Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

High Throughput Study for Molecular Mechanism of Metformin Pre-Diabetic Protection via Microarray Approach

Author(s): Asma Y. Alrawashdeh, Mohammad A. AL Shhab and Malek A. Zihlif*

Volume 22, Issue 1, 2022

Published on: 11 January, 2021

Page: [71 - 99] Pages: 29

DOI: 10.2174/1871530321666210111143050

Price: $65

Abstract

Background: Metformin is a biguanide that exhibits antidiabetic, anticarcinogenic, and anti-inflammatory properties. Despite well-known pancreatic protective effects, metformin's influence on pancreatic islet β-cell is yet considerably unknown. Protecting the functional insulin-producing β-cells in the pancreas is a key therapeutic challenge in patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM).

Objective: The current study aimed to analyze the protective effects of metformin on streptozocin- induced diabetic rats in T1DM in hepatic tissues.

Methods: In the present study, male Wistar rats (n=24) were randomly assigned into 2 groups (n=12 for each control and test), and metformin (100 mg/kg/day) was given for 7 weeks. Afterward, diabetes was induced by streptozocin (STZ) at a single dose of 150 mg/kg. Blood glucose was examined daily before and after STZ induction. The animals were euthanized by cervical dislocation 5 days after streptozocin injection, after which liver and pancreas were harvested from each rat.

Results: The biochemical analyses revealed that metformin resulted in significantly reduced plasma glucose levels and higher pancreatic insulin levels in the test group. Using a restrictive cut-off of at least 2-FC and an adjusted p-value (q-value) of ≤0.05, a sum of 747 genes for the metformin group were shown to be differentially regulated compared to controls (320 Down and 427 Up), by which they were obtained from the liver. Furthermore, the evidence is attained that metformin may hinder the loss of critical β-cells by reducing inflammatory and apoptosis signaling, promoting fatty acid β-oxidation, and inducing metabolism.

Conclusion: Collectively, this study has demonstrated a decrease in blood glucose levels and a rise in insulin-levels and thus consequent prophylactic effects in metformin-given STZ-induced diabetic rats.

Keywords: Metformin, T1DM, STZ, microarray, prophylactic effect, rats, diabetes mellitus.

« Previous
Graphical Abstract
[1]
World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization, ‎1999‎. Document number: WHO/NCD/NCS/99.2. Available from: http://apps.who.int/iris/bitstream/handle/10665/66040/WHO_NCD_NCS_99.2.pdf;jsessionid=9A30446A7CD3529D1A59747362B176C3?sequence=1 (Accessed on March 1, 2020).
[2]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[3]
Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, L.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.), 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[4]
Salani, B.; Del Rio, A.; Marini, C.; Sambuceti, G.; Cordera, R.; Maggi, D. Metformin, cancer and glucose metabolism. Endocr. Relat. Cancer, 2014, 21(6), R461-R471.
[http://dx.doi.org/10.1530/ERC-14-0284] [PMID: 25273809]
[5]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[6]
Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heckman-Stoddard, B.M.; Temprosa, M.; Kahn, S.E.; Nathan, D.M. Diabetes prevention program research group. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia, 2017, 60(9), 1601-1611.
[http://dx.doi.org/10.1007/s00125-017-4361-9] [PMID: 28770322]
[7]
Mahmoud, A.A. Induction of diabetes mellitus in rats using intraperitoneal streptozotocin : A comparison between 2 strains of rats induction of diabetes mellitus in rats using intraperitoneal streptozotocin : A comparison between 2 strains of rats. Eur. J. Sci. Res., 2009, 32(3), 398-402.
[8]
Furman, B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol., 2015, 70(1), 5.47.1-5.47.20.
[9]
Sheng, J.; He, H.; Han, L.; Qin, J.; Chen, S.; Ru, G.; Li, R.; Yang, P.; Wang, J.; Yang, V.C. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J. Control. Release, 2016, 233, 181-190.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.015] [PMID: 27178809]
[10]
Mukwaya, A.; Lindvall, J.M.; Xeroudaki, M.; Peebo, B.; Ali, Z.; Lennikov, A.; Jensen, L.D.; Lagali, N. A microarray whole-genome gene expression dataset in a rat model of inflammatory corneal angiogenesis. Sci. Data, 2016, 3, 160103.
[http://dx.doi.org/10.1038/sdata.2016.103] [PMID: 27874850]
[11]
Lockstone, H.E. Exon array data analysis using Affymetrix power tools and R statistical software. Brief. Bioinform., 2011, 12(6), 634-644.
[http://dx.doi.org/10.1093/bib/bbq086] [PMID: 21498550]
[12]
Mestdagh, P.; Hartmann, N.; Baeriswyl, L.; Andreasen, D.; Bernard, N.; Chen, C.; Cheo, D.; D’Andrade, P.; DeMayo, M.; Dennis, L.; Derveaux, S.; Feng, Y.; Fulmer-Smentek, S.; Gerstmayer, B.; Gouffon, J.; Grimley, C.; Lader, E.; Lee, K.Y.; Luo, S.; Mouritzen, P.; Narayanan, A.; Patel, S.; Peiffer, S.; Rüberg, S.; Schroth, G.; Schuster, D.; Shaffer, J.M.; Shelton, E.J.; Silveria, S.; Ulmanella, U.; Veeramachaneni, V.; Staedtler, F.; Peters, T.; Guettouche, T.; Wong, L.; Vandesompele, J. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods, 2014, 11(8), 809-815.
[http://dx.doi.org/10.1038/nmeth.3014] [PMID: 24973947]
[13]
Saisho, Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord. Drug Targets, 2015, 15(3), 196-205.
[http://dx.doi.org/10.2174/1871530315666150316124019] [PMID: 25772174]
[14]
Moon, R.J.; Bascombe, L.A.; Holt, R.I.G. The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being. Diabetes Obes. Metab., 2007, 9(1), 143-145.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00599.x] [PMID: 17199734]
[15]
Carvalho, L.A.; Bergink, V.; Sumaski, L.; Wijkhuijs, J.; Hoogendijk, W.J.; Birkenhager, T.K.; Drexhage, H.A. Inflammatory activation is associated with a reduced glucocorticoid receptor alpha / beta expression ratio in monocytes of inpatients with melancholic major depressive disorder. Transl. Psychiatry, 2014, 4(1), e344.
[http://dx.doi.org/10.1038/tp.2013.118] [PMID: 24424390]
[16]
Islam, Z.; Pestka, J.J. Role of IL-1(β) in endotoxin potentiation of deoxynivalenol-induced corticosterone response and leukocyte apoptosis in mice. Toxicol. Sci., 2003, 74(1), 93-102.
[http://dx.doi.org/10.1093/toxsci/kfg119] [PMID: 12773775]
[17]
Skinner, C.M.; Ivanov, N.S.; Barr, S.A.; Chen, Y.; Skalsky, R.L. An epstein-barr virus microRNA blocks Interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J. Virol., 2017, 91(21), e00530-e00617.
[18]
Shelke, A.R.; Roscoe, J.A.; Morrow, G.R.; Colman, L.K.; Banerjee, T.K.; Kirshner, J.J. “基因的改变NIH Public Access. Bone, 2008, 23(1), 1-7.
[http://dx.doi.org/10.1038/jid.2014.371]
[19]
Lawrence, M.C.; Naziruddin, B.; Levy, M.F.; Jackson, A.; McGlynn, K. Calcineurin/nuclear factor of activated T cells and MAPK signaling induce TNF-α gene expression in pancreatic islet endocrine cells. J. Biol. Chem., 2011, 286(2), 1025-1036.
[http://dx.doi.org/10.1074/jbc.M110.158675] [PMID: 21059644]
[20]
Yun, C.H.; Yang, J.S.; Kang, S.S.; Yang, Y.; Cho, J.H.; Son, C.G.; Han, S.H. NF-kappaB signaling pathway, not IFN-β/STAT1, is responsible for the selenium suppression of LPS-induced nitric oxide production. Int. Immunopharmacol., 2007, 7(9), 1192-1198.
[http://dx.doi.org/10.1016/j.intimp.2007.05.002] [PMID: 17630198]
[21]
Takeshita, F.; Ishii, K.J. Intracellular DNA sensors in immunity. Curr. Opin. Immunol., 2008, 20(4), 383-388.
[http://dx.doi.org/10.1016/j.coi.2008.05.009] [PMID: 18573338]
[22]
Chandrakesan, P.; Ahmed, I.; Chinthalapally, A.; Singh, P.; Awasthi, S.; Anant, S.; Umar, S. Distinct compartmentalization of NF-κB activity in crypt and crypt-denuded lamina propria precedes and accompanies hyperplasia and/or colitis following bacterial infection. Infect. Immun., 2012, 80(2), 753-767.
[http://dx.doi.org/10.1128/IAI.06101-11] [PMID: 22144489]
[23]
Jiang, H.; Canfield, S.M.; Gallagher, M.P.; Jiang, H.H.; Jiang, Y.; Zheng, Z.; Chess, L. HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J. Clin. Invest., 2010, 120(10), 3641-3650.
[http://dx.doi.org/10.1172/JCI43522] [PMID: 20877010]
[24]
Santamaria, P. Effector lymphocytes in autoimmunity. Curr. Opin. Immunol., 2001, 13(6), 663-669.
[http://dx.doi.org/10.1016/S0952-7915(01)00276-X] [PMID: 11677087]
[25]
Shaw, A.S.; Dustin, M.L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity, 1997, 6(4), 361-369.
[http://dx.doi.org/10.1016/S1074-7613(00)80279-4] [PMID: 9133415]
[26]
Dustin, M.L.; Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat. Immunol., 2000, 1(1), 23-29.
[http://dx.doi.org/10.1038/76877] [PMID: 10881170]
[27]
Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol., 2009, 9(4), 271-285.
[http://dx.doi.org/10.1038/nri2526] [PMID: 19319144]
[28]
Aggarwal, B.B. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann. Rheum. Dis., 2000, 59(Suppl. 1), i6-i16.
[http://dx.doi.org/10.1136/ard.59.suppl_1.i6] [PMID: 11053079]
[29]
Nicolson, K.; Freland, S.; Weir, C.; Delahunt, B.; Flavell, R.A.; Bäckström, B.T. Induction of experimental autoimmune encephalomyelitis in the absence of c-Jun N-terminal kinase 2. Int. Immunol., 2002, 14(8), 849-856.
[http://dx.doi.org/10.1093/intimm/dxf051] [PMID: 12147621]
[30]
Ding, S.Z.; Olekhnovich, I.N.; Cover, T.L.; Peek, R.M., Jr; Smith, M.F., Jr; Goldberg, J.B. Helicobacter pylori and mitogen-activated protein kinases mediate activator protein-1 (AP-1) subcomponent protein expression and DNA-binding activity in gastric epithelial cells. FEMS Immunol. Med. Microbiol., 2008, 53(3), 385-394.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00439.x] [PMID: 18625013]
[31]
Stephen, T.L.; Rutkowski, M.R.; Allegrezza, M.J.; Perales-Puchalt, A.; Tesone, A.J.; Svoronos, N.; Nguyen, J.M.; Sarmin, F.; Borowsky, M.E.; Tchou, J.; Conejo-Garcia, J.R. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity, 2014, 41(3), 427-439.
[http://dx.doi.org/10.1016/j.immuni.2014.08.012] [PMID: 25238097]
[32]
Li, L.; Han, R.; Xiao, H.; Lin, C.; Wang, Y.; Liu, H.; Li, K.; Chen, H.; Sun, F.; Yang, Z.; Jiang, J.; He, Y. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin. Cancer Res., 2014, 20(10), 2714-2726.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2613] [PMID: 24644001]
[33]
Kim, Y.D.; Kim, Y.H.; Cho, Y.M.; Kim, D.K.; Ahn, S.W.; Lee, J.M.; Chanda, D.; Shong, M.; Lee, C.H.; Choi, H.S. Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models. Diabetologia, 2012, 55(5), 1482-1494.
[http://dx.doi.org/10.1007/s00125-012-2494-4] [PMID: 22349108]
[34]
Yang, G.H.; Jarvis, B.B.; Chung, Y.J.; Pestka, J.J. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol. Appl. Pharmacol., 2000, 164(2), 149-160.
[http://dx.doi.org/10.1006/taap.1999.8888] [PMID: 10764628]
[35]
Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[36]
Benhnia, M.R-E-I.; Wroblewski, D.; Akhtar, M.N.; Patel, R.A.; Lavezzi, W.; Gangloff, S.C.; Goyert, S.M.; Caimano, M.J.; Radolf, J.D.; Sellati, T.J. Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi, the agent of Lyme disease. J. Immunol., 2005, 174(3), 1539-1548.
[http://dx.doi.org/10.4049/jimmunol.174.3.1539] [PMID: 15661914]
[37]
Shitole, S.G.; Biggs, M.L.; Reiner, A.P.; Mukamal, K.J.; Djoussé, L.; Ix, J.H.; Tracy, R.P.; Siscovick, D.; Kizer, J.R. Associations of Soluble CD14, Interleukin-6, C-Reactive Protein and Leukocyte Count With Insulin Resistance and Incident Diabetes in Older Adults. Circulation, 2018, 134(Suppl. 1), A19539.
[38]
Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol., 2004, 25(1), 4-7.
[http://dx.doi.org/10.1016/j.it.2003.10.013] [PMID: 14698276]
[39]
Bougneres, P.F. Effects of growth hormone on carbohydrate and lipid metabolism in children. J. Pediatr. Endocrinol. Metab., 1992, 5, 75-78.
[http://dx.doi.org/10.1515/JPEM.1992.5.1-2.75]
[40]
Giustina, A.; Mazziotti, G.; Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev., 2008, 29(5), 535-559.
[http://dx.doi.org/10.1210/er.2007-0036] [PMID: 18436706]
[41]
Fan, Y.; Menon, R.K.; Cohen, P.; Hwang, D.; Clemens, T.; DiGirolamo, D.J.; Kopchick, J.J.; Le Roith, D.; Trucco, M.; Sperling, M.A. Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. J. Biol. Chem., 2009, 284(30), 19937-19944.
[http://dx.doi.org/10.1074/jbc.M109.014308] [PMID: 19460757]
[42]
Zhang, Y.; Guan, R.; Jiang, J.; Kopchick, J.J.; Black, R.A.; Baumann, G.; Frank, S.J. Growth hormone (GH)-induced dimerization inhibits phorbol ester-stimulated GH receptor proteolysis. J. Biol. Chem., 2001, 276(27), 24565-24573.
[http://dx.doi.org/10.1074/jbc.M101281200] [PMID: 11309389]
[43]
Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol., 2002, 3(4), 267-277.
[http://dx.doi.org/10.1038/nrm782] [PMID: 11994746]
[44]
Rayner, D.V.; Thomas, M.E.A.; Trayhurn, P. Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can. J. Physiol. Pharmacol., 1994, 72(5), 476-479.
[http://dx.doi.org/10.1139/y94-069] [PMID: 7954075]
[45]
Shepherd, P.R.; Kahn, B.B. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N. Engl. J. Med., 1999, 341(4), 248-257.
[http://dx.doi.org/10.1056/NEJM199907223410406] [PMID: 10413738]
[46]
Rozycka, M.; Lu, Y.J.; Brown, R.A.; Lau, M.R.; Shipley, J.M.; Fry, M.J. cDNA cloning of a third human C2-domain-containing class II phosphoinositide 3-kinase, PI3K-C2gamma, and chromosomal assignment of this gene (PIK3C2G) to 12p12. Genomics, 1998, 54(3), 569-574.
[http://dx.doi.org/10.1006/geno.1998.5621] [PMID: 9878262]
[47]
Yi, W.; Kim, S.O.; Jiang, J.; Park, S.H.; Kraft, A.S.; Waxman, D.J.; Frank, S.J. Growth hormone receptor cytoplasmic domain differentially promotes tyrosine phosphorylation of signal transducers and activators of transcription 5b and 3 by activated JAK2 kinase. Mol. Endocrinol., 1996, 10(11), 1425-1443.
[http://dx.doi.org/10.1210/me.10.11.1425] [PMID: 8923468]
[48]
Campbell, G.S.; Meyer, D.J.; Raz, R.; Levy, D.E.; Schwartz, J.; Carter-Su, C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J. Biol. Chem., 1995, 270(8), 3974-3979.
[http://dx.doi.org/10.1074/jbc.270.8.3974] [PMID: 7876144]
[49]
Iqbal, M.; Audette, M.C.; Petropoulos, S.; Gibb, W.; Matthews, S.G. Placental drug transporters and their role in fetal protection. Placenta, 2012, 33(3), 137-142.
[http://dx.doi.org/10.1016/j.placenta.2012.01.008] [PMID: 22265855]
[50]
James, K.; Merriman, J.; Gray, R.S.; Duncan, L.J.; Herd, R. Serum α 2-macroglobulin levels in diabetes. J. Clin. Pathol., 1980, 33(2), 163-166.
[http://dx.doi.org/10.1136/jcp.33.2.163] [PMID: 6154066]
[51]
Cleve, H.; Alexander, K.; Mitzkat, H.J.; Nissen, P.; Salzmann, I. Serumglykoproteine beim Diabetes mellitus; quantitative immunologische Bestimmung von saurem α 1-Glykoprotein, Gc, α 2-Makroglobulin und Hämopexin bei Diabetikern mit und ohne Angiopathien. Diabetologia, 1968, 4(1), 48-55.
[http://dx.doi.org/10.1007/BF01241033] [PMID: 4984806]
[52]
Of, S.C.; Mellitus, D. \g=a\2-MACROGLOBULIN,” no; Skanse 1963.
[53]
Breier, B.H. Otroo, 1999, 17, 209-218.
[54]
Jones, J.I.; Clemmons, D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev., 1995, 16(1), 3-34.
[http://dx.doi.org/10.1210/er.16.1.3] [PMID: 7758431]
[55]
Silha, J.V.; Gui, Y.; Modric, T.; Suwanichkul, A.; Durham, S.K.; Powell, D.R.; Murphy, L.J. Overexpression of the acid-labile subunit of the IGF ternary complex in transgenic mice. Endocrinology, 2001, 142(10), 4305-4313.
[http://dx.doi.org/10.1210/endo.142.10.8427] [PMID: 11564688]
[56]
Leung, K.C.; Doyle, N.; Ballesteros, M.; Sjogren, K.; Watts, C.K.; Low, T.H.; Leong, G.M.; Ross, R.J.; Ho, K.K. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1016-1021.
[http://dx.doi.org/10.1073/pnas.0337600100] [PMID: 12552091]
[57]
Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313.
[http://dx.doi.org/10.2147/CMAR.S200059] [PMID: 31114366]
[58]
Li, P.; Zhao, M.; Parris, A.B.; Feng, X.; Yang, X. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun., 2015, 464(4), 1267-1274.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.117] [PMID: 26225749]
[59]
Carrier, F.; Georgel, P.T.; Pourquier, P.; Blake, M.; Kontny, H.U.; Antinore, M.J.; Gariboldi, M.; Myers, T.G.; Weinstein, J.N.; Pommier, Y.; Fornace, A.J., Jr Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol. Cell. Biol., 1999, 19(3), 1673-1685.
[http://dx.doi.org/10.1128/MCB.19.3.1673] [PMID: 10022855]
[60]
Garcia, V.; García, J.M.; Peña, C.; Silva, J.; Domínguez, G.; Rodríguez, R.; Maximiano, C.; Espinosa, R.; España, P.; Bonilla, F. The GADD45, ZBRK1 and BRCA1 pathway: quantitative analysis of mRNA expression in colon carcinomas. J. Pathol., 2005, 206(1), 92-99.
[http://dx.doi.org/10.1002/path.1751] [PMID: 15772983]
[61]
Tamura, R.E.; de Vasconcellos, J.F.; Sarkar, D.; Libermann, T.A.; Fisher, P.B.; Zerbini, L.F. GADD45 proteins: central players in tumorigenesis. Curr. Mol. Med., 2012, 12(5), 634-651.
[http://dx.doi.org/10.2174/156652412800619978] [PMID: 22515981]
[62]
Rishi, A.K.; Sun, R.J.; Gao, Y.; Hsu, C.K.; Gerald, T.M.; Sheikh, M.S.; Dawson, M.I.; Reichert, U.; Shroot, B.; Fornace, A.J., Jr; Brewer, G.; Fontana, J.A. Post-transcriptional regulation of the DNA damage-inducible gadd45 gene in human breast carcinoma cells exposed to a novel retinoid CD437. Nucleic Acids Res., 1999, 27(15), 3111-3119.
[http://dx.doi.org/10.1093/nar/27.15.3111] [PMID: 10454607]
[63]
Zerbini, L.F.; Czibere, A.; Wang, Y.; Correa, R.G.; Otu, H.; Joseph, M.; Takayasu, Y.; Silver, M.; Gu, X.; Ruchusatsawat, K.; Li, L.; Sarkar, D.; Zhou, J.R.; Fisher, P.B.; Libermann, T.A. A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res., 2006, 66(24), 11922-11931.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2068] [PMID: 17178890]
[64]
Rozan, L.M.; El-Deiry, W.S. p53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death Differ., 2007, 14(1), 3-9.
[http://dx.doi.org/10.1038/sj.cdd.4402058] [PMID: 17068503]
[65]
Trucco, L.D.; Andreoli, V.; Núñez, N.G.; Maccioni, M.; Bocco, J.L. Krüppel-like factor 6 interferes with cellular transformation induced by the H-ras oncogene. FASEB J., 2014, 28(12), 5262-5276.
[http://dx.doi.org/10.1096/fj.14-251884] [PMID: 25212220]
[66]
Tomasini, R.; Seux, M.; Nowak, J.; Bontemps, C.; Carrier, A.; Dagorn, J.C.; Pébusque, M.J.; Iovanna, J.L.; Dusetti, N.J. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity. Oncogene, 2005, 24(55), 8093-8104.
[http://dx.doi.org/10.1038/sj.onc.1208951] [PMID: 16044147]
[67]
Zhu, J.; Zheng, Y.; Zhang, H.; Sun, H. Targeting cancer cell metabolism: The combination of metformin and 2-Deoxyglucose regulates apoptosis in ovarian cancer cells via p38 MAPK/JNK signaling pathway. Am. J. Transl. Res., 2016, 8(11), 4812-4821.
[PMID: 27904682]
[68]
Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), 1-6.
[http://dx.doi.org/10.1101/cshperspect.a011254] [PMID: 23125017]
[70]
Roux, P.P.; Blenis, J. erk&AKTRoux&BlenisREV. Microbiol. Mol. Biol., 2004, 68(2), 1-25.
[http://dx.doi.org/10.1128/MMBR.68.2.320]
[71]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[72]
Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature, 2008, 454(7203), 455-462.
[http://dx.doi.org/10.1038/nature07203] [PMID: 18650916]
[73]
Trempolec, N.; Dave-Coll, N.; Nebreda, A.R. SnapShot: p38 MAPK substrates. Cell, 2013, 152(4), 924-924.e1.
[http://dx.doi.org/10.1016/j.cell.2013.01.047] [PMID: 23415236]
[74]
Jauhiainen, A.; Thomsen, C.; Strömbom, L.; Grundevik, P.; Andersson, C.; Danielsson, A.; Andersson, M.K.; Nerman, O.; Rörkvist, L.; Ståhlberg, A.; Åman, P. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS One, 2012, 7(4), e33208.
[http://dx.doi.org/10.1371/journal.pone.0033208] [PMID: 22496745]
[75]
Hurd, P.J.; Bannister, A.J.; Halls, K.; Dawson, M.A.; Vermeulen, M.; Olsen, J.V.; Ismail, H.; Somers, J.; Mann, M.; Owen-Hughes, T.; Gout, I.; Kouzarides, T. Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J. Biol. Chem., 2009, 284(24), 16575-16583.
[http://dx.doi.org/10.1074/jbc.M109.005421] [PMID: 19363025]
[76]
Xie, C.; Zhu, J.; Wang, X.; Chen, J.; Geng, S.; Wu, J.; Zhong, C.; Li, X. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 39.
[http://dx.doi.org/10.1186/s13046-019-1052-z] [PMID: 30691509]
[77]
Lu, J.; Liang, Y.; Zhao, J.; Meng, H.; Zhang, X. Interleukin-33 prevents the development of autoimmune diabetes in NOD mice. Int. Immunopharmacol., 2019, 70(1), 9-15.
[http://dx.doi.org/10.1016/j.intimp.2019.02.018] [PMID: 30780005]
[78]
Hui, D.Y. Group 1B phospholipase A2 in metabolic and inflammatory disease modulation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(6), 784-788.
[http://dx.doi.org/10.1016/j.bbalip.2018.07.001] [PMID: 30003964]
[79]
Hanasaki, K.; Arita, H. Biological and pathological functions of phospholipase A(2) receptor. Arch. Biochem. Biophys., 1999, 372(2), 215-223.
[http://dx.doi.org/10.1006/abbi.1999.1511] [PMID: 10600158]
[80]
Huggins, K.W.; Boileau, A.C.; Hui, D.Y. Protection against diet-induced obesity and obesity-related insulin resistance in group 1B PLA2-deficient mice. Am. J. Physiol. Endocrinol. Metab., 2002, 283(5), 994-1001.
[http://dx.doi.org/10.1152/ajpendo.00110.2002] [PMID: 12376327]
[81]
Labonté, E.D.; Pfluger, P.T.; Cash, J.G.; Kuhel, D.G.; Roja, J.C.; Magness, D.P.; Jandacek, R.J.; Tschöp, M.H.; Hui, D.Y. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity. FASEB J., 2010, 24(7), 2516-2524.
[http://dx.doi.org/10.1096/fj.09-144436] [PMID: 20215528]
[82]
Bernard, D.; Vindrieux, D. PLA2R1: expression and function in cancer. Biochim. Biophys. Acta, 2014, 1846(1), 40-44.
[http://dx.doi.org/10.1016/j.bbcan.2014.03.003] [PMID: 24667060]
[83]
Han, W.; Ding, Y.; Xu, Y.; Pfister, K.; Zhu, S.; Warne, B.; Doyle, M.; Aikawa, M.; Amiri, P.; Appleton, B.; Stuart, D.D.; Fanidi, A.; Shafer, C.M. Discovery of a selective and potent inhibitor of mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) utilizing structure-based drug design. J. Med. Chem., 2016, 59(7), 3034-3045.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01657] [PMID: 27002243]
[84]
Anderson, T.; Schein, P.S.; McMenamin, M.G.; Cooney, D.A. Streptozotocin diabetes correlation with extent of depression of pancreatic islet nicotinamide adenine dinucleotide. J. Clin. Invest., 1974, 54(3), 672-677.
[http://dx.doi.org/10.1172/JCI107805] [PMID: 4369217]
[85]
Schnedl, W.J.; Ferber, S.; Johnson, J.H.; Newgard, C.B. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes, 1994, 43(11), 1326-1333.
[http://dx.doi.org/10.2337/diab.43.11.1326] [PMID: 7926307]
[86]
Wood, I.S.; Trayhurn, P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr., 2003, 89(1), 3-9.
[http://dx.doi.org/10.1079/BJN2002763] [PMID: 12568659]
[87]
Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 2014, 10(3), 143-156.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[88]
International, S.R.I.; Avenue, R.; Park, M. Ancer Hemotherapy and Harmacology ©. Growth (Lakeland), 1985, 127, 160-164.
[http://dx.doi.org/10.1007/BF00694330]
[89]
Patanè, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic β-cells. Diabetes, 2000, 49(5), 735-740.
[http://dx.doi.org/10.2337/diabetes.49.5.735] [PMID: 10905481]
[90]
Bergman, R.N.; Ader, M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab., 2000, 11(9), 351-356.
[http://dx.doi.org/10.1016/S1043-2760(00)00323-4] [PMID: 11042464]
[91]
Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis., 2006, 9(3), 230-234.
[http://dx.doi.org/10.1038/sj.pcan.4500879] [PMID: 16683009]
[92]
Dupont, J. Fatty acid oxidation in relation to cholesterol biosynthesis in rats. Lipids, 1966, 1(6), 415-421.
[http://dx.doi.org/10.1007/BF02532545] [PMID: 17805649]
[93]
Makishima, M. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J. Pharmacol. Sci., 2005, 97(2), 177-183.
[http://dx.doi.org/10.1254/jphs.FMJ04008X4] [PMID: 15725701]
[94]
Bartlett, K.; Eaton, S. Mitochondrial β-oxidation. Eur. J. Biochem., 2004, 271(3), 462-469.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03947.x] [PMID: 14728673]
[95]
Doege, H.; Stahl, A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda), 2006, 21(4), 259-268.
[http://dx.doi.org/10.1152/physiol.00014.2006] [PMID: 16868315]
[96]
Doege, H.; Baillie, R.A.; Ortegon, A.M.; Tsang, B.; Wu, Q.; Punreddy, S.; Hirsch, D.; Watson, N.; Gimeno, R.E.; Stahl, A. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology, 2006, 130(4), 1245-1258.
[http://dx.doi.org/10.1053/j.gastro.2006.02.006] [PMID: 16618416]
[97]
Schaap, F.G.; Binas, B.; Danneberg, H.; van der Vusse, G.J.; Glatz, J.F.C. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res., 1999, 85(4), 329-337.
[http://dx.doi.org/10.1161/01.RES.85.4.329] [PMID: 10455061]
[98]
Binas, B.; Han, X.X.; Erol, E.; Luiken, J.J.; Glatz, J.F.; Dyck, D.J.; Motazavi, R.; Adihetty, P.J.; Hood, D.A.; Bonen, A. A null mutation in H-FABP only partially inhibits skeletal muscle fatty acid metabolism. Am. J. Physiol. Endocrinol. Metab., 2003, 285(3), E481-E489.
[http://dx.doi.org/10.1152/ajpendo.00060.2003] [PMID: 12900378]
[99]
Erol, E.; Kumar, L.S.; Cline, G.W.; Shulman, G.I.; Kelly, D.P.; Binas, B. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice. FASEB J., 2004, 18(2), 347-349.
[http://dx.doi.org/10.1096/fj.03-0330fje] [PMID: 14656998]
[100]
Rashid, N.; Nigam, A.; Saxena, P.; Jain, S.K.; Wajid, S. Association of IL-1β, IL-1Ra and FABP1 gene polymorphisms with the metabolic features of polycystic ovary syndrome. Inflamm. Res., 2017, 66(7), 621-636.
[http://dx.doi.org/10.1007/s00011-017-1045-3] [PMID: 28405733]
[101]
Montoudis, A.; Seidman, E.; Boudreau, F.; Beaulieu, J.F.; Menard, D.; Elchebly, M.; Mailhot, G.; Sane, A.T.; Lambert, M.; Delvin, E.; Levy, E. Intestinal fatty acid binding protein regulates mitochondrion β-oxidation and cholesterol uptake. J. Lipid Res., 2008, 49(5), 961-972.
[http://dx.doi.org/10.1194/jlr.M700363-JLR200] [PMID: 18235139]
[102]
Graupera, I.; Coll, M.; Pose, E.; Elia, C.; Piano, S.; Solà, E.; Blaya, D.; Huelin, P.; Solé, C.; Moreira, R.; de Prada, G.; Fabrellas, N.; Juanola, A.; Morales-Ruiz, M.; Sancho-Bru, P.; Villanueva, C.; Ginès, P. Adipocyte fatty-acid binding protein is overexpressed in cirrhosis and correlates with clinical outcomes. Sci. Rep., 2017, 7(1), 1829.
[http://dx.doi.org/10.1038/s41598-017-01709-0] [PMID: 28500294]
[103]
Kaess, B.M.; Enserro, D.M.; McManus, D.D.; Xanthakis, V.; Chen, M.H.; Sullivan, L.M.; Ingram, C.; O’Donnell, C.J.; Keaney, J.F.; Vasan, R.S.; Glazer, N.L. Cardiometabolic correlates and heritability of fetuin-A, retinol-binding protein 4, and fatty-acid binding protein 4 in the Framingham Heart Study. J. Clin. Endocrinol. Metab., 2012, 97(10), E1943-E1947.
[http://dx.doi.org/10.1210/jc.2012-1458] [PMID: 22855337]
[104]
Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs--mechanisms and therapeutic implications. Nat. Rev. Endocrinol., 2015, 11(10), 592-605.
[http://dx.doi.org/10.1038/nrendo.2015.122] [PMID: 26260145]
[105]
Song, J.; Ren, P.; Zhang, L.; Wang, X.L.; Chen, L.; Shen, Y.H. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem. Biophys. Res. Commun., 2010, 393(1), 89-94.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.086] [PMID: 20102700]
[106]
Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol., 2015, 8(Suppl. 3), 23-33.
[http://dx.doi.org/10.4137/CMC.S17067] [PMID: 25674026]
[107]
Houten, S.M.; Wanders, R.J.A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis., 2010, 33(5), 469-477.
[http://dx.doi.org/10.1007/s10545-010-9061-2] [PMID: 20195903]
[108]
Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev., 2010, 90(1), 207-258.
[http://dx.doi.org/10.1152/physrev.00015.2009] [PMID: 20086077]
[109]
Romero, P.; Wagg, J.; Green, M.L.; Kaiser, D.; Krummenacker, M.; Karp, P.D. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol., 2005, 6(1), R2.
[http://dx.doi.org/10.1186/gb-2004-6-1-r2] [PMID: 15642094]
[110]
Gangloff, S.C.; Ladam, G.; Dupray, V.; Fukase, K.; Brandenburg, K.; Guenounou, M.; Schaaf, P.; Voegel, J.C.; Jessel, N. Biologically active lipid A antagonist embedded in a multilayered polyelectrolyte architecture. Biomaterials, 2006, 27(9), 1771-1777.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.001] [PMID: 16243394]
[111]
Beigneux, A.P.; Moser, A.H.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. The acute phase response is associated with retinoid X receptor repression in rodent liver. J. Biol. Chem., 2000, 275(21), 16390-16399.
[http://dx.doi.org/10.1074/jbc.M000953200] [PMID: 10747970]
[112]
Abu-Abed, S.S.; Beckett, B.R.; Chiba, H.; Chithalen, J.V.; Jones, G.; Metzger, D.; Chambon, P.; Petkovich, M. Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor γ and retinoid X receptor α. J. Biol. Chem., 1998, 273(4), 2409-2415.
[http://dx.doi.org/10.1074/jbc.273.4.2409] [PMID: 9442090]
[113]
Glass, C.K.; Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev., 2000, 14(2), 121-141.
[http://dx.doi.org/10.1101/gad.14.2.121] [PMID: 10652267]
[114]
Zimmerman, T.L.; Thevananther, S.; Ghose, R.; Burns, A.R.; Karpen, S.J. Nuclear export of retinoid X receptor α in response to interleukin-1β-mediated cell signaling: roles for JNK and SER260. J. Biol. Chem., 2006, 281(22), 15434-15440.
[http://dx.doi.org/10.1074/jbc.M508277200] [PMID: 16551633]
[115]
Urquhart, B.L.; Tirona, R.G.; Kim, R.B. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J. Clin. Pharmacol., 2007, 47(5), 566-578.
[http://dx.doi.org/10.1177/0091270007299930] [PMID: 17442683]
[116]
Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 2002, 109(9), 1125-1131.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[117]
Lacapère, J.J.; Papadopoulos, V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids, 2003, 68(7-8), 569-585.
[http://dx.doi.org/10.1016/S0039-128X(03)00101-6] [PMID: 12957662]
[118]
Janowski, B.A.; Willy, P.J.; Devi, T.R.; Falck, J.R.; Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 1996, 383(6602), 728-731.
[http://dx.doi.org/10.1038/383728a0] [PMID: 8878485]
[119]
Peet, D.J.; Turley, S.D.; Ma, W.; Janowski, B.A.; Lobaccaro, J.M.; Hammer, R.E.; Mangelsdorf, D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR α. Cell, 1998, 93(5), 693-704.
[http://dx.doi.org/10.1016/S0092-8674(00)81432-4] [PMID: 9630215]
[120]
Lehmann, J.M.; Kliewer, S.A.; Moore, L.B.; Smith-Oliver, T.A.; Oliver, B.B.; Su, J.L.; Sundseth, S.S.; Winegar, D.A.; Blanchard, D.E.; Spencer, T.A.; Willson, T.M. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem., 1997, 272(6), 3137-3140.
[http://dx.doi.org/10.1074/jbc.272.6.3137] [PMID: 9013544]
[121]
Handschin, C.; Meyer, U.A. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch. Biochem. Biophys., 2005, 433(2), 387-396.
[http://dx.doi.org/10.1016/j.abb.2004.08.030] [PMID: 15581595]
[122]
Li, A.C.; Brown, K.K.; Silvestre, M.J.; Willson, T.M.; Palinski, W.; Glass, C.K. Peroxisome proliferator – activated receptor g ligands inhibit development of atherosclerosis in LDL receptor – deficient mice Find the latest version : inhibit development of atherosclerosis in LDL receptor – deficient mice. J. Clin. Invest., 2000, 106(4), 523-531.
[http://dx.doi.org/10.1172/JCI10370] [PMID: 10953027]
[123]
Lu, T.T.; Makishima, M.; Repa, J.J.; Schoonjans, K.; Kerr, T.A.; Auwerx, J.; Mangelsdorf, D.J. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 2000, 6(3), 507-515.
[http://dx.doi.org/10.1016/S1097-2765(00)00050-2] [PMID: 11030331]
[124]
Elferink, R.O. Cholestasis. Gut, 2003, 52, ii42-ii48.
[125]
Go, M.J.; Hwang, J.Y.; Kim, D.J.; Lee, H.J.; Jang, H.B.; Park, K.H.; Song, J.; Lee, J.Y. Effect of genetic predisposition on blood lipid traits using cumulative risk assessment in the korean population. Genomics Inform., 2012, 10(2), 99-105.
[http://dx.doi.org/10.5808/GI.2012.10.2.99] [PMID: 23105936]
[126]
Gonzalez, R. Drug metabolism In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (11th ed.) New York City,; , 2006; pp. 71-91.
[127]
Pacifici, G.M. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int. J. Clin. Pharmacol. Ther., 2004, 42(9), 488-495.
[http://dx.doi.org/10.5414/CPP42488] [PMID: 15487807]
[128]
James, M.O.; Ambadapadi, S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab. Rev., 2013, 45(4), 401-414.
[http://dx.doi.org/10.3109/03602532.2013.835613] [PMID: 24188364]
[129]
Cole, G.B.; Keum, G.; Liu, J.; Small, G.W.; Satyamurthy, N.; Kepe, V.; Barrio, J.R. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6222-6227.
[http://dx.doi.org/10.1073/pnas.0914904107] [PMID: 20304798]
[130]
Kurogi, K.; Shimohira, T.; Kouriki-Nagatomo, H.; Zhang, G.; Miller, E.R.; Sakakibara, Y.; Suiko, M.; Liu, M.C. Human Cytosolic Sulphotransferase SULT1C3: genomic analysis and functional characterization of splice variant SULT1C3a and SULT1C3d. J. Biochem., 2017, 162(6), 403-414.
[http://dx.doi.org/10.1093/jb/mvx044] [PMID: 28992322]
[131]
Fischer, E.; Almási, A.; Bojcsev, S.; Fischer, T.; Kovács, N.P.; Perjési, P. Effect of experimental diabetes and insulin replacement on intestinal metabolism and excretion of 4-nitrophenol in rats. Can. J. Physiol. Pharmacol., 2015, 93(6), 459-464.
[http://dx.doi.org/10.1139/cjpp-2015-0065] [PMID: 25939089]
[132]
Leiter, E.H.; Chapman, H.D.; Falany, C.N. Synergism of obesity genes with hepatic steroid sulfotransferases to mediate diabetes in mice. Diabetes, 1991, 40(10), 1360-1363.
[http://dx.doi.org/10.2337/diab.40.10.1360] [PMID: 1936598]
[133]
Burk, O.; Koch, I.; Raucy, J.; Hustert, E.; Eichelbaum, M.; Brockmöller, J.; Zanger, U.M.; Wojnowski, L. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J. Biol. Chem., 2004, 279(37), 38379-38385.
[http://dx.doi.org/10.1074/jbc.M404949200] [PMID: 15252010]
[134]
Gerbal-Chaloin, S.; Daujat, M.; Pascussi, J.M.; Pichard-Garcia, L.; Vilarem, M.J.; Maurel, P. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem., 2002, 277(1), 209-217.
[http://dx.doi.org/10.1074/jbc.M107228200] [PMID: 11679585]
[135]
Chen, Y.; Ferguson, S.S.; Negishi, M.; Goldstein, J.A. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol. Pharmacol., 2003, 64(2), 316-324.
[http://dx.doi.org/10.1124/mol.64.2.316] [PMID: 12869636]
[136]
Ganter, B.; Snyder, R.D.; Halbert, D.N.; Lee, M.D. Toxicogenomics in drug discovery and development: mechanistic analysis of compound/class-dependent effects using the DrugMatrix database. Pharmacogenomics, 2006, 7(7), 1025-1044.
[http://dx.doi.org/10.2217/14622416.7.7.1025] [PMID: 17054413]
[137]
Jarrar, Y.B.; Cha, E.Y.; Seo, K.A.; Ghim, J.L.; Kim, H.J.; Kim, D.H.; Lee, S.J.; Shin, J.G. Determination of major UDP-glucuronosyltransferase enzymes and their genotypes responsible for 20-HETE glucuronidation. J. Lipid Res., 2014, 55(11), 2334-2342.
[http://dx.doi.org/10.1194/jlr.M051169] [PMID: 25249502]
[138]
De Gregori, S.; De Gregori, M.; Ranzani, G.N.; Allegri, M.; Minella, C.; Regazzi, M. Morphine metabolism, transport and brain disposition. Metab. Brain Dis., 2012, 27(1), 1-5.
[http://dx.doi.org/10.1007/s11011-011-9274-6] [PMID: 22193538]
[139]
Bélanger, G.; Beaulieu, M.; Marcotte, B.; Lévesque, E.; Guillemette, C.; Hum, D.W.; Bélanger, A. Expression of transcripts encoding steroid UDP-glucuronosyltransferases in human prostate hyperplastic tissue and the LNCaP cell line. Mol. Cell. Endocrinol., 1995, 113(2), 165-173.
[http://dx.doi.org/10.1016/0303-7207(95)03627-J] [PMID: 8674824]
[140]
Dostalek, M.; Court, M.H.; Yan, B.; Akhlaghi, F. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. Br. J. Pharmacol., 2011, 163(5), 937-947.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01270.x] [PMID: 21323901]
[141]
Stringer, F.; DeJongh, J.; Scott, G.; Danhof, M. A model-based approach to analyze the influence of UGT2B15 polymorphism driven pharmacokinetic differences on the pharmacodynamic response of the PPAR agonist sipoglitazar. J. Clin. Pharmacol., 2014, 54(4), 453-461.
[http://dx.doi.org/10.1002/jcph.227] [PMID: 24214217]
[142]
Maglich, J.M.; Stoltz, C.M.; Goodwin, B.; Hawkins-Brown, D.; Moore, J.T.; Kliewer, S.A. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol., 2002, 62(3), 638-646.
[http://dx.doi.org/10.1124/mol.62.3.638] [PMID: 12181440]
[143]
Martín-Escudero, P.; Muñoz-Guerra, J.A.; García-Tenorio, S.V.; Garde, E.S.; Soldevilla-Navarro, A.B.; Galindo-Canales, M.; Prado, N.; Fuentes-Ferrer, M.E.; Fernández-Pérez, C. Impact of the UGT2B17 polymorphism on the steroid profile. Results of a crossover clinical trial in athletes submitted to testosterone administration. Steroids, 2019, 141, 104-113.
[http://dx.doi.org/10.1016/j.steroids.2018.11.009] [PMID: 30503386]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy