Wu, Q.; Brautigam, C.A.; Yu, H.; Luo, X. Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat. Commun., 2017, 8(1), 1956.
[http://dx.doi.org/10.1038/s41467-017-02012-2] [PMID: 29208896]
[64]
Marks, D.H.; Thomas, R.; Chin, Y.; Shah, R.; Khoo, C.; Benezra, R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep., 2017, 19(9), 1832-1845.
[http://dx.doi.org/10.1016/j.celrep.2017.05.021] [PMID: 28564602]
[65]
Reddy, S.K.; Rape, M.; Margansky, W.A.; Kirschner, M.W. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature, 2007, 446(7138), 921-925.
[http://dx.doi.org/10.1038/nature05734] [PMID: 17443186]
[66]
Jia, L.; Li, B.; Warrington, R.T.; Hao, X.; Wang, S.; Yu, H. Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31(comet). Mol. Biol. Cell, 2011, 22(22), 4227-4235.
[http://dx.doi.org/10.1091/mbc.e11-05-0389] [PMID: 21937719]
[67]
Richeson, K.V.; Bodrug, T.; Sackton, K.L.; Yamaguchi, M.; Paulo, J.A.; Gygi, S.P.; Schulman, B.A.; Brown, N.G.; King, R.W. Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nat. Chem. Biol., 2020, 16(5), 546-555.
[http://dx.doi.org/10.1038/s41589-020-0495-z] [PMID: 32152539]
[68]
Densham, R.M.; Morris, J.R. moving mountains-the BRCA1 promotion of DNA resection. Front. Mol. Biosci., 2019, 6, 79.
[http://dx.doi.org/10.3389/fmolb.2019.00079] [PMID: 31552267]
[69]
Setiaputra, D.; Durocher, D. Shieldin - the protector of DNA ends. EMBO Rep., 2019, 20(5), e47560.
[http://dx.doi.org/10.15252/embr.201847560] [PMID: 30948458]
[70]
Cayrol, C.; Cougoule, C.; Wright, M. The beta2-adaptin clathrin adaptor interacts with the mitotic checkpoint kinase BubR1. Biochem. Biophys. Res. Commun., 2002, 298(5), 720-730.
[http://dx.doi.org/10.1016/S0006-291X(02)02522-6] [PMID: 12419313]
[71]
O’Neill, T.J.; Zhu, Y.; Gustafson, T.A. Interaction of MAD2 with the carboxyl terminus of the insulin receptor but not with the IGFIR. Evidence for release from the insulin receptor after activation. J. Biol. Chem., 1997, 272(15), 10035-10040.
[http://dx.doi.org/10.1074/jbc.272.15.10035] [PMID: 9092546]
[72]
Tipton, A.R.; Wang, K.; Link, L.; Bellizzi, J.J.; Huang, H.; Yen, T.; Liu, S.T. BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex. J. Biol. Chem., 2011, 286(24), 21173-21179.
[http://dx.doi.org/10.1074/jbc.M111.238543] [PMID: 21525009]
[73]
Yun, M.Y.; Kim, S.B.; Park, S.; Han, C.J.; Han, Y.H.; Yoon, S.H.; Kim, S.H.; Kim, C.M.; Choi, D.W.; Cho, M.H.; Park, G.H.; Lee, K.H. Mutation analysis of p31comet gene, a negative regulator of Mad2, in human hepatocellular carcinoma. Exp. Mol. Med., 2007, 39(4), 508-513.
[http://dx.doi.org/10.1038/emm.2007.56] [PMID: 17934339]
[74]
Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; Asplund, A.; Sjöstedt, E.; Lundberg, E.; Szigyarto, C.A-K.; Skogs, M.; Takanen, J.O.; Berling, H.; Tegel, H.; Mulder, J.; Nilsson, P.; Schwenk, J.M.; Lindskog, C.; Danielsson, F.; Mardinoglu, A.; Sivertsson, A.; von Feilitzen, K.; Forsberg, M.; Zwahlen, M.; Olsson, I.; Navani, S.; Huss, M.; Nielsen, J.; Ponten, F.; Uhlén, M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics, 2014, 13(2), 397-406.
[http://dx.doi.org/10.1074/mcp.M113.035600] [PMID: 24309898]
[75]
Sarangi, P.; Clairmont, C.S.; D’Andrea, A.D. disassembly of the shieldin complex by TRIP13. Cell Cycle, 2020, 19(13), 1565-1575.
[http://dx.doi.org/10.1080/15384101.2020.1758435] [PMID: 32420796]
[76]
Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer, 2019, 19(6), 326-338.
[http://dx.doi.org/10.1038/s41568-019-0143-7] [PMID: 31053804]
[77]
Garber, M.E.; Troyanskaya, O.G.; Schluens, K.; Petersen, S.; Thaesler, Z.; Pacyna-Gengelbach, M.; van de Rijn, M.; Rosen, G.D.; Perou, C.M.; Whyte, R.I.; Altman, R.B.; Brown, P.O.; Botstein, D.; Petersen, I. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13784-13789.
[http://dx.doi.org/10.1073/pnas.241500798] [PMID: 11707590]
[78]
Bhattacharjee, A.; Richards, W.G.; Staunton, J.; Li, C.; Monti, S.; Vasa, P.; Ladd, C.; Beheshti, J.; Bueno, R.; Gillette, M.; Loda, M.; Weber, G.; Mark, E.J.; Lander, E.S.; Wong, W.; Johnson, B.E.; Golub, T.R.; Sugarbaker, D.J.; Meyerson, M. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13790-13795.
[http://dx.doi.org/10.1073/pnas.191502998] [PMID: 11707567]
[79]
Curtis, C.; Shah, S.P.; Chin, S-F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A-L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403), 346-352.
[http://dx.doi.org/10.1038/nature10983] [PMID: 22522925]
[80]
Haqq, C.; Nosrati, M.; Sudilovsky, D.; Crothers, J.; Khodabakhsh, D.; Pulliam, B.L.; Federman, S.; Miller, J.R., III; Allen, R.E.; Singer, M.I.; Leong, S.P.L.; Ljung, B-M.; Sagebiel, R.W.; Kashani-Sabet, M. The gene expression signatures of melanoma progression. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 6092-6097.
[http://dx.doi.org/10.1073/pnas.0501564102] [PMID: 15833814]
[81]
Riker, A.I.; Enkemann, S.A.; Fodstad, O.; Liu, S.; Ren, S.; Morris, C.; Xi, Y.; Howell, P.; Metge, B.; Samant, R.S.; Shevde, L.A.; Li, W.; Eschrich, S.; Daud, A.; Ju, J.; Matta, J. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med. Genomics, 2008, 1(1), 13.
[http://dx.doi.org/10.1186/1755-8794-1-13] [PMID: 18442402]
[82]
Morrison, C.; Farrar, W.; Kneile, J.; Williams, N.; Liu-Stratton, Y.; Bakaletz, A.; Aldred, M.A.; Eng, C. Molecular classification of parathyroid neoplasia by gene expression profiling. Am. J. Pathol., 2004, 165(2), 565-576.
[http://dx.doi.org/10.1016/S0002-9440(10)63321-4] [PMID: 15277230]
[83]
Sanchez-Carbayo, M.; Socci, N.D.; Lozano, J.; Saint, F.; Cordon- Cardo, C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol., 2006, 24(5), 778-789.
[http://dx.doi.org/10.1200/JCO.2005.03.2375] [PMID: 16432078]
[84]
Gutmann, D.H.; Hedrick, N.M.; Li, J.; Nagarajan, R.; Perry, A.; Watson, M.A. Comparative gene expression profile analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas. Cancer Res., 2002, 62(7), 2085-2091.
[PMID: 11929829]
[85]
Pyeon, D.; Newton, M.A.; Lambert, P.F.; den Boon, J.A.; Sengupta, S.; Marsit, C.J.; Woodworth, C.D.; Connor, J.P.; Haugen, T.H.; Smith, E.M.; Kelsey, K.T.; Turek, L.P.; Ahlquist, P. Fundamental differences in cell cycle deregulation in human papillomavirus- positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res., 2007, 67(10), 4605-4619.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3619] [PMID: 17510386]
[86]
Yusenko, M.V.; Kuiper, R.P.; Boethe, T.; Ljungberg, B.; van Kessel, A.G.; Kovacs, G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer, 2009, 9(1), 152.
[http://dx.doi.org/10.1186/1471-2407-9-152] [PMID: 19445733]
[87]
Maia, S.; Haining, W.N.; Ansén, S.; Xia, Z.; Armstrong, S.A.; Seth, N.P.; Ghia, P.; den Boer, M.L.; Pieters, R.; Sallan, S.E.; Nadler, L.M.; Cardoso, A.A. Gene expression profiling identifies BAX-δ as a novel tumor antigen in acute lymphoblastic leukemia. Cancer Res., 2005, 65(21), 10050-10058.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1574] [PMID: 16267031]
[88]
Tomlins, S.A.; Mehra, R.; Rhodes, D.R.; Cao, X.; Wang, L.; Dhanasekaran, S.M.; Kalyana-Sundaram, S.; Wei, J.T.; Rubin, M.A.; Pienta, K.J.; Shah, R.B.; Chinnaiyan, A.M. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet., 2007, 39(1), 41-51.
[http://dx.doi.org/10.1038/ng1935] [PMID: 17173048]
[89]
Quade, B.J.; Wang, T-Y.; Sornberger, K.; Dal Cin, P.; Mutter, G.L.; Morton, C.C. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer, 2004, 40(2), 97-108.
[http://dx.doi.org/10.1002/gcc.20018] [PMID: 15101043]
[90]
Iacobuzio-Donahue, C.A.; Maitra, A.; Olsen, M.; Lowe, A.W.; van Heek, N.T.; Rosty, C.; Walter, K.; Sato, N.; Parker, A.; Ashfaq, R.; Jaffee, E.; Ryu, B.; Jones, J.; Eshleman, J.R.; Yeo, C.J.; Cameron, J.L.; Kern, S.E.; Hruban, R.H.; Brown, P.O.; Goggins, M. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol., 2003, 162(4), 1151-1162.
[http://dx.doi.org/10.1016/S0002-9440(10)63911-9] [PMID: 12651607]
[91]
Schuyler, S.C.; Wu, Y.O.; Chen, H-Y.; Ding, Y-S.; Lin, C-J.; Chu, Y-T.; Chen, T-C.; Liao, L.; Tsai, W-W.; Huang, A.; Wang, L-I.; Liao, T-W.; Jhuo, J-H.; Cheng, V. Peptide inhibitors of the anaphase promoting-complex that cause sensitivity to microtubule poison. PLoS One, 2018, 13(6), e0198930.
[http://dx.doi.org/10.1371/journal.pone.0198930] [PMID: 29883473]
[92]
Yun, M.; Han, Y.H.; Yoon, S.H.; Kim, H.Y.; Kim, B.Y.; Ju, Y.J.; Kang, C.M.; Jang, S.H.; Chung, H.Y.; Lee, S.J.; Cho, M.H.; Yoon, G.; Park, G.H.; Kim, S.H.; Lee, K.H. p31comet Induces cellular senescence through p21 accumulation and Mad2 disruption. Mol. Cancer Res., 2009, 7(3), 371-382.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0056] [PMID: 19276188]
[93]
Wu, D.; Wang, L.; Yang, Y.; Huang, J.; Hu, Y.; Shu, Y.; Zhang, J.; Zheng, J. MAD2-p31comet axis deficiency reduces cell proliferation, migration and sensitivity of microtubule-interfering agents in glioma. Biochem. Biophys. Res. Commun., 2018, 498(1), 157-163.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.011] [PMID: 29408509]
[94]
Kim, B.C.; Yoo, H.J.; Lee, H.C.; Kang, K-A.; Jung, S.H.; Lee, H-J.; Lee, M.; Park, S.; Ji, Y-H.; Lee, Y-S.; Ko, Y-G.; Lee, J-S. Evaluation of premature senescence and senescence biomarkers in carcinoma cells and xenograft mice exposed to single or fractionated irradiation. Oncol. Rep., 2014, 31(5), 2229-2235.
[http://dx.doi.org/10.3892/or.2014.3069] [PMID: 24626611]
[95]
Schosserer, M.; Grillari, J.; Breitenbach, M. the dual role of cellular senescence in developing tumors and their response to cancer therapy. Front. Oncol., 2017, 7, 278.
[http://dx.doi.org/10.3389/fonc.2017.00278] [PMID: 29218300]
[96]
Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals (Basel), 2020, 13(10), 294.
[http://dx.doi.org/10.3390/ph13100294] [PMID: 33036435]
[97]
Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model. Mol. Pharm., 2014, 11(10), 3515-3527.
[http://dx.doi.org/10.1021/mp5002894] [PMID: 25256346]
[98]
Nascimento, A.V.; Singh, A.; Bousbaa, H.; Ferreira, D.; Sarmento, B.; Amiji, M.M. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater., 2017, 47, 71-80.
[http://dx.doi.org/10.1016/j.actbio.2016.09.045] [PMID: 27697601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy