Review Article

以肿瘤靶向生物学功能为导向的仿生药物递送系统

卷 22, 期 8, 2021

发表于: 14 January, 2021

页: [882 - 895] 页: 14

弟呕挨: 10.2174/1389450122666210114095859

价格: $65

摘要

纳米级给药系统的出现为靶向给药化疗药物提供了新的机遇,并取得了优异的效果。 近年来,随着智能给药系统概念的兴起,载体的设计和制备变得越来越复杂,不利于临床转化。 研究人员逐渐关注仿生纳米级药物递送系统,试图将纳米级载体的理化特性与内源性物质的天然生物学功能相结合,以促进肿瘤靶向递送。 在本文中,我们首先对仿生纳米级药物递送系统进行分类和介绍,然后重点介绍其独特的生物学功能。 该仿生纳米级给药系统具有制备简单、功能强大、免疫原性低等优点,具有良好的应用前景。

关键词: 仿生药物输送系统、肿瘤靶向、细胞、蛋白质、免疫疗法、纳米粒子。

图形摘要
[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Zheng RS, Sun KX, Zhang SW, et al. Report of cancer epidemiology in China, 2015. Zhonghua Zhong Liu Za Zhi 2019; 41(1): 19-28.
[PMID: 30678413]
[3]
Ali ES. Sharker SMd, Islam MT, Khan IN, Shaw S, Rahman MdA, Uddin SJ, Shill MC, Rehman S, Das N, Ahmad S, Shilpi JA, Tripathi S, Mishra SK, Mubarak MS. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology 2020. http://www.sciencedirect.com/science/article/pii/S1044579X20300134
[4]
Klochkov SG, Neganova ME, Nikolenko VN, et al. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin Cancer Biol. 2021; 69: 190-9.http://www.sciencedirect.com/science/article/pii/S1044579X19301877
[5]
Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9(6): 1145-62. http://www.sciencedirect.com/science/article/pii/S2211383519306008
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[6]
Gabizon A, Szebeni J. Complement activation: a potential threat on the safety of poly(ethylene glycol)-coated nanomedicines. ACS Nano 2020; 14(7): 7682-8.
[http://dx.doi.org/10.1021/acsnano.0c03648] [PMID: 32643376]
[7]
Kozma GT, Mészáros T, Vashegyi I, et al. Pseudo-anaphylaxis to polyethylene glycol (peg)-coated liposomes: roles of anti-peg igm and complement activation in a porcine model of human infusion reactions. ACS Nano 2019; 13(8): 9315-24.
[http://dx.doi.org/10.1021/acsnano.9b03942] [PMID: 31348638]
[8]
Im HJ, England CG, Feng L, et al. Accelerated blood clearance phenomenon reduces the passive targeting of pegylated nanoparticles in peripheral arterial disease. ACS Appl Mater Interfaces 2016; 8(28): 17955-63.
[http://dx.doi.org/10.1021/acsami.6b05840] [PMID: 27340833]
[9]
Ahmad A, Khan F, Mishra RK, Khan R. Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. J Med Chem 2019; 62(23): 10475-96.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00511] [PMID: 31339714]
[10]
Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology 2019.http://www.sciencedirect.com/science/article/pii/S1044579X19302160
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002]
[11]
Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237119827 http://www.sciencedirect.com/science/article/pii/S0142961220300739
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[12]
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327: 316-49. http://www.sciencedirect.com/science/article/pii/S0168365920304521
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[13]
Wang H, Liu Y, He R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci 2020; 8(2): 552-68.
[http://dx.doi.org/10.1039/C9BM01392J] [PMID: 31769765]
[14]
Yang G, Liu Y, Wang H, et al. Bioinspired core-shell nanoparticles for hydrophobic drug delivery. Angew Chem Int Ed Engl 2019; 58(40): 14357-64.
[http://dx.doi.org/10.1002/anie.201908357] [PMID: 31364258]
[15]
Yang L, Zang G, Li J, Li X, Li Y, Zhao Y. Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater 2020; 7(4): 349-58.
[http://dx.doi.org/10.1093/rb/rbaa019] [PMID: 32793380]
[16]
Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015; 220(Pt B): 600-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.019] [PMID: 26210440]
[17]
Xu C-H, Ye P-J, Zhou Y-C, He D-X, Wei H, Yu C-Y. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater 2020; 105: 1-14. http://www.sciencedirect.com/science/article/pii/S1742706120300519
[http://dx.doi.org/10.1016/j.actbio.2020.01.036] [PMID: 32001369]
[18]
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): e1706759.
[http://dx.doi.org/10.1002/adma.201706759] [PMID: 29582476]
[19]
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Advanced Drug Delivery Reviews 2020.http://www.sciencedirect.com/science/article/pii/S0169409X20301253
[20]
Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9(4): 675-89. http://www.sciencedirect.com/science/article/pii/S2211383518307202
[http://dx.doi.org/10.1016/j.apsb.2019.01.011] [PMID: 31384529]
[21]
Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel) 2019; 11(12): E1836.
[http://dx.doi.org/10.3390/cancers11121836] [PMID: 31766360]
[22]
Fang RH, Hu CMJ, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 2014; 14(4): 2181-8.
[http://dx.doi.org/10.1021/nl500618u] [PMID: 24673373]
[23]
Zhang Y, Liu G, Wei J, Nie G. Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy. Front Med 2018; 12(6): 667-77.
[http://dx.doi.org/10.1007/s11684-017-0583-y] [PMID: 29619757]
[24]
Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B Mater Biol Med 2018; 6(45): 7354-65.
[http://dx.doi.org/10.1039/C8TB02301H] [PMID: 31372220]
[25]
Cao X, Hu Y, Luo S, et al. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm Sin B 2019; 9(3): 575-89. http://www.sciencedirect.com/science/article/pii/S2211383518305653
[http://dx.doi.org/10.1016/j.apsb.2018.12.009] [PMID: 31193785]
[26]
Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016; 10(8): 7738-48.
[http://dx.doi.org/10.1021/acsnano.6b03148] [PMID: 27454827]
[27]
Deng G, Sun Z, Li S, et al. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 2018; 12(12): 12096-108.
[http://dx.doi.org/10.1021/acsnano.8b05292] [PMID: 30444351]
[28]
Kang T, Zhu Q, Wei D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017; 11(2): 1397-411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[29]
Zhang Y, Cai K, Li C, et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett 2018; 18(3): 1908-15.
[http://dx.doi.org/10.1021/acs.nanolett.7b05263] [PMID: 29473753]
[30]
Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-based drug delivery systems. Adv Mater 2018; 30(22): e1706245.
[http://dx.doi.org/10.1002/adma.201706245] [PMID: 29577477]
[31]
Villa CH, Anselmo AC, Mitragotri S, Muzykantov V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106(Pt A): 88-103. http://www.sciencedirect.com/science/article/pii/S0169409X16300588
[http://dx.doi.org/10.1016/j.addr.2016.02.007] [PMID: 26941164]
[32]
Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences 2011; 108(27): 10980-5. http://www.pnas.org/content/108/27/10980
[http://dx.doi.org/10.1073/pnas.1106634108]
[33]
Sun X, Wang C, Gao M, Hu A, Liu Z. Drug delivery: remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal–chemotherapy (Adv. Funct. Mater. 16/2015). Adv Funct Mater 2015; 25: 2480.
[http://dx.doi.org/10.1002/adfm.201570111]
[34]
Zhang W, Yu M, Xi Z, et al. Cancer cell membrane-camouflaged nanorods with endoplasmic reticulum targeting for improved antitumor therapy. ACS Appl Mater Interfaces 2019; 11(50): 46614-25.
[http://dx.doi.org/10.1021/acsami.9b18388] [PMID: 31747243]
[35]
Chen H-Y, Deng J, Wang Y, Wu C-Q, Li X, Dai H-W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 2020; 112: 1-13.http://www.sciencedirect.com/science/article/pii/S1742706120302981
[http://dx.doi.org/10.1016/j.actbio.2020.05.028] [PMID: 32470527]
[36]
Jiang Q, Liu Y, Guo R, et al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2019; 192: 292-308. http://www.sciencedirect.com/science/article/pii/S0142961218307981
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.021] [PMID: 30465973]
[37]
Lenna S, Bellotti C, Duchi S, et al. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. J Exp Clin Cancer Res 2020; 39(1): 40.
[http://dx.doi.org/10.1186/s13046-020-01548-4] [PMID: 32087737]
[38]
Munteanu R, Onaciu A, Moldovan C, et al. Paradiso A v., Lazar V, Berindan-Neagoe I. Adipocyte-based cell therapy in oncology: The role of cancer-associated adipocytes and their reinterpretation as delivery platforms. Pharmaceutics 2020; 12(5): 1-32.
[http://dx.doi.org/10.3390/pharmaceutics12050402] [PMID: 32354024]
[39]
Fu J, Wang D, Mei D, et al. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204: 11-9.http://www.sciencedirect.com/science/article/pii/S0168365915000899
[http://dx.doi.org/10.1016/j.jconrel.2015.01.039] [PMID: 25646783]
[40]
Qiang L, Cai Z, Jiang W, et al. A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy. J Nanobiotechnology 2019; 17(1): 83.
[http://dx.doi.org/10.1186/s12951-019-0513-z] [PMID: 31291948]
[41]
Zhang W, Wang M, Tang W, et al. Nanoparticle-laden macrophages for tumor-tropic drug delivery. Adv Mater 2018; 30(50): e1805557.
[http://dx.doi.org/10.1002/adma.201805557] [PMID: 30368972]
[42]
Rossi L, Pierigè F, Aliano MP, Magnani M. Ongoing developments and clinical progress in drug-loaded red blood cell technologies. BioDrugs 2020; 34(3): 265-72.
[http://dx.doi.org/10.1007/s40259-020-00415-0] [PMID: 32198632]
[43]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[44]
Cao X, Tan T, Zhu D, et al. Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy. Int J Nanomedicine 2020; 15: 1915-28.
[http://dx.doi.org/10.2147/IJN.S244849] [PMID: 32256068]
[45]
Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z. Kabanov A v., Batrakova E v. GDNF-transfected macrophages produce potent neuroprotective effects in parkinson’s disease mouse model. PLoS One 2014; 9(9): 1-11.
[http://dx.doi.org/10.1371/journal.pone.0106867]
[46]
Si J, Shao S, Shen Y, Wang K. Macrophages as active nanocarriers for targeted early and adjuvant cancer chemotherapy. Small (Weinheim an der Bergstrasse, Germany) 2016; 12(37): 5108-19.
[http://dx.doi.org/10.1002/smll.201601282]
[47]
Shields CW IV, Evans MA, Wang LLW, et al. Cellular backpacks for macrophage immunotherapy. Sci Adv 2020; 6(18)eaaz6579
[http://dx.doi.org/10.1126/sciadv.aaz6579] [PMID: 32494680]
[48]
Klyachko NL, Polak R, Haney MJ, et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 2017; 140: 79-87.http://www.sciencedirect.com/science/article/pii/S0142961217304106
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.017] [PMID: 28633046]
[49]
An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017; 7(15): 3667-89.
[http://dx.doi.org/10.7150/thno.19365] [PMID: 29109768]
[50]
Lin T, Zhao P, Jiang Y, et al. brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016; 10(11): 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[51]
Busatto S, Walker SA, Grayson W, et al. Lipoprotein-based drug delivery. Advanced Drug Delivery Reviews 2020.http://www.sciencedirect.com/science/article/pii/S0169409X20301149
[52]
Kim J, Dey A, Malhotra A, Liu J, Ih S, Sei YJ. Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma. 2020; 1-8.
[53]
Liu L, Wei Y, Zhai S, Chen Q, Xing D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 2015; 62: 35-46. http://www.sciencedirect.com/science/article/pii/S014296121500486X
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.036] [PMID: 26022978]
[54]
Luo M, Lewik G, Ratcliffe JC, et al. Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma. ACS Appl Mater Interfaces 2019; 11(37): 33637-49.
[http://dx.doi.org/10.1021/acsami.9b10787] [PMID: 31433156]
[55]
Liu W, Lin Q, Fu Y, et al. Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment. J Control Release 2020; 323(323): 191-202.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.010] [PMID: 31838201]
[56]
Choi YS, Jang H, Gupta B, et al. Tie2-mediated vascular remodeling by ferritin-based protein C nanoparticles confers antitumor and anti-metastatic activities. J Hematol Oncol 2020; 13(1): 123.
[http://dx.doi.org/10.1186/s13045-020-00952-9] [PMID: 32928251]
[57]
Jiang S, Xiao M, Sun W, et al. Synergistic anticancer therapy by ovalbumin encapsulation-enabled tandem reactive oxygen species generation. Angewandte Chemie International Edition 2020.
[58]
Zhou B, Wu Q, Wang M, et al. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chem Eng J 2020; 396125239 http://www.sciencedirect.com/science/article/pii/S1385894720312316
[http://dx.doi.org/10.1016/j.cej.2020.125239] [PMID: 32523422]
[59]
Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv 2015; 12(5): 793-812.
[http://dx.doi.org/10.1517/17425247.2015.993313] [PMID: 25518870]
[60]
Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002; 22(3): 225-50.
[http://dx.doi.org/10.1002/med.10008] [PMID: 11933019]
[61]
Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000; 20(1): 77-95.
[http://dx.doi.org/10.1023/A:1006948027674] [PMID: 10690503]
[62]
Tesarova B, Musilek K, Rex S, Heger Z. Taking advantage of cellular uptake of ferritin nanocages for targeted drug delivery. J Control Release 2020; 325: 176-90.http://www.sciencedirect.com/science/article/pii/S0168365920303618
[http://dx.doi.org/10.1016/j.jconrel.2020.06.026] [PMID: 32619748]
[63]
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science 2000; 288(5473): 2051-4.
[http://dx.doi.org/10.1126/science.288.5473.2051] [PMID: 10856220]
[64]
Pei Q, Hu X, Zheng X, et al. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 2018; 12(2): 1630-41.
[http://dx.doi.org/10.1021/acsnano.7b08219] [PMID: 29346736]
[65]
Wang H, Wu J, Williams GR, et al. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnology 2019; 17(1): 60.
[http://dx.doi.org/10.1186/s12951-019-0494-y] [PMID: 31084622]
[66]
Tee JK, Yip LX, Tan ES, et al. Nanoparticles’ interactions with vasculature in diseases. Chem Soc Rev 2019; 48(21): 5381-407.
[http://dx.doi.org/10.1039/C9CS00309F] [PMID: 31495856]
[67]
Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130: 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[68]
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 2016; 244(Pt A): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[69]
Zhang DY, Zheng Y, Zhang H, et al. Folate receptor-targeted theranostic IrSx nanoparticles for multimodal imaging-guided combined chemo-photothermal therapy. Nanoscale 2018; 10(47): 22252-62.
[http://dx.doi.org/10.1039/C8NR08095J] [PMID: 30465053]
[70]
Li X, Yang Y, Zhao H, et al. Enhanced in vivo blood-brain barrier penetration by circular tau-transferrin receptor bifunctional aptamer for tauopathy therapy. J Am Chem Soc 2020; 142(8): 3862-72.
[http://dx.doi.org/10.1021/jacs.9b11490] [PMID: 31991082]
[71]
Tieu T, Wojnilowicz M, Huda P, et al. Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin. Biomaterials science 2020.http://www.ncbi.nlm.nih.gov/pubmed/33135714
[72]
Shipunova VO, Komedchikova EN, Kotelnikova PA. Dual regioselective targeting the same receptor in nanoparticle-mediated combination immuno/chemotherapy for enhanced image-guided cancer treatment. ACS Nano 2020.
[73]
Thomas S, Harding MA, Smith SC, et al. CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Res 2012; 72(21): 5600-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3666] [PMID: 22926560]
[74]
Choi MR, Stanton-Maxey KJ, Stanley JK, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 2007; 7(12): 3759-65.
[http://dx.doi.org/10.1021/nl072209h] [PMID: 17979310]
[75]
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2018; 270: 290-303. http://www.sciencedirect.com/science/article/pii/S0168365917310829
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[76]
Banks W. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delifile:///C:/Users/wangrui/Downloads/imr.12793.pdfvery. Nat Rev Drug Discov 2016; 15.
[77]
Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv 2016; 13(7): 963-75.
[http://dx.doi.org/10.1517/17425247.2016.1171315] [PMID: 27020469]
[78]
Haumann R, Videira JC, Kaspers GJL, van Vuurden DG, Hulleman E. Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS drugs 2020. http://www.ncbi.nlm.nih.gov/pubmed/32965590
[http://dx.doi.org/10.1007/s40263-020-00766-w]
[79]
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20(1): 26-41.
[http://dx.doi.org/10.1038/s41568-019-0205-x] [PMID: 31601988]
[80]
Wang JB, Di Ianni T, Vyas DB, et al. Focused ultrasound for noninvasive, focal pharmacologic neurointervention. Front Neurosci 2020; 14(July): 675.
[http://dx.doi.org/10.3389/fnins.2020.00675] [PMID: 32760238]
[81]
Deng G, Peng X, Sun Z, et al. Natural-killer cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-ii fluorescence-guided gliomas theranostics. ACS Nano 2020; 14(9): 11452-62.
[http://dx.doi.org/10.1021/acsnano.0c03824]
[82]
Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci USA 2010; 107(8): 3505-10.
[http://dx.doi.org/10.1073/pnas.0913192107] [PMID: 20133674]
[83]
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6(6): 449-58.
[http://dx.doi.org/10.1038/nrc1886] [PMID: 16723991]
[84]
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11(1): 125.
[http://dx.doi.org/10.1186/s13045-018-0669-2] [PMID: 30305116]
[85]
Li J, Ai Y, Wang L, et al. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016; 76: 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[86]
Wu D, Jin X, Wang X, et al. Engineering temperature-sensitive plateletsomes as a tailored chemotherapy platform in combination with HIFU ablation for cancer treatment. Theranostics 2019; 9(13): 3966-79.
[http://dx.doi.org/10.7150/thno.32172] [PMID: 31281525]
[87]
Maus MV, June CH. Maus M V., June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 2016; 22(8): 1875-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1433] [PMID: 27084741]
[88]
Choi BD, Maus MV, June CH, Sampson JH. Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clin Cancer Res 2019; 25(7): 2042-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1625] [PMID: 30446589]
[89]
Houot R, Schultz LM, Marabelle A, Kohrt H. T-cell-based immunotherapy: Adoptive cell transfer and checkpoint inhibition. Cancer Immunol Res 2015; 3(10): 1115-22.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0190] [PMID: 26438444]
[90]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[91]
Lee DA. Cellular therapy: Adoptive immunotherapy with expanded natural killer cells. Immunol Rev 2019; 290(1): 85-99.
[http://dx.doi.org/10.1111/imr.12793] [PMID: 31355489]
[92]
Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 2020; 20(3): 158-72.
[http://dx.doi.org/10.1038/s41577-019-0232-6] [PMID: 31811270]
[93]
Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 2016; 99(Pt B): 180-5.http://www.sciencedirect.com/science/article/pii/S0169409X15002732
[http://dx.doi.org/10.1016/j.addr.2015.11.009] [PMID: 26621196]
[94]
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017; 114: 206-21.http://www.sciencedirect.com/science/article/pii/S0169409X17300455
[http://dx.doi.org/10.1016/j.addr.2017.04.010] [PMID: 28449873]
[95]
Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: The long and winding road. J Control Release 2016; 240: 527-40.http://www.sciencedirect.com/science/article/pii/S0168365916304527
[http://dx.doi.org/10.1016/j.jconrel.2016.07.018] [PMID: 27422609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy