Mini-Review Article

用于抗肿瘤治疗的内源性酶反应纳米平台

卷 22, 期 8, 2021

发表于: 14 January, 2021

页: [845 - 855] 页: 11

弟呕挨: 10.2174/1389450122666210114095614

价格: $65

摘要

响应性药物递送系统的紧急情况有助于降低细胞毒性、改善组织渗透性和延长活性药物的循环时间。特别是酶响应纳米平台由于酶催化反应的特异性和效率而引起了很多关注。在这篇综述中,总结了过去 5 年设计的基于酶的单反应给药系统。这些药物递送系统由不同的肿瘤相关酶引入,例如基质金属蛋白酶、酯酶、透明质酸酶、半胱天冬酶和组织蛋白酶。此外,还描述了由双重刺激激活的酶敏感纳米平台。虽然过去几年取得了很大进展,但转化为临床实践仍然很困难。因此,还讨论了三个障碍(酶异质性、反应环境、动物模型)。简而言之,酶激活药物递送系统在治疗癌症方面具有巨大潜力。

关键词: 酶响应、基质金属蛋白酶、酯酶、透明质酸酶、半胱天冬酶、组织蛋白酶。

图形摘要
[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries (vol 68, pg 394, 2018). CA Cancer J Clin 2020; 70: 313-3.
[http://dx.doi.org/10.3322/caac.21609]
[2]
De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Primers 2019; 5.
[3]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[4]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[5]
Bruix J, Han K-H, Gores G, Llovet JM, Mazzaferro V. Liver cancer: Approaching a personalized care. J Hepatol 2015; 62(1)(Suppl.): S144-56.
[http://dx.doi.org/10.1016/j.jhep.2015.02.007] [PMID: 25920083]
[6]
Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38(6): 782-97.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[7]
Webb AH, Gao BT, Goldsmith ZK, Zhou QT, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017; 17: 434.
[8]
Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. Journal of controlled release : official journal of the Controlled Release Society 2020; 326: 628-47.
[9]
Apolinario AC, Hirata AS, Anjos Miguel RD, et al. Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline London, England: Nanomedicine. 2020.
[10]
Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: immunology encounters nanotechnology. Cells 2020; 9(9): 9.
[http://dx.doi.org/10.3390/cells9092102] [PMID: 32942725]
[11]
Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020; 17(11): 1597-613.
[http://dx.doi.org/10.1080/17425247.2020.1814733] [PMID: 32835538]
[12]
Wu D, Wang S, Yu G, Chen X. Cell death mediated by pyroptosis pathway with the help of nanotechnology: new prospects for cancer therapy. International ed Angewandte Chemie 2020. in English
[13]
Vahed SZ, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells (vol 71, pg 1327, 2017). Materials Science & Engineering C-Materials for Biological Applications 2018; 83: 247-7.
[http://dx.doi.org/10.1016/j.msec.2017.10.001]
[14]
Li X, Diao W, Xue H, et al. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma. Cancer Lett 2020; 489: 163-73.
[http://dx.doi.org/10.1016/j.canlet.2020.06.017] [PMID: 32592729]
[15]
Wallis J, Katti P, Martin AM, et al. A liposome-based cancer vaccine for a rapid and high-titre anti-ErbB-2 antibody response. Eur J Pharm Sci 2020; 152
[http://dx.doi.org/10.1016/j.ejps.2020.105456] [PMID: 32653563]
[16]
Hatami A, Heydarinasab A, Akbarzadehkhiyavi A, Shariati FP. In vitro co-delivery evaluation of PEGylated nano-liposome loaded by glycyrrhizic acid and cisplatin on cancer cell lines. J Nanopart Res 2020; 22.
[http://dx.doi.org/10.1007/s11051-020-04982-9]
[17]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[18]
Lee KJ, Ko EJ, Park Y-Y, et al. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials 2020; 255: 120151.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120151] [PMID: 32505033]
[19]
Wang L, Xu H, Zhang X, Zhang Y, Shi L, Wang M. Effect of carbon nanoparticle tracer combined with laparoscopy in the treatment of colon cancer. J Nanosci Nanotechnol 2020; 20(10): 6007-12.
[http://dx.doi.org/10.1166/jnn.2020.18598] [PMID: 32384945]
[20]
Happonen E, Tamarov K, Martikainen M-V, et al. Thermal dose as a universal tool to evaluate nanoparticle-induced photothermal therapy. Int J Pharm 2020; 587: 119657-7.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119657] [PMID: 32682960]
[21]
Keskin D, Tezcaner A. Micelles as delivery system for cancer treatment. Curr Pharm Des 2017; 23(35): 5230-41.
[PMID: 28552065]
[22]
Sang M, Zhang Z, Liu F, et al. Multifunctional hyaluronic acid-decorated redox-responsive magnetic complex micelle for targeted drug delivery with enhanced antitumor efficiency and anti-cell-migration activity. J Biomed Nanotechnol 2018; 14(3): 477-95.
[http://dx.doi.org/10.1166/jbn.2018.2541] [PMID: 29663921]
[23]
Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 2019.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[24]
Situ JQ, Ye YQ, Zhu XL, et al. Specific targeting of A54 homing peptide-functionalized dextran-g-poly(lactic-co-glycolic acid) micelles to tumor cells. Int J Nanomedicine 2015; 10: 665-75.
[PMID: 25653517]
[25]
Liu P, Situ JQ, Li WS, et al. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine (Lond) 2015; 11(4): 855-66.
[http://dx.doi.org/10.1016/j.nano.2015.02.002] [PMID: 25725489]
[26]
Unsoy G, Gunduz U. Smart drug delivery systems in cancer therapy. Curr Drug Targets 2018; 19(3): 202-12.
[http://dx.doi.org/10.2174/1389450117666160401124624] [PMID: 27033191]
[27]
Ding X, Yu W, Wan Y, et al. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydr Polym 2020; 245: 116493.
[http://dx.doi.org/10.1016/j.carbpol.2020.116493] [PMID: 32718608]
[28]
Ahmadi S, Rabiee N, Bagherzadeh M, et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020; 34: 34.
[http://dx.doi.org/10.1016/j.nantod.2020.100914] [PMID: 32788923]
[29]
Singh AK, Kundu M, Roy S, et al. A two-photon responsive naphthyl tagged p-hydroxyphenacyl based drug delivery system: uncaging of anti-cancer drug in the phototherapeutic window with real-time monitoring. Chem Commun (Camb) 2020; 56(69): 9986-9.
[http://dx.doi.org/10.1039/D0CC01903H] [PMID: 32720950]
[30]
Chen M, Hu J, Wang L, et al. Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy. Sci Rep 2020; 10(1): 14447-7.
[http://dx.doi.org/10.1038/s41598-020-71071-1] [PMID: 32879359]
[31]
Motamedi S, Massoumi B, Jaymand M, Hamishehkar H. A dual stimuli-responsive star-shaped nanocarrier as de novo drug delivery system for chemotherapy of solid tumors. J Polym Res 2020; 27.
[http://dx.doi.org/10.1007/s10965-020-02116-2]
[32]
Zhao N, Ding B, Zhang Y, et al. Reactive oxygen species and enzyme dual-responsive biocompatible drug delivery system for targeted tumor therapy. J Control Release 2020; 324: 330-40.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.031] [PMID: 32450093]
[33]
Jeong C, Kim J, Kim Y-C. Fluorescence color-changeable branched-form heptamethine cyanine dye as a redox-responsive multi-functional drug delivery system for enhanced cancer diagnosis and chemophototherapy. J Ind Eng Chem 2020; 87: 187-97.
[http://dx.doi.org/10.1016/j.jiec.2020.04.001]
[34]
Li WS, Wang XJ, Zhang S, et al. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials 2017; 131: 36-46.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.048] [PMID: 28376364]
[35]
Li W, Huang L, Ying X, et al. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew Chem 2015; 127: 3169-74.
[http://dx.doi.org/10.1002/ange.201411524]
[36]
Gonçalves AI, Miranda MS, Rodrigues MT, Reis RL, Gomes ME. Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomed Mater 2018; 13(5)
[http://dx.doi.org/10.1088/1748-605X/aac78b] [PMID: 29794324]
[37]
Zhao Y-Z, Du L-N, Lu C-T, Jin Y-G, Ge S-P. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8: 1621-33.
[PMID: 23637531]
[38]
Xu XL, Lu KJ, Zhu ML, et al. Sialic Acid-functionalized ph-triggered micelles for enhanced tumor tissue accumulation and active cellular internalization of orthotopic hepatocarcinoma. ACS Appl Mater Interfaces 2018; 10: 31903-14.
[http://dx.doi.org/10.1021/acsami.8b09498]
[39]
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem 2018; 157: 705-15.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.034] [PMID: 30138802]
[40]
Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett 2020; 490: 31-43.
[http://dx.doi.org/10.1016/j.canlet.2020.05.032] [PMID: 32585414]
[41]
Wang P, Jiang S, Li Y, et al. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020; 8(16): 4595-602.
[http://dx.doi.org/10.1039/D0BM00678E] [PMID: 32700684]
[42]
Confeld MI, Mamnoon B, Feng L, et al. Targeting the tumor core: hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol Pharm 2020; 17(8): 2849-63.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00247] [PMID: 32521162]
[43]
He H, Sun L, Ye J, et al. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J Control Release 2016; 240: 67-76.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.040] [PMID: 26514292]
[44]
Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors (Basel) 2018; 18(10): 18.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[45]
Acuff HB, Sinnamon M, Fingleton B, et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 2006; 66(16): 7968-75.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4279] [PMID: 16912171]
[46]
Guo F, Fu Q, Jin C, et al. Dual functional matrix metalloproteinase-responsive curcumin-loaded nanoparticles for tumor-targeted treatment. Drug Deliv 2019; 26(1): 1027-38.
[http://dx.doi.org/10.1080/10717544.2019.1676843] [PMID: 31691601]
[47]
Ke W, Zha Z, Mukerabigwi JF, et al. Matrix Metalloproteinase-responsive multifunctional peptide-linked amphiphilic block copolymers for intelligent systemic anticancer drug delivery. Bioconjug Chem 2017; 28(8): 2190-8.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00330] [PMID: 28661654]
[48]
Shi L, Hu Y, Lin A, et al. Matrix metalloproteinase responsive nanoparticles for synergistic treatment of colorectal cancer via simultaneous anti-angiogenesis and chemotherapy. Bioconjug Chem 2016; 27(12): 2943-53.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00643] [PMID: 27998073]
[49]
Wang H, Fu Z, Li W. The synthesis and application of nano doxorubicin-indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma (vol 14, pg 623, 2019). Int J Nanomedicine 2019; 14: 4429-30.
[http://dx.doi.org/10.2147/IJN.S217586] [PMID: 31354268]
[50]
Shargh VH, Hondermarck H, Liang M. Gelatin-albumin hybrid nanoparticles as matrix metalloproteinases-degradable delivery systems for breast cancer therapy. Nanomedicine (Lond) 2017; 12(9): 977-89.
[http://dx.doi.org/10.2217/nnm-2016-0419] [PMID: 28440712]
[51]
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26(1): 416-32.
[http://dx.doi.org/10.1080/10717544.2019.1588424] [PMID: 30929527]
[52]
Lee SY, Hong E-H, Jeong JY, et al. Esterase-sensitive cleavable histone deacetylase inhibitor-coupled hyaluronic acid nanoparticles for boosting anticancer activities against lung adenocarcinoma. Biomater Sci 2019; 7(11): 4624-35.
[http://dx.doi.org/10.1039/C9BM00895K] [PMID: 31451819]
[53]
Qiu N, Liu X, Zhong Y, et al. Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv Mater 2016; 28(48): 10613-22.
[http://dx.doi.org/10.1002/adma.201603095] [PMID: 27786373]
[54]
Chen D, Huang Y, Xu S, et al. Self-assembled polyprodrug amphiphile for subcutaneous xenograft tumor inhibition with prolonged acting time in vivo. Macromol Biosci 2017; 17(11): 17.
[http://dx.doi.org/10.1002/mabi.201700174] [PMID: 28737832]
[55]
McAtee CO, Barycki JJ, Simpson MA. Emerging roles for hyaluronidase in cancer metastasis and therapy. Hyaluronan Signaling and Turnover 2014; 1-34.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00001-0]
[56]
Choi KY, Han HS, Lee ES, et al. Hyaluronic Acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: Beyond cd44-mediated drug delivery. Adv Mater 2019; 31(34)
[http://dx.doi.org/10.1002/adma.201803549] [PMID: 30773699]
[57]
Mok H, Jeong H, Kim S-J, Chung BH. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes. Chem Commun (Camb) 2012; 48(69): 8628-30.
[http://dx.doi.org/10.1039/c2cc33555g] [PMID: 22745939]
[58]
Jung H, Mok H. Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells. Macromol Biosci 2016; 16(5): 748-58.
[http://dx.doi.org/10.1002/mabi.201500381] [PMID: 26806493]
[59]
Jiang H, Shi X, Yu X, He X, An Y, Lu H. Hyaluronidase enzyme-responsive targeted nanoparticles for effective delivery of 5-fluorouracil in colon cancer. Pharm Res 2018; 35(4): 73.
[http://dx.doi.org/10.1007/s11095-017-2302-4] [PMID: 29476264]
[60]
Wu Z-Y, Lee C-C, Lin HM. Hyaluronidase-responsive mesoporous silica nanoparticles with dual-imaging and dual-target function. Cancers (Basel) 2019; 11(5): 11.
[http://dx.doi.org/10.3390/cancers11050697] [PMID: 31137518]
[61]
Zhang L, Lei J, Ma F, Ling P, Liu J, Ju H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics. Chem Commun (Camb) 2015; 51(54): 10831-4.
[http://dx.doi.org/10.1039/C5CC03028E] [PMID: 26051476]
[62]
Song W, Kuang J, Li C-X, et al. Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano 2018; 12(2): 1978-89.
[http://dx.doi.org/10.1021/acsnano.7b09112] [PMID: 29420012]
[63]
Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019; 151-152: 130-51.
[http://dx.doi.org/10.1016/j.addr.2019.01.010] [PMID: 30690054]
[64]
Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999; 5(1): 83-94.
[PMID: 9918206]
[65]
Jin X, Zhang J, Jin X, Liu L, Tian X. Folate receptor targeting and cathepsin b-sensitive drug delivery system for selective cancer cell death and imaging. ACS Med Chem Lett 2020; 11(8): 1514-20.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00031] [PMID: 32832017]
[66]
Hong SH, Larocque K, Jaunky DB, Piekny A, Oh JK. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids Surf B Biointerfaces 2018; 172: 608-17.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.013] [PMID: 30223243]
[67]
Bai Y, Liu C-P, Chen D, et al. beta-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase-dual-responsive drug delivery. Carbohydr Polym 2020; 246.
[68]
Hu P, Chen Y, Li J-J, Liu Y. Construction, enzyme response, and substrate capacity of a hyaluronan-cyclodextrin supramolecular assembly. Chem Asian J 2016; 11(4): 505-11.
[http://dx.doi.org/10.1002/asia.201501029] [PMID: 26556213]
[69]
Li Y, Lin J, Ma J, et al. Methotrexate-camptothecin prodrug nanoassemblies as a versatile nanoplatform for biomodal imaging-guided self-active targeted and synergistic chemotherapy. ACS Appl Mater Interfaces 2017; 9(40): 34650-65.
[http://dx.doi.org/10.1021/acsami.7b10027] [PMID: 28920426]
[70]
Wang Y, Zhang W, Sun P, et al. A novel multimodal nir-ii nanoprobe for the detection of metastatic lymph nodes and targeting chemo-photothermal therapy in oral squamous cell carcinoma. Theranostics 2019; 9(2): 391-404.
[http://dx.doi.org/10.7150/thno.30268] [PMID: 30809282]
[71]
Gao J, Yu H, Chen F-Y, Hu X-Y, Wang Y, Guo D-S. A hyaluronidase/ATP tandem stimuli-responsive supramolecular assembly. Chem Commun (Camb) 2019; 55(95): 14387-90.
[http://dx.doi.org/10.1039/C9CC08199B] [PMID: 31723950]
[72]
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014; 6(21): 12273-86.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[73]
Chandrawati R. Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp Biol Med (Maywood) 2016; 241(9): 972-9.
[http://dx.doi.org/10.1177/1535370216647186] [PMID: 27188515]
[74]
Cerqueira NMFSA, Fernandes PA, Ramos MJ. Protocol for computational enzymatic reactivity based on geometry optimisation. ChemPhysChem 2018; 19(6): 669-89.
[http://dx.doi.org/10.1002/cphc.201700339] [PMID: 29044952]
[75]
Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res 2016; 76(21): 6153-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1260] [PMID: 27587540]
[76]
Zhang NN, Lu CY, Shu GF, et al. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and primary hepatocellular carcinoma. Biomater Sci 2020; 8(7): 1961-72.
[http://dx.doi.org/10.1039/C9BM01544B] [PMID: 32064471]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy