Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Organic Antifungal Drugs and Targets of Their Action

Author(s): Alexander Yu Maksimov*, Svetlana Yu Balandina, Pavel A. Topanov, Irina V. Mashevskaya and Sandeep Chaudhary

Volume 21, Issue 8, 2021

Published on: 08 January, 2021

Page: [705 - 736] Pages: 32

DOI: 10.2174/1568026621666210108122622

Price: $65

Open Access Journals Promotions 2
Abstract

In recent decades, there has been a significant increase in the number of fungal diseases. This is due to a wide spectrum of action, immunosuppressants and other group drugs. In terms of frequency, rapid spread and globality, fungal infections are approaching acute respiratory infections. Antimycotics are medicinal substances endorsed with fungicidal or fungistatic properties. For the treatment of fungal diseases, several groups of compounds are used that differ in their origin (natural or synthetic), molecular targets and mechanism of action, antifungal effect (fungicidal or fungistatic), indications for use (local or systemic infections), and methods of administration (parenteral, oral, outdoor). Several efforts have been made by various medicinal chemists around the world for the development of antifungal drugs with high efficacy with the least toxicity and maximum selectivity in the area of antifungal chemotherapy. The pharmacokinetic properties of the new antimycotics are also important: the ability to penetrate biological barriers, be absorbed and distributed in tissues and organs, get accumulated in tissues affected by micromycetes, undergo drug metabolism in the intestinal microflora and human organs, and in the kinetics of excretion from the body. There are several ways to search for new effective antimycotics:

- Obtaining new derivatives of the already used classes of antimycotics with improved activity properties.

- Screening of new chemical classes of synthetic antimycotic compounds.

- Screening of natural compounds.

- Identification of new unique molecular targets in the fungal cell.

- Development of new compositions and dosage forms with effective delivery vehicles.

The methods of informatics, bioinformatics, genomics and proteomics were extensively investigated for the development of new antimycotics. These techniques were employed in finding and identification of new molecular proteins in a fungal cell; in the determination of the selectivity of drugprotein interactions, evaluation of drug-drug interactions and synergism of drugs; determination of the structure-activity relationship (SAR) studies; determination of the molecular design of the most active, selective and safer drugs for the humans, animals and plants. In medical applications, the methods of information analysis and pharmacogenomics allow taking into account the individual phenotype of the patient, the level of expression of the targets of antifungal drugs when choosing antifungal agents and their dosage. This review article incorporates some of the most significant studies covering the basic structures and approaches for the synthesis of antifungal drugs and the directions for their further development.

Keywords: Antifungal, Azoles, Antibiotics, Diketones, Natural products, Synthetic compound.

Graphical Abstract
[1]
Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel), 2020, 9(6), E312.
[http://dx.doi.org/10.3390/antibiotics9060312] [PMID: 32526921]
[2]
Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc., 2011, 86(8), 805-817.
[http://dx.doi.org/10.4065/mcp.2011.0247] [PMID: 21803962]
[3]
Balandina, S.Yu.; Maksimov, A.Yu.; Lisovenko, N.Yu.; Shilova, A.V. Study of a new antifungal compound from the class of 1,3-butanedione in experiments in vitro. Russian J. Biopharmaceuticals, 2019, 11(6), 62-66.
[4]
Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: an overview. Mini Rev. Med. Chem., 2016, 16(7), 555-578.
[http://dx.doi.org/10.2174/1389557516666160118112103] [PMID: 26776224]
[5]
Houšť, J.; Spížek, J.; Havlíček, V. Antifungal drugs. Metabolites, 2020, 10(3), 106.
[http://dx.doi.org/10.3390/metabo10030106] [PMID: 32178468]
[6]
Denning, D.W. The ambitious ‘95-95 by 2025’ roadmap for the diagnosis and management of fungal diseases. Thorax, 2015, 70(7), 613-614.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207305] [PMID: 26024686]
[7]
Eremina, N.V.; Durnev, A.D.; Vasilyeva, N.V.; Bogomolova, T.S. Pharmacological targets of the antifungal drug compounds action and practice of the new antifungals creation. Probl. Med. Mycol., 2018, 20(2), 9-17.
[8]
Oxford, A.E.; Raistrick, H.; Simonart, P. Studies in the biochemistry of micro-organisms: Griseofulvin, C(17)H(17)O(6)Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem. J., 1939, 33(2), 240-248.
[http://dx.doi.org/10.1042/bj0330240] [PMID: 16746904]
[9]
Grove, J.F.; McGOWAN, J.C. Identity of griseofulvin and curling-factor. Nature, 1947, 160(4069), 574.
[http://dx.doi.org/10.1038/160574a0] [PMID: 20269865]
[10]
Williams, D.I.; Marten, R.H.; Sarkany, I. Oral treatment of ringworm with griseofulvin. Lancet, 1958, 2(7058), 1212-1213.
[http://dx.doi.org/10.1016/S0140-6736(58)92363-8] [PMID: 13612171]
[11]
Behrman, H.T.; Lubowe, I.I.; Mandel, E.H.; Morse, J.L. Griseofulvin therapy of tinea capitis. Antibiot. Annu., 1959-1960, 7, 701-704.
[PMID: 13798308]
[12]
Whiffen, A.J.; Bohonos, N.; Emerson, R.L. The production of an antifungal antibiotic by Streptomyces griseus. J. Bacteriol., 1946, 52(5), 610-611.
[http://dx.doi.org/10.1128/JB.52.5.610-611.1946] [PMID: 16561221]
[13]
Leach, B.E.; Ford, J.H.; Whiffen, A.J. Actidione, an antibiotic from Streptomyces griseus. J. Am. Chem. Soc., 1947, 69(2), 474.
[http://dx.doi.org/10.1021/ja01194a519] [PMID: 20292455]
[14]
Kornfeld, E.C.; Jones, R.G.; Parke, T.V. The structure and chemistry of actidione, an antibiotic from Streptomyces griseus. J. Am. Chem. Soc., 1949, 71(1), 150-159.
[http://dx.doi.org/10.1021/ja01169a041] [PMID: 18108956]
[15]
Hazen, E.L.; Brown, R. Fungicidin, an antibiotic produced by a soil actinomycete. Proc. Soc. Exp. Biol. Med., 1951, 76(1), 93-97.
[http://dx.doi.org/10.3181/00379727-76-18397] [PMID: 14816400]
[16]
Richard, J. [Nystatin (mycostatin) treatment of Candida infections in infants and children]. Acta Paediatr. Belg., 1956, 10(1), 5-11.
[PMID: 13339317]
[17]
Dutcher, J.D. The discovery and development of amphotericin B. Dis. Chest, 1968, 54(1), 296-298.
[http://dx.doi.org/10.1378/chest.54.Supplement_1.296] [PMID: 4877964]
[18]
Record, C.O.; Skinner, J.M.; Sleight, P.; Speller, D.C. Candida endocarditis treated with 5-fluorocytosine. BMJ, 1971, 1(5743), 262-264.
[http://dx.doi.org/10.1136/bmj.1.5743.262] [PMID: 5212581]
[19]
Saag, M.S.; Dismukes, W.E. Azole antifungal agents: emphasis on new triazoles. Antimicrob. Agents Chemother., 1988, 32(1), 1-8.
[http://dx.doi.org/10.1128/AAC.32.1.1] [PMID: 2831809]
[20]
Rex, J.H.; Bennett, J.E.; Sugar, A.M.; Pappas, P.G.; van der Horst, C.M.; Edwards, J.E.; Washburn, R.G.; Scheld, W.M.; Karchmer, A.W.; Dine, A.P. Candidemia Study Group and the National Institute. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. N. Engl. J. Med., 1994, 331(20), 1325-1330.
[http://dx.doi.org/10.1056/NEJM199411173312001] [PMID: 7935701]
[21]
Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther., 2015, 13(6), 787-798.
[http://dx.doi.org/10.1586/14787210.2015.1032939] [PMID: 25843556]
[22]
Kyriakidis, I.; Tragiannidis, A.; Munchen, S.; Groll, A.H. Clinical hepatotoxicity associated with antifungal agents. Expert Opin. Drug Saf., 2017, 16(2), 149-165.
[PMID: 27927037]
[23]
Bagirova, N.S.; Dmitrieva, N.V. Resistance Candida spp. for amphotericin B in cancer patients. J. Infectology, 2016, 8(1), 26-31.
[24]
Kontoyiannis, D.P.; Lewis, R.E. Antifungal drug resistance of pathogenic fungi. Lancet, 2002, 359(9312), 1135-1144.
[http://dx.doi.org/10.1016/S0140-6736(02)08162-X] [PMID: 11943280]
[25]
Mani Chandrika, K.V.S.; Sharma, S. Promising antifungal agents: a minireview. Bioorg. Med. Chem., 2020, 28(7), 115398.
[http://dx.doi.org/10.1016/j.bmc.2020.115398] [PMID: 32115335]
[26]
Tsukuda, T.; Shiratori, Y.; Watanabe, M.; Ontsuka, H.; Hattori, K.; Shirai, M.; Shimma, N. Modeling, synthesis and biological activity of novel antifungal agents (1). Bioorg. Med. Chem. Lett., 1998, 8(14), 1819-1824.
[http://dx.doi.org/10.1016/S0960-894X(98)00316-3] [PMID: 9873440]
[27]
Bellmann, R. Pharmacodynamics and pharmacokinetics of antifungals for treatment of invasive aspergillosis. Curr. Pharm. Des., 2013, 19(20), 3629-3647.
[http://dx.doi.org/10.2174/13816128113199990332] [PMID: 23278532]
[28]
Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: a review. Bioorg. Med. Chem., 2012, 20(19), 5678-5698.
[http://dx.doi.org/10.1016/j.bmc.2012.04.045] [PMID: 22902032]
[29]
Hasim, S.; Coleman, J.J. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem., 2019, 11(8), 869-883.
[http://dx.doi.org/10.4155/fmc-2018-0465] [PMID: 30994368]
[30]
Bagirova, N.S.; Dmitrieva, N.V. Determination of resistance Candida spp. to antifungal agents with systemic action epsilometric method (E-test) with the species-specific characteristics of Candida. J. Infectology, 2016, 7(3), 91-102.
[31]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96.
[http://dx.doi.org/10.1016/j.bcp.2016.11.019] [PMID: 27884742]
[32]
Kotler-Brajtburg, J.; Medoff, G.; Kobayashi, G.S.; Boggs, S.; Schlessinger, D.; Pandey, R.C.; Rinehart, K.L., Jr Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob. Agents Chemother., 1979, 15(5), 716-722.
[http://dx.doi.org/10.1128/AAC.15.5.716] [PMID: 393163]
[33]
Waksman, S.A.; Lechevalier, H.A.; Schaffner, C.P. Candicidin and other polyenic antifungal antibiotics. Bull. World Health Organ., 1965, 33(2), 219-226.
[PMID: 5320588]
[34]
Russo, A.; Carriero, G.; Farcomeni, A.; Ceccarelli, G.; Tritapepe, L.; Venditti, M. Role of oral nystatin prophylaxis in cardiac surgery with prolongedextracorporeal circulation. Mycoses, 2017, 60(12), 826-829.
[http://dx.doi.org/10.1111/myc.12680] [PMID: 28877374]
[35]
Warnock, D.W. Amphotericin B: an introduction. J. Antimicrob. Chemother., 1991, 28(Suppl. B), 27-38.
[http://dx.doi.org/10.1093/jac/28.suppl_B.27] [PMID: 1778890]
[36]
Wu, H.; Liu, W.; Shi, L.; Si, K.; Liu, T.; Dong, D.; Zhang, T.; Zhao, J.; Liu, D.; Tian, Z.; Yue, Y.; Zhang, H.; Xuelian, B.; Liang, Y. Comparative genomic and regulatory analyses of natamycin production of streptomyces lydicus A02. Sci. Rep., 2017, 7(1), 9114.
[http://dx.doi.org/10.1038/s41598-017-09532-3] [PMID: 28831190]
[37]
Aparicio, J.F.; Barreales, E.G.; Payero, T.D.; Vicente, C.M.; de Pedro, A.; Santos-Aberturas, J. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl. Microbiol. Biotechnol., 2016, 100(1), 61-78.
[http://dx.doi.org/10.1007/s00253-015-7077-0] [PMID: 26512010]
[38]
Gallis, H.A.; Drew, R.H.; Pickard, W.W. Amphotericin B: 30 years of clinical experience. Rev. Infect. Dis., 1990, 12(2), 308-329.
[http://dx.doi.org/10.1093/clinids/12.2.308] [PMID: 2184499]
[39]
Bolard, J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta, 1986, 864(3-4), 257-304. [PubMed: 3539192].
[http://dx.doi.org/10.1016/0304-4157(86)90002-X] [PMID: 3539192]
[40]
Villa, N.Y.; Moussatche, P.; Chamberlin, S.G.; Kumar, A.; Lyons, T.J. Phylogenetic and preliminary phenotypic analysis of yeast PAQR receptors: potential antifungal targets. J. Mol. Evol., 2011, 73(3-4), 134-152.
[http://dx.doi.org/10.1007/s00239-011-9462-3] [PMID: 22009226]
[41]
Shilova, I.B.; Guskova, T.A.; Glushkov, R.G. Modern drugs for treating dermatomycosis. Pharm. Chem. J., 2004, 38(4), 175-180.
[http://dx.doi.org/10.1023/B:PHAC.0000038412.62536.84]
[42]
Francis, P.; Lee, J.W.; Hoffman, A.; Peter, J.; Francesconi, A.; Bacher, J.; Shelhamer, J.; Pizzo, P.A.; Walsh, T.J. Efficacy of unilamellar liposomal amphotericin B in treatment of pulmonary aspergillosis in persistently granulocytopenic rabbits: the potential role of bronchoalveolar D-mannitol and serum galactomannan as markers of infection. J. Infect. Dis., 1994, 169(2), 356-368.
[http://dx.doi.org/10.1093/infdis/169.2.356] [PMID: 8106769]
[43]
Meunier, F. New methods for delivery of antifungal agents. Rev. Infect. Dis., 1989, 11(Suppl. 7), S1605-S1612.
[http://dx.doi.org/10.1093/clinids/11.Supplement_7.S1605] [PMID: 2690298]
[44]
Adler-Moore, J.; Proffitt, R.T. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother., 2002, 49(Suppl. 1), 21-30.
[http://dx.doi.org/10.1093/jac/49.suppl_1.21] [PMID: 11801577]
[45]
Adler-Moore, J.P.; Proffitt, R.T. Development, characterization, efficacy and mode of action of Ambisome, a unilamellar liposomal formulation of amphotericin B. J. Liposome Res., 1993, 3, 429-450.
[http://dx.doi.org/10.3109/08982109309150729]
[46]
Moen, M.D.; Lyseng-Williamson, K.A.; Scott, L.J. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs, 2009, 69(3), 361-392.
[http://dx.doi.org/10.2165/00003495-200969030-00010] [PMID: 19275278]
[47]
Hanson, L.H.; Stevens, D.A. Comparison of antifungal activity of amphotericin B deoxycholate suspension with that of amphotericin B cholesteryl sulfate colloidal dispersion. Antimicrob. Agents Chemother., 1992, 36(2), 486-488.
[http://dx.doi.org/10.1128/AAC.36.2.486] [PMID: 1605618]
[48]
Rodrigues, C.F.; Henriques, M. Liposomal and deoxycholate amphotericin B formulations: effectiveness against biofilm infections of candida spp. Pathogens, 2017, 6(4), 62.
[http://dx.doi.org/10.3390/pathogens6040062] [PMID: 29194382]
[49]
Singh, P.K.; Jaiswal, A.K.; Pawar, V.K.; Raval, K.; Kumar, A.; Bora, H.K.; Dube, A.; Chourasia, M.K. Fabrication of 3-O-sn-phosphatidyl-l-serine anchored PLGA nanoparticle bearing amphotericin B for macrophage targeting. Pharm. Res., 2018, 35(3), 60.
[http://dx.doi.org/10.1007/s11095-017-2293-1] [PMID: 29427248]
[50]
Fromtling, R.A. Overview of medically important antifungal azole derivatives. Clin. Microbiol. Rev., 1988, 1(2), 187-217.
[http://dx.doi.org/10.1128/CMR.1.2.187] [PMID: 3069196]
[51]
Denis, J.; Ledoux, M.P.; Nivoix, Y.; Herbrecht, R. Isavuconazole: A new broad-spectrum azole.J. Mycol. Med., 2018, 28(1), 8-14.
[52]
Zomorodian, K.; Bandegani, A.; Mirhendi, H. In vitro susceptibility and trailing growth effect of clinical isolates of candida species to azole drugs. Jundishapur J. Microbiol., 2016, 9(2)
[53]
Onyewu, C.; Blankenship, J.R.; Del Poeta, M.; Heitman, J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother., 2003, 47(3), 956-964.
[http://dx.doi.org/10.1128/AAC.47.3.956-964.2003] [PMID: 12604527]
[54]
Hitchcock, C.A. Cytochrome P-450-dependent 14 alpha-sterol demethylase of Candida albicans and its interaction with azole antifungals. Biochem. Soc. Trans., 1991, 19(3), 782-787.
[http://dx.doi.org/10.1042/bst0190782] [PMID: 1783216]
[55]
Lepesheva, G.I.; Waterman, M.R. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta, 2007, 1770(3), 467-477.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.018] [PMID: 16963187]
[56]
Lepesheva, G.I.; Ott, R.D.; Hargrove, T.Y.; Kleshchenko, Y.Y.; Schuster, I.; Nes, W.D.; Hill, G.C.; Villalta, F.; Waterman, M.R. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem. Biol., 2007, 14(11), 1283-1293.
[http://dx.doi.org/10.1016/j.chembiol.2007.10.011] [PMID: 18022567]
[57]
Choi, J.Y.; Podust, L.M.; Roush, W.R. Drug strategies targeting CYP51 in neglected tropical diseases. Chem. Rev., 2014, 114(22), 11242-11271.
[http://dx.doi.org/10.1021/cr5003134] [PMID: 25337991]
[58]
Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Sivakumaran, S.; Yazlovitskaya, E.M.; Hiebert, S.W.; Guengerich, F.P.; Waterman, M.R.; Lepesheva, G.I. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. J. Lipid Res., 2016, 57(8), 1552-1563.
[http://dx.doi.org/10.1194/jlr.M069229] [PMID: 27313059]
[59]
Lepesheva, G.; Christov, P.; Sulikowski, G.A.; Kim, K. A convergent, scalable and stereoselective synthesis of azole CYP51 inhibitors. Tetrahedron Lett., 2017, 58(45), 4248-4250.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.070] [PMID: 29371747]
[60]
Yates, C.M.; Garvey, E.P.; Shaver, S.R.; Schotzinger, R.J.; Hoekstra, W.J. Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(15), 3243-3248.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.037] [PMID: 28651982]
[61]
Georgopapadakou, N.H.; Dix, B.A.; Smith, S.A.; Freudenberger, J.; Funke, P.T. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob. Agents Chemother., 1987, 31(1), 46-51.
[http://dx.doi.org/10.1128/AAC.31.1.46] [PMID: 3551826]
[62]
Marr, K.A.; Crippa, F.; Leisenring, W.; Hoyle, M.; Boeckh, M.; Balajee, S.A.; Nichols, W.G.; Musher, B.; Corey, L. Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants. Blood, 2004, 103(4), 1527-1533.
[http://dx.doi.org/10.1182/blood-2003-08-2644] [PMID: 14525770]
[63]
Prentice, A.G.; Glasmacher, A. Making sense of itraconazole pharmacokinetics. J. Antimicrob. Chemother., 2005, 56(1)(Suppl. 1), i17-i22.
[http://dx.doi.org/10.1093/jac/dki220] [PMID: 16120630]
[64]
Niwa, T.; Shiraga, T.; Takagi, A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol. Pharm. Bull., 2005, 28(9), 1805-1808.
[http://dx.doi.org/10.1248/bpb.28.1805] [PMID: 16141567]
[65]
Paul, R.A.; Rudramurthy, S.M.; Dhaliwal, M.; Singh, P.; Ghosh, A.K.; Kaur, H.; Varma, S.; Agarwal, R.; Chakrabarti, A. Magnitude of voriconazole resistance in clinical and environmental isolates of Aspergillus flavus and investigation into the role of multidrug efflux pumps. Antimicrob. Agents Chemother., 2018, 62(11), e01022-e18.
[http://dx.doi.org/10.1128/AAC.01022-18] [PMID: 30126956]
[66]
Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; Warris, A.; Ader, F.; Akova, M.; Arendrup, M.C.; Barnes, R.A.; Beigelman-Aubry, C.; Blot, S.; Bouza, E.; Brüggemann, R.J.M.; Buchheidt, D.; Cadranel, J.; Castagnola, E.; Chakrabarti, A.; Cuenca-Estrella, M.; Dimopoulos, G.; Fortun, J.; Gangneux, J.P.; Garbino, J.; Heinz, W.J.; Herbrecht, R.; Heussel, C.P.; Kibbler, C.C.; Klimko, N.; Kullberg, B.J.; Lange, C.; Lehrnbecher, T.; Löffler, J.; Lortholary, O.; Maertens, J.; Marchetti, O.; Meis, J.F.; Pagano, L.; Ribaud, P.; Richardson, M.; Roilides, E.; Ruhnke, M.; Sanguinetti, M.; Sheppard, D.C.; Sinkó, J.; Skiada, A.; Vehreschild, M.J.G.T.; Viscoli, C.; Cornely, O.A. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect., 2018, 24(Suppl. 1), e1-e38.
[http://dx.doi.org/10.1016/j.cmi.2018.01.002] [PMID: 29544767]
[67]
Abdolrasouli, A.; Scourfield, A.; Rhodes, J.; Shah, A.; Elborn, J.S.; Fisher, M.C.; Schelenz, S.; Armstrong-James, D. High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre. Int. J. Antimicrob. Agents, 2018, 52(5), 637-642.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.08.004] [PMID: 30103005]
[68]
Rocchi, S.; Ponçot, M.; Morin-Crini, N.; Laboissière, A.; Valot, B.; Godeau, C.; Léchenault-Bergerot, C.; Reboux, G.; Crini, G.; Millon, L. Determination of azole fungal residues in soils and detection of Aspergillus fumigatus-resistant strains in market gardens of Eastern France. Environ. Sci. Pollut. Res. Int., 2018, 25(32), 32015-32023.
[http://dx.doi.org/10.1007/s11356-018-3177-6] [PMID: 30215210]
[69]
Aoki, Y.; Yoshihara, F.; Kondoh, M.; Nakamura, Y.; Nakayama, N.; Arisawa, M. Ro 09-1470 is a selective inhibitor of P-450 lanosterol C-14 demethylase of fungi. Antimicrob. Agents Chemother., 1993, 37(12), 2662-2667.
[http://dx.doi.org/10.1128/AAC.37.12.2662] [PMID: 8109933]
[70]
Yotsuji, A.; Shimizu, K.; Araki, H.; Fujimaki, K.; Nishida, N.; Hori, R.; Annen, N.; Yamamoto, S.; Hayakawa, H.; Imaizumi, H.; Watanbe, Y.; Narita, H. T-8581, a new orally and parenterally active triazole antifungal agent: in vitro and in vivo evaluations. Antimicrob. Agents Chemother., 1997, 41(1), 30-34.
[http://dx.doi.org/10.1128/AAC.41.1.30] [PMID: 8980750]
[71]
Hata, K.; Kimura, J.; Miki, H.; Toyosawa, T.; Nakamura, T.; Katsu, K. In vitro and in vivo antifungal activities of ER-30346, a novel oral triazole with a broad antifungal spectrum. Antimicrob. Agents Chemother., 1996, 40(10), 2237-2242.
[http://dx.doi.org/10.1128/AAC.40.10.2237] [PMID: 8891121]
[72]
Cacciapuoti, A.; Loebenberg, D.; Corcoran, E.; Menzel, F., Jr; Moss, E.L., Jr; Norris, C.; Michalski, M.; Raynor, K.; Halpern, J.; Mendrick, C.; Arnold, B.; Antonacci, B.; Parmegiani, R.; Yarosh-Tomaine, T.; Miller, G.H.; Hare, R.S. In vitro and in vivo activities of SCH 56592 (posaconazole), a new triazole antifungal agent, against Aspergillus and Candida. Antimicrob. Agents Chemother., 2000, 44(8), 2017-2022.
[http://dx.doi.org/10.1128/AAC.44.8.2017-2022.2000] [PMID: 10898669]
[73]
Kumawat, M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol., 2018, 15(3), 196-200.
[http://dx.doi.org/10.2174/1570163814666170725114159] [PMID: 28745209]
[74]
Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; Korting, H.C. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy, 2008, 54(4), 245-259.
[http://dx.doi.org/10.1159/000142334] [PMID: 18587237]
[75]
Łukowska-Chojnacka, E.; Mierzejewska, J.; Milner-Krawczyk, M.; Bondaryk, M.; Staniszewska, M. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity. Bioorg. Med. Chem., 2016, 24(22), 6058-6065.
[http://dx.doi.org/10.1016/j.bmc.2016.09.066] [PMID: 27745991]
[76]
Łukowska-Chojnacka, E.; Kowalkowska, A.; Gizińska, M.; Koronkiewicz, M.; Staniszewska, M. Synthesis of tetrazole derivatives bearing pyrrolidine scaffold and evaluation of their antifungal activity against Candida albicans. Eur. J. Med. Chem., 2019, 164, 106-120.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.044] [PMID: 30594027]
[77]
Wang, S.Q.; Wang, Y.F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[78]
Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med., 2014, 5(7), a019752.
[http://dx.doi.org/10.1101/cshperspect.a019752] [PMID: 25384768]
[79]
Scorzoni, L.; de Paula E Silva, A.C.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[80]
Shrestha, S.K.; Garzan, A.; Garneau-Tsodikova, S. Novel alkylated azoles as potent antifungals. Eur. J. Med. Chem., 2017, 133, 309-318.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.075] [PMID: 28395217]
[81]
Chai, X.; Zhang, J.; Cao, Y.; Zou, Y.; Wu, Q.; Zhang, D.; Jiang, Y.; Sun, Q. New azoles with antifungal activity: Design, synthesis, and molecular docking. Bioorg. Med. Chem. Lett., 2011, 21(2), 686-689.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.006] [PMID: 21190856]
[82]
Towers, G.H.; Abramowski, Z.; Finlayson, A.J.; Zucconi, A. Antibiotic properties of thiarubrine A, a naturally occurring dithiacyclohexadiene polyine. Planta Med., 1985, (3), 225-229.
[http://dx.doi.org/10.1055/s-2007-969464] [PMID: 4034747]
[83]
Zhang, H.Z.; Gan, L.L.; Wang, H.; Zhou, C.H. New progress in azole compounds as antimicrobial agents. Mini Rev. Med. Chem., 2017, 17(2), 122-166.
[http://dx.doi.org/10.2174/1389557516666160630120725] [PMID: 27484625]
[84]
Ledoux, M.P.; Denis, J.; Nivoix, Y.; Herbrecht, R. Isavuconazole: a new broad-spectrum azole. Part 2: pharmacokinetics and clinical activity. J. Mycol. Med., 2018, 28(1), 15-22.
[http://dx.doi.org/10.1016/j.mycmed.2018.02.002] [PMID: 29551442]
[85]
Petranyi, G.; Ryder, N.S.; Stütz, A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science, 1984, 224(4654), 1239-1241.
[http://dx.doi.org/10.1126/science.6547247] [PMID: 6547247]
[86]
Georgopapadakou, N.H.; Bertasso, A. Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrob. Agents Chemother., 1992, 36(8), 1779-1781.
[http://dx.doi.org/10.1128/AAC.36.8.1779] [PMID: 1416865]
[87]
Matushevskaya, Ye.V.; Svirshchevskaya, Ye.V. Naftifine and therapy of fungal skin infections: 40 years of success. Vestn. Dermatol. Venerol., 2014, 2, 72-77. [In Russ].
[88]
Ghannoum, M.; Isham, N.; Verma, A.; Plaum, S.; Fleischer, A., Jr; Hardas, B. in vitro antifungal activity of naftifine hydrochloride against dermatophytes. Antimicrob. Agents Chemother., 2013, 57(9), 4369-4372.
[http://dx.doi.org/10.1128/AAC.01084-13] [PMID: 23817365]
[89]
Ma, Y.; Chen, X.; Guan, S. Terbinafine: novel formulations that potentiate antifungal activities. Drugs Today (Barc), 2015, 51(3), 197-208.
[http://dx.doi.org/10.1358/dot.2015.51.3.2295906] [PMID: 25876563]
[90]
Vejnovic, I.; Huonder, C.; Betz, G. Permeation studies of novel terbinafine formulations containing hydrophobins through human nails in vitro. Int. J. Pharm., 2010, 397(1-2), 67-76.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.051] [PMID: 20620203]
[91]
Ho, D.M.; Zdilla, M.J. The solid-state conformation of the topical antifungal agent O-naphthalen-2-yl N-methyl-N-(3-methylphenyl)carbamothioate. Acta Crystallogr. C Struct. Chem., 2018, 74(Pt 11), 1495-1501.
[http://dx.doi.org/10.1107/S2053229618013591] [PMID: 30398206]
[92]
Iwatani, W.; Arika, T.; Yamaguchi, H. Two mechanisms of butenafine action in Candida albicans. Antimicrob. Agents Chemother., 1993, 37(4), 785-788.
[http://dx.doi.org/10.1128/AAC.37.4.785] [PMID: 8494375]
[93]
Baloch, R.I.; Mercer, E.I. Inhibition of sterol D8-D7 isomerase and D14 reductase by fenpropimorph, tridemorph and fenpropidin in cell-free systems from Saccharomyces cerevisiae. Phytochemistry, 1987, 26, 663-668.
[http://dx.doi.org/10.1016/S0031-9422(00)84762-7]
[94]
Kelly, D.E.; Rose, M.E.; Kelly, S.L. Investigation of the role of sterol delta 8-->7-isomerase in the sensitivity of Saccharomyces cerevisiae to fenpropimorph. FEMS Microbiol. Lett., 1994, 122(3), 223-226.
[PMID: 7988864]
[95]
Marcireau, C.; Guyonnet, D.; Karst, F. Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr. Genet., 1992, 22(4), 267-272.
[http://dx.doi.org/10.1007/BF00317919] [PMID: 1394506]
[96]
Ashman, W.H.; Barbuch, R.J.; Ulbright, C.E.; Jarrett, H.W.; Bard, M. Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids, 1991, 26(8), 628-632.
[http://dx.doi.org/10.1007/BF02536427] [PMID: 1779709]
[97]
Corio-Costet, M.F.; Gerst, N.; Benveniste, P.; Schuber, F. Inhibition by the fungicide fenpropimorph of cholesterol biosynthesis in 3T3 fibroblasts. Biochem. J., 1988, 256(3), 829-834.
[http://dx.doi.org/10.1042/bj2560829] [PMID: 3223956]
[98]
Cabib, E.; Kang, M.S. Fungal 1,3-β-glucan synthase. Methods Enzymol., 1987, 138, 637-642.
[http://dx.doi.org/10.1016/0076-6879(87)38057-7] [PMID: 2955197]
[99]
Sucher, A.J.; Chahine, E.B.; Balcer, H.E. Echinocandins: the newest class of antifungals. Ann. Pharmacother., 2009, 43(10), 1647-1657.
[http://dx.doi.org/10.1345/aph.1M237] [PMID: 19724014]
[100]
Chen, S.C.; Slavin, M.A.; Sorrell, T.C. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs, 2011, 71(1), 11-41.
[http://dx.doi.org/10.2165/11585270-000000000-00000] [PMID: 21175238]
[101]
Denning, D.W. Echinocandin antifungal drugs. Lancet, 2003, 362(9390), 1142-1151.
[http://dx.doi.org/10.1016/S0140-6736(03)14472-8] [PMID: 14550704]
[102]
Balkovec, J.M.; Hughes, D.L.; Masurekar, P.S.; Sable, C.A.; Schwartz, R.E.; Singh, S.B. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)--a case study. Nat. Prod. Rep., 2014, 31(1), 15-34.
[http://dx.doi.org/10.1039/C3NP70070D] [PMID: 24270605]
[103]
Mroczyńska, M.; Brillowska-Dąbrowska, A. Review on current status of echinocandins use. Antibiotics (Basel), 2020, 9(5), 227.
[http://dx.doi.org/10.3390/antibiotics9050227] [PMID: 32370108]
[104]
Aguilar-Zapata, D.; Petraitiene, R.; Petraitis, V. Echinocandins: the expanding antifungal armamentarium. Clin. Infect. Dis., 2015, 61(Suppl. 6), S604-S611.
[http://dx.doi.org/10.1093/cid/civ814] [PMID: 26567277]
[105]
Perlin, D.S. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updat., 2007, 10(3), 121-130.
[http://dx.doi.org/10.1016/j.drup.2007.04.002] [PMID: 17569573]
[106]
Scott, L.J. Micafungin: a review in the prophylaxis and treatment of invasive candida infections in paediatric patients. Paediatr. Drugs, 2017, 19(1), 81-90.
[http://dx.doi.org/10.1007/s40272-016-0211-3] [PMID: 28083856]
[107]
Joseph, J.M.; Jain, R.; Danziger, L.H. Micafungin: a new echinocandin antifungal. Pharmacotherapy, 2007, 27(1), 53-67.
[http://dx.doi.org/10.1592/phco.27.1.53] [PMID: 17192162]
[108]
Roilides, E.; Carlesse, F.; Leister-Tebbe, H.; Conte, U.; Yan, J.L.; Liu, P.; Tawadrous, M.; Aram, J.A.; Queiroz-Telles, F. Anidulafungin A8851008 pediatric study group. A prospective, open-label study to assess the safety, tolerability and efficacy of anidulafungin in the treatment of invasive candidiasis in children 2 to <18 years of age. Pediatr. Infect. Dis. J., 2019, 38(3), 275-279.
[http://dx.doi.org/10.1097/INF.0000000000002237] [PMID: 30418357]
[109]
Bartizal, K.; Scott, T.; Abruzzo, G.K.; Gill, C.J.; Pacholok, C.; Lynch, L.; Kropp, H. In vitro evaluation of the pneumocandin antifungal agent L-733560, a new water-soluble hybrid of L-705589 and L-731373. Antimicrob. Agents Chemother., 1995, 39(5), 1070-1076.
[http://dx.doi.org/10.1128/AAC.39.5.1070] [PMID: 7625791]
[110]
Mukhopadhyay, T.; Roy, K.; Bhat, R.G.; Sawant, S.N.; Blumbach, J.; Ganguli, B.N.; Fehlhaber, H.W.; Kogler, H. Deoxymulundocandin--a new echinocandin type antifungal antibiotic. J. Antibiot. (Tokyo), 1992, 45(5), 618-623.
[http://dx.doi.org/10.7164/antibiotics.45.618] [PMID: 1624363]
[111]
Chang, C.C.; Slavin, M.A.; Chen, S.C-A. New developments and directions in the clinical application of the echinocandins. Arch. Toxicol., 2017, 91(4), 1613-1621.
[http://dx.doi.org/10.1007/s00204-016-1916-3] [PMID: 28180946]
[112]
Yao, J.; Liu, H.; Zhou, T.; Chen, H.; Miao, Z.; Sheng, C.; Zhang, W. Total synthesis and structure-activity relationships of new echinocandin-like antifungal cyclolipohexapeptides. Eur. J. Med. Chem., 2012, 50, 196-208.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.054] [PMID: 22348827]
[113]
Krishnan, B.R.; James, K.D.; Polowy, K.; Bryant, B.J.; Vaidya, A.; Smith, S.; Laudeman, C.P. CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J. Antibiot. (Tokyo), 2017, 70(2), 130-135.
[http://dx.doi.org/10.1038/ja.2016.89] [PMID: 27507631]
[114]
Pfaller, M.A.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N.; Castanheira, M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J. Antimicrob. Chemother., 2016, 71(10), 2868-2873.
[http://dx.doi.org/10.1093/jac/dkw214] [PMID: 27287236]
[115]
Ong, V.; Hough, G.; Schlosser, M.; Bartizal, K.; Balkovec, J.M.; James, K.D.; Krishnan, B.R. Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin. Antimicrob. Agents Chemother., 2016, 60(11), 6872-6879.
[http://dx.doi.org/10.1128/AAC.00701-16] [PMID: 27620474]
[116]
Bals, R. [Antimicrobial peptides and peptide antibiotics]. Med. Klin. (Munich), 2000, 95(9), 496-502.
[http://dx.doi.org/10.1007/PL00002139] [PMID: 11028166]
[117]
Fresta, M.; Ricci, M.; Rossi, C.; Furneri, P.M.; Puglisi, G. Antimicrobial nonapeptide leucinostatin A-dependent effects on the physical properties of phospholipid model membranes. J. Colloid Interface Sci., 2000, 226(2), 222-230.
[http://dx.doi.org/10.1006/jcis.2000.6816]
[118]
Ishiguro, K.; Arai, T. Action of the peptide antibiotic leucinostatin. Antimicrob. Agents Chemother., 1976, 9(6), 893-898.
[http://dx.doi.org/10.1128/AAC.9.6.893] [PMID: 945714]
[119]
Momose, I.; Onodera, T.; Doi, H.; Adachi, H.; Iijima, M.; Yamazaki, Y.; Sawa, R.; Kubota, Y.; Igarashi, M.; Kawada, M. Leucinostatin Y: A peptaibiotic produced by the entomoparasitic fungus purpureocillium lilacinum 40-H-28. J. Nat. Prod., 2019, 82(5), 1120-1127.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00839] [PMID: 31017786]
[120]
Gräfe, U.; Ihn, W.; Ritzau, M.; Schade, W.; Stengel, C.; Schlegel, B.; Fleck, W.F.; Künkel, W.; Härtl, A.; Gutsche, W. Helioferins; novel antifungal lipopeptides from Mycogone rosea: screening, isolation, structures and biological properties. J. Antibiot. (Tokyo), 1995, 48(2), 126-133.
[http://dx.doi.org/10.7164/antibiotics.48.126] [PMID: 7706122]
[121]
Puri, S.; Edgerton, M. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell, 2014, 13(8), 958-964.
[http://dx.doi.org/10.1128/EC.00095-14] [PMID: 24951439]
[122]
Petruzzelli, R.; Clementi, M.E.; Marini, S.; Coletta, M.; Di Stasio, E.; Giardina, B.; Misiti, F. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem. Biophys. Res. Commun., 2003, 311(4), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.104] [PMID: 14623286]
[123]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Darokar, M.P.; Srivastava, S.K. Drug resistance reversal potential of ursolic acid derivatives against nalidixic acid- and multidrug-resistant escherichia coli. Chem. Biol. Drug Des., 2015, 86(3), 272-283.
[http://dx.doi.org/10.1111/cbdd.12491] [PMID: 25476148]
[124]
Sinden, S.L.; DeVay, J.E.; Backman, P.A. Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees. Physiol. Plant Pathol., 1971, 1(2), 201-213.
[http://dx.doi.org/10.1016/0048-4059(71)90029-4]
[125]
Efimova, S.S.; Zakharova, A.A.; Schagina, L.V.; Ostroumova, O.S. Two types of syringomycin E channels in sphingomyelin-containing bilayers. Eur. Biophys. J., 2016, 45(1), 91-98.
[http://dx.doi.org/10.1007/s00249-015-1101-2] [PMID: 26658744]
[126]
Ostroumova, O.S.; Gurnev, P.A.; Schagina, L.V.; Bezrukov, S.M. Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Lett., 2007, 581(5), 804-808.
[http://dx.doi.org/10.1016/j.febslet.2007.01.063] [PMID: 17289034]
[127]
Grilley, M.M.; Stock, S.D.; Dickson, R.C.; Lester, R.L.; Takemoto, J.Y. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J. Biol. Chem., 1998, 273(18), 11062-11068.
[http://dx.doi.org/10.1074/jbc.273.18.11062] [PMID: 9556590]
[128]
Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol., 2020, 10, 105.
[http://dx.doi.org/10.3389/fcimb.2020.00105] [PMID: 32257965]
[129]
McCarthy, M.W.; Walsh, T.J. Amino acid metabolism and transport mechanisms as potential antifungal targets. Int. J. Mol. Sci., 2018, 19(3), 909.
[http://dx.doi.org/10.3390/ijms19030909] [PMID: 29562716]
[130]
Konishi, M.; Nishio, M.; Saitoh, K.; Miyaki, T.; Oki, T.; Kawaguchi, H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiot. (Tokyo), 1989, 42(12), 1749-1755.
[http://dx.doi.org/10.7164/antibiotics.42.1749] [PMID: 2516082]
[131]
Oki, T.; Hirano, M.; Tomatsu, K.; Numata, K.; Kamei, H. Cispentacin, a new antifungal antibiotic. II. in vitro and in vivo antifungal activities. J. Antibiot. (Tokyo), 1989, 42(12), 1756-1762.
[http://dx.doi.org/10.7164/antibiotics.42.1756] [PMID: 2621158]
[132]
Capobianco, J.O.; Zakula, D.; Coen, M.L.; Goldman, R.C. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Biochem. Biophys. Res. Commun., 1993, 190(3), 1037-1044.
[http://dx.doi.org/10.1006/bbrc.1993.1153] [PMID: 8439305]
[133]
Nonn, M.; Kiss, L.; Hänninen, M.M.; Sillanpää, R.; Fülöp, F. Synthesis of highly functionalized fluorinated cispentacin derivatives. Chem. Biodivers., 2012, 9(11), 2571-2581.
[http://dx.doi.org/10.1002/cbdv.201200323] [PMID: 23161635]
[134]
Kiss, L.; Cherepanova, M.; Forró, E.; Fülöp, F. A new access route to functionalized cispentacins from norbornene β-amino acids. Chemistry, 2013, 19(6), 2102-2107.
[http://dx.doi.org/10.1002/chem.201203183] [PMID: 23255222]
[135]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[136]
Gupta, A.K.; Mays, R.R.; Versteeg, S.G.; Piraccini, B.M.; Shear, N.H.; Piguet, V.; Tosti, A.; Friedlander, S.F. Tinea capitis in children: a systematic review of management. J. Eur. Acad. Dermatol. Venereol., 2018, 32(12), 2264-2274.
[http://dx.doi.org/10.1111/jdv.15088] [PMID: 29797669]
[137]
Denk, H.; Eckerstorfer, R. Turnover of cytochrome P-450 and cytochrome b5 hemes in griseofulvin-induced murine porphyria. FEBS Lett., 1977, 76(1), 67-70.
[http://dx.doi.org/10.1016/0014-5793(77)80122-1] [PMID: 852606]
[138]
Al-Obaidi, H.; Kowalczyk, R.M.; Kalgudi, R.; Zariwala, M.G. Griseofulvin solvate solid dispersions with synergistic effect against fungal biofilms. Colloids Surf. B Biointerfaces, 2019, 184, 110540.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110540] [PMID: 31610418]
[139]
Zhang, D.; Zhao, L.; Wang, L.; Fang, X.; Zhao, J.; Wang, X.; Li, L.; Liu, H.; Wei, Y.; You, X.; Cen, S.; Yu, L. Griseofulvin Derivative and Indole Alkaloids from Penicillium griseofulvum CPCC 400528. J. Nat. Prod., 2017, 80(2), 371-376.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00829] [PMID: 28117586]
[140]
Kartsev, V.; Geronikaki, A.; Petrou, A.; Lichitsky, B.; Kostic, M.; Smiljkovic, M.; Soković, M.; Sirakanyan, S. Griseofulvin derivatives: synthesis, molecular docking and biological evaluation. Curr. Top. Med. Chem., 2019, 19(13), 1145-1161.
[http://dx.doi.org/10.2174/1568026619666190523080136] [PMID: 31119999]
[141]
Vermes, A.; Guchelaar, H.J.; Dankert, J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother., 2000, 46(2), 171-179.
[http://dx.doi.org/10.1093/jac/46.2.171] [PMID: 10933638]
[142]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[143]
Merry, M.; Boulware, D.R. Cryptococcal meningitis treatment strategies affected by the explosive cost of flucytosine in the united states: a cost-effectiveness analysis. Clin. Infect. Dis., 2016, 62(12), 1564-1568.
[http://dx.doi.org/10.1093/cid/ciw151] [PMID: 27009249]
[144]
Shiri, T.; Loyse, A.; Mwenge, L.; Chen, T.; Lakhi, S.; Chanda, D.; Mwaba, P.; Molloy, S.F.; Heyderman, R.S.; Kanyama, C.; Hosseinipour, M.C.; Kouanfack, C.; Temfack, E.; Mfinanga, S.; Kivuyo, S.; Chan, A.K.; Jarvis, J.N.; Lortholary, O.; Jaffar, S.; Niessen, L.W.; Harrison, T.S. Addition of flucytosine to fluconazole for the treatment of cryptococcal meningitis in africa: a multicountry cost-effectiveness analysis. Clin. Infect. Dis., 2020, 70(1), 26-29.
[http://dx.doi.org/10.1093/cid/ciz163] [PMID: 30816418]
[145]
Fujii, S.; Yabe, K.; Kariwano-Kimura, Y.; Furukawa, M.; Itoh, K.; Matsuura, M.; Horimoto, M. Developmental toxicity of flucytosine following administration to pregnant rats at a specific time point of organogenesis. Congenit. Anom. (Kyoto), 2019, 59(2), 39-42.
[http://dx.doi.org/10.1111/cga.12282] [PMID: 29653020]
[146]
Khan, K.M.; Saify, Z.S.; Shah, S.T.; Ahmed, M.; Saeed, M.; Hayat, S.; Abbas, M.; Voelter, W. Syntheses, antibacterial, cytotoxic and antifungal effects of new 3-carboxy-l-phenacylpyridinium salts. Arzneimittelforschung, 2002, 52(4), 286-293.
[PMID: 12040971]
[147]
Billmyre, R.B.; Applen Clancey, S.; Li, L.X.; Doering, T.L.; Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun., 2020, 11(1), 127.
[http://dx.doi.org/10.1038/s41467-019-13890-z] [PMID: 31913284]
[148]
Zhang, D.; Miller, M.J. Polyoxins and nikkomycins: progress in synthetic and biological studies. Curr. Pharm. Des., 1999, 5(2), 73-99.
[PMID: 10066885]
[149]
Chaudhary, P.M.; Tupe, S.G.; Deshpande, M.V. Chitin synthase inhibitors as antifungal agents. Mini Rev. Med. Chem., 2013, 13(2), 222-236.
[PMID: 22512590]
[150]
Zhao, C.; Huang, T.; Chen, W.; Deng, Z. Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl. Environ. Microbiol., 2010, 76(21), 7343-7347.
[http://dx.doi.org/10.1128/AEM.01257-10] [PMID: 20817795]
[151]
Varnava, K.G.; Ronimus, R.S.; Sarojini, V. A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnol. Bioeng., 2017, 114(11), 2457-2473.
[http://dx.doi.org/10.1002/bit.26387] [PMID: 28734066]
[152]
Glushkov, R.G.; Levchuk, T.A.; Shilova, I.B.; Guskova, T.A. Pharmaceutical composition in the form of an ointment for the treatment of fungal diseases and a method for its preparation. RU Patent 2 295 958, 2007.
[153]
Shilova, I.B.; Guskova, T.A. The study of the fungicidal action of the Thiazolidin-2,4-dione derivative in in vitro experiments. Adv. Medical Mycolog, 2015, 14, 369-371.
[154]
Krutikov, V.I.; Erkin, A.V.; Aleksandrova, A.V. 5-arylaminomethylene- 1h-pyrimidine-2,4- dione as potential antifungal and antimicrobial drugs. Bull. St PbSIT, 2016, 35, 47-50. [TU].
[http://dx.doi.org/10.15217/issn1998984-9.2016.35.47]
[155]
Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg. Med. Chem., 2014, 22(13), 3405-3413.
[http://dx.doi.org/10.1016/j.bmc.2014.04.042] [PMID: 24856180]
[156]
Ryu, C.K.; Kim, Y.H.; Im, H.A.; Kim, J.Y.; Yoon, J.H.; Kim, A. Synthesis and antifungal activity of 6,7-bis(arylthio)-quinazoline-5,8-diones and furo[2,3-f]quinazolin-5-ols. Bioorg. Med. Chem. Lett., 2012, 22(1), 500-503.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.099] [PMID: 22113112]
[157]
Sheikh, J.I.; Ingle, V.N.; Juneja, H.D. Synthesis of Novel Antibacterial Agents: 1–(2′,4′–Dihydroxy–5′–chlorophenyl)–3–arylpropane–1,3–diones. E-J. Chem., 2009, 6(3), 705-712.
[http://dx.doi.org/10.1155/2009/693495]
[158]
Sheikh, J.; Parvez, A.; Juneja, H.; Ingle, V.; Chohan, Z.; Youssoufi, M.; Ben Hadda, T. Synthesis, biopharmaceutical characterization, antimicrobial and antioxidant activities of 1-(4′-O-β-D-glucopyranosyloxy-2′-hydroxyphenyl)-3-aryl-propane-1,3-diones. Eur. J. Med. Chem., 2011, 46(4), 1390-1399.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.068] [PMID: 21339031]
[159]
Sheikh, J.; Hadda, T.B. Antibacterial, antifungal and antioxidant activity of some new water–soluble β–diketones. Med. Chem. Res., 2013, 22(2), 964-975.
[http://dx.doi.org/10.1007/s00044-012-0089-8]
[160]
Lisovenko, N.Yu.; Makhmudov, R.R.; Balandina, S.Yu. 4,4,4-trichloro-1- (4-chlorophenyl) butane-1,3-dione having analgesic and antimicrobial activities. Patent RU 2582236, 2016.
[161]
Lisovenko, N.Yu.; Chemadurov, D.G.; Balandina, S.Yu.; Makhmudov, R.R. Antinociceptive and antimicrobial activity of 1-substituted 4,4,4-trichlorobutane-1,3-diones. Pharm. Chem. J., 2017, 51(3), 29-30.
[http://dx.doi.org/10.1007/s11094-017-1580-9]
[162]
Igidov, N.M.; Odegova, T.F.; Tomilov, M.V.; Syropyatov, B.Ya.; Vakhrin, M.I. 2,2,5,5-tetrabromo-1,6-di- (4,1-methylphenyl) -1,3,4,6-hexantetraone (i) having antimicrobial activity. Patent RU 2303025, 2007.
[163]
Weidner, J.J.; Variano, B.F.; Majeru, S.; Bhankarkar, S.; Bay, W.E.; Schifields, L. Compositions and compounds for the delivery of active agents. Patent RU 2326110, 2008.
[164]
Dubrovina, S.S.; Odegova, T.F.; Boteva, A.A.; Krasnykh, O.P.; Rudakova, I.P. 2- (2,4-dichloranilino) -1,4-bis (4-methylphenyl) -2-butene-1,4-dione having antimicrobial activity. Patent RU 2396249, 2010.
[165]
Popov, Y.V.; Korchagina, T.K.; Kalmykova, G.V. 3-phenoxyphenyl-containing 1,3-diketones as starting compounds for the preparation of their chelate complexes with copper ions (II) and a method for producing 3-phenoxyphenyl-containing 1,3-diketones. Patent RU 2475473, 2013.
[166]
Woollard, J.M.; Perry, N.B.; Weavers, R.T.; van Klink, J.W. Bullatenone, 1,3-dione and sesquiterpene chemotypes of lophomyrtus species. Phytochemistry, 2008, 69(6), 1313-1318.
[http://dx.doi.org/10.1016/j.phytochem.2008.01.016] [PMID: 18329059]
[167]
Aldholmi, M.; Marchand, P.; Ourliac-Garnier, I.; Le Pape, P.; Ganesan, A. A decade of Antifungal Leads from Natural Products: 2010-2019. Pharmaceuticals (Basel), 2019, 12(4), 182.
[http://dx.doi.org/10.3390/ph12040182] [PMID: 31842280]
[168]
Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. Essential oils and antifungal activity. Pharmaceuticals (Basel), 2017, 10(4), 86.
[http://dx.doi.org/10.3390/ph10040086] [PMID: 29099084]
[169]
Pauli, A. Anticandidal low molecular compounds from higher plants with special reference to compounds from essential oils. Med. Res. Rev., 2006, 26(2), 223-268.
[http://dx.doi.org/10.1002/med.20050] [PMID: 16331694]
[170]
Palmeira-de-Oliveira, A.; Salgueiro, L.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Pina-Vaz, C.; Queiroz, J.A.; Rodrigues, A.G. Anti-candida activity of essential oils. Mini Rev. Med. Chem., 2009, 9(11), 1292-1305.
[http://dx.doi.org/10.2174/138955709789878150] [PMID: 19534688]
[171]
Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol., 2016, 34(1), 58-69.
[http://dx.doi.org/10.1016/j.tibtech.2015.10.008] [PMID: 26645658]
[172]
Pauli, A. Antimicrobial properties of essential oil constituents. Int. J. Aromather., 2001, 11, 126-133.
[http://dx.doi.org/10.1016/S0962-4562(01)80048-5]
[173]
Barbosa, J.P.; de Oliveira, T.R.; Puppin, D.; Teixeira, A.L. AntiCandida activity of essential oils from eucalyptus species. A preliminary study. Adv. Dent. Oral Health, 2018, 8(2), 555740.
[174]
Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol., 2004, 18(1), 73-78.
[http://dx.doi.org/10.1111/j.1468-3083.2004.00886.x] [PMID: 14678536]
[175]
Salgueiro, L.R.; Cavaleiro, C.; Pinto, E.; Pina-Vaz, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med., 2003, 69(9), 871-874.
[http://dx.doi.org/10.1055/s-2003-43203] [PMID: 14598221]
[176]
Tavares, C.B.; Pina-Vaz, C.; Rodrigues, A.G.; Costa-de-Oliveira, S.; Pinto, E.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Palmeira, A.; Martinez-de-Oliveira, J. The fungicidal activity of eugenol on Candida spp results from a primary lesion of the cell membrane. Clin. Microbiol. Infect., 2003, 9, 89.
[177]
Leifertova, L.; Hejtmankova, N.; Hlava, H.; Kudrnacova, J.; Santavy, F. Antifungal and antibacterial effects of phenolic substances. Acta Univ. Palacki. Olomuc. Fac. Med., 1975, 74, 83-101.
[178]
Martinez, L.R.; Fries, B.C. Fungal biofilms: relevance in the setting of human disease. Curr. Fungal Infect. Rep., 2010, 4(4), 266-275.
[http://dx.doi.org/10.1007/s12281-010-0035-5] [PMID: 21660222]
[179]
Eguia, A.; Arakistain, A.; De-la-Pinta, I.; López-Vicente, J.; Sevillano, E.; Quindós, G.; Eraso, E. Candida albicans biofilms on different materials for manufacturing implant abutments and prostheses. Med. Oral Patol. Oral Cir. Bucal, 2020, 25(1), e13-e20.
[http://dx.doi.org/10.4317/medoral.23157] [PMID: 31880295]
[180]
Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans biofilm. Pathog. Dis., 2016, 74(4), ftw018.
[http://dx.doi.org/10.1093/femspd/ftw018] [PMID: 26960943]
[181]
Di Bonaventura, G.; Pompilio, A.; Picciani, C.; Iezzi, M.; D’Antonio, D.; Piccolomini, R. Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob. Agents Chemother., 2006, 50(10), 3269-3276.
[http://dx.doi.org/10.1128/AAC.00556-06] [PMID: 17005804]
[182]
Chatrath, A.; Gangwar, R.; Kumari, P.; Prasad, R. In vitro anti-biofilm activities of citral and thymol against Candida tropicalis. J. Fungi (Basel), 2019, 5(1), 13.
[http://dx.doi.org/10.3390/jof5010013] [PMID: 30717454]
[183]
Chifiriuc, C.; Grumezescu, V.; Grumezescu, A.M.; Saviuc, C.; Lazăr, V.; Andronescu, E. Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res. Lett., 2012, 7(1), 209.
[http://dx.doi.org/10.1186/1556-276X-7-209] [PMID: 22490675]
[184]
Rajkowska, K.; Nowicka-Krawczyk, P.; Kunicka-Styczyńska, A. Effect of clove and thyme essential oils on Candida biofilm formation and the oil distribution in yeast cells. Molecules, 2019, 24(10), 1954.
[http://dx.doi.org/10.3390/molecules24101954] [PMID: 31117281]
[185]
Bouyahya, A.; Chamkhi, I.; Guaouguaou, F.E.; Benali, T.; Balahbib, A.; El Omari, N.; Taha, D.; El-Shazly, M.; El Menyiy, N. Ethnomedicinal use, phytochemistry, pharmacology, and food benefits of Thymus capitatus. J. Ethnopharmacol., 2020, 259, 112925.
[http://dx.doi.org/10.1016/j.jep.2020.112925] [PMID: 32423878]
[186]
Ghasemi, G.; Alirezalu, A.; Ghosta, Y.; Jarrahi, A.; Safavi, S.A.; Abbas-Mohammadi, M.; Barba, F.J.; Munekata, P.E.S.; Domínguez, R.; Lorenzo, J.M. Composition, antifungal, phytotoxic, and insecticidal activities of thymus kotschyanus essential oil. Molecules, 2020, 25(5), 1152.
[http://dx.doi.org/10.3390/molecules25051152] [PMID: 32143475]
[187]
Wang, J.; Wang, W.; Xiong, H.; Song, D.; Cao, X. Natural phenolic derivatives based on piperine scaffold as potential antifungal agents. BMC Chem, 2020, 14(1), 24.
[http://dx.doi.org/10.1186/s13065-020-00676-4] [PMID: 32259136]
[188]
Poesen, R.; Evenepoel, P.; de Loor, H.; Kuypers, D.; Augustijns, P.; Meijers, B. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1136-1144.
[http://dx.doi.org/10.2215/CJN.00160116] [PMID: 27084876]
[189]
Zhang, H.M.; Ju, C.X.; Li, G.; Sun, Y.; Peng, Y.; Li, Y.X.; Peng, X.P.; Lou, H.X. Dimeric 1,4-benzoquinone derivatives with cytotoxic activities from the marine-derived fungus penicillium sp. L129. Mar. Drugs, 2019, 17(7), 383.
[http://dx.doi.org/10.3390/md17070383] [PMID: 31248044]
[190]
Filgueiras, C.C.; Martins, A.D.; Pereira, R.V.; Willett, D.S. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. Int. J. Mol. Sci., 2019, 20(23), 5851.
[http://dx.doi.org/10.3390/ijms20235851] [PMID: 31766518]
[191]
Paterson, J.R.; Lawrence, J.R. Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer. QJM, 2001, 94(8), 445-448.
[http://dx.doi.org/10.1093/qjmed/94.8.445] [PMID: 11493722]
[192]
Bronze-Uhle, E.S.; Costa, B.C.; Ximenes, V.F.; Lisboa-Filho, P.N. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl., 2016, 10, 11-21.
[http://dx.doi.org/10.2147/NSA.S117018] [PMID: 28096662]
[193]
Susilo, R. Plaster comprising sertaconazole for the treatment of dysfunctions and disorders of nails. EP1423100B1, 2007.
[194]
Picerno, P.; Mencherini, T.; Sansone, F.; Del Gaudio, P.; Granata, I.; Porta, A.; Aquino, R.P. Screening of a polar extract of Paeonia rockii: composition and antioxidant and antifungal activities. J. Ethnopharmacol., 2011, 138(3), 705-712.
[http://dx.doi.org/10.1016/j.jep.2011.09.056] [PMID: 22004890]
[195]
Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Synthesis and antifungal activity of coumarins and angular furanocoumarins. Bioorg. Med. Chem., 1999, 7(9), 1933-1940.
[http://dx.doi.org/10.1016/S0968-0896(99)00138-8] [PMID: 10530942]
[196]
Montagner, C.; de Souza, S.M.; Groposoa, C.; Delle Monache, F.; Smânia, E.F.; Smânia, A., Jr Antifungal activity of coumarins. Z. Natforsch. C J. Biosci., 2008, 63(1-2), 21-28.
[http://dx.doi.org/10.1515/znc-2008-1-205] [PMID: 18386483]
[197]
Kumar, R.; Saha, A.; Saha, D. A new antifungal coumarin from Clausena excavata. Fitoterapia, 2012, 83(1), 230-233.
[http://dx.doi.org/10.1016/j.fitote.2011.11.003] [PMID: 22088496]
[198]
da S M Forezi, L.; Borba-Santos, L.P.; Cardoso, M.F.C.; Ferreira, V.F.; Rozental, S.; de C da Silva, F. Synthesis and antifungal activity of coumarins derivatives against sporothrix spp. Curr. Top. Med. Chem., 2018, 18(2), 164-171.
[http://dx.doi.org/10.2174/1568026618666180221115508] [PMID: 29473510]
[199]
Soltani, S.; Dianat, S.; Sardari, S. Forward modeling of the coumarin antifungals; SPR/SAR based perspective. Avicenna J. Med. Biotechnol., 2009, 1(2), 95-103.
[PMID: 23407575]
[200]
Ayine-Tora, D.M.; Kingsford-Adaboh, R.; Asomaning, W.A.; Harrison, J.J.; Mills-Robertson, F.C.; Bukari, Y.; Sakyi, P.O.; Kaminta, S.; Reynisson, J. Coumarin antifungal lead compounds from millettia thonningii and their predicted mechanism of action. Molecules, 2016, 21(10), 1369.
[http://dx.doi.org/10.3390/molecules21101369] [PMID: 27754464]
[201]
Singh, S.; Dabur, R.; Gatne, M.M.; Singh, B.; Gupta, S.; Pawar, S.; Sharma, S.K.; Sharma, G.L. in vivo efficacy of a synthetic coumarin derivative in a murine model of aspergillosis. PLoS One, 2014, 9(8), e103039.
[http://dx.doi.org/10.1371/journal.pone.0103039] [PMID: 25140804]
[202]
Aboody, M.S.A.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel), 2020, 9(2), 45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[203]
Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126589.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[204]
Salazar-Aranda, R.; Granados-Guzmán, G.; Pérez-Meseguer, J.; González, G.M.; de Torres, N.W. Activity of polyphenolic compounds against Candida glabrata. Molecules, 2015, 20(10), 17903-17912.
[http://dx.doi.org/10.3390/molecules201017903] [PMID: 26426003]
[205]
da Silva Sá, F.A.; de Paula, J.A.M.; Dos Santos, P.A.; de Almeida Ribeiro Oliveira, L.; de Almeida Ribeiro Oliveira, G.; Lião, L.M.; de Paula, J.R.; do Rosário Rodrigues Silva, M. Phytochemical analysis and antimicrobial activity of Myrcia tomentosa (Aubl.) DC. leaves. Molecules, 2017, 22(7), 1100.
[http://dx.doi.org/10.3390/molecules22071100] [PMID: 28677650]
[206]
Lee, H.; Woo, E.R.; Lee, D.G. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res., 2018, 18(1)
[http://dx.doi.org/10.1093/femsyr/foy003] [PMID: 29346565]
[207]
Houlihan, A.J.; Conlin, P.; Chee-Sanford, J.C. Water-soluble exudates from seeds of Kochia scoparia exhibit antifungal activity against Colletotrichum graminicola. PLoS One, 2019, 14(6), e0218104.
[http://dx.doi.org/10.1371/journal.pone.0218104] [PMID: 31216294]
[208]
Sudheeran, P.K.; Ovadia, R.; Galsarker, O.; Maoz, I.; Sela, N.; Maurer, D.; Feygenberg, O.; Oren Shamir, M.; Alkan, N. Glycosylated flavonoids: fruit’s concealed antifungal arsenal. New Phytol., 2020, 225(4), 1788-1798.
[http://dx.doi.org/10.1111/nph.16251] [PMID: 31598980]
[209]
Gao, M.; Wang, H.; Zhu, L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida Albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem., 2016, 40(3-4), 727-742.
[http://dx.doi.org/10.1159/000453134] [PMID: 27915337]
[210]
Boumendjel, A. Aurones: a subclass of flavones with promising biological potential. Curr. Med. Chem., 2003, 10(23), 2621-2630.
[http://dx.doi.org/10.2174/0929867033456468] [PMID: 14529476]
[211]
Alqahtani, F.M.; Arivett, B.A.; Taylor, Z.E.; Handy, S.T.; Farone, A.L.; Farone, M.B. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One, 2019, 14(12), e0226068.
[http://dx.doi.org/10.1371/journal.pone.0226068] [PMID: 31825988]
[212]
Sutton, C.L.; Taylor, Z.E.; Farone, M.B.; Handy, S.T. Antifungal activity of substituted aurones. Bioorg. Med. Chem. Lett., 2017, 27(4), 901-903.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.012] [PMID: 28094180]
[213]
Morey, A.T.; de Souza, F.C.; Santos, J.P.; Pereira, C.A.; Cardoso, J.D.; de Almeida, R.S.; Costa, M.A.; de Mello, J.C.; Nakamura, C.V.; Pinge-Filho, P.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Antifungal activity of condensed tannins from stryphnodendron adstringens: effect on Candida tropicalis growth and adhesion properties. Curr. Pharm. Biotechnol., 2016, 17(4), 365-375.
[http://dx.doi.org/10.2174/1389201017666151223123712] [PMID: 26696018]
[214]
Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R.E.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. Lissoclibadins 4-7, polysulfur aromatic alkaloids from the Indonesian ascidian Lissoclinum cf. badium. J. Nat. Prod., 2007, 70(3), 439-442.
[http://dx.doi.org/10.1021/np060593c] [PMID: 17269824]
[215]
Vaca, J.; Salazar, F.; Ortiz, A.; Sansinenea, E. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. J. Antibiot. (Tokyo), 2020, 73(11), 798-802.
[http://dx.doi.org/10.1038/s41429-020-0333-2] [PMID: 32483303]
[216]
Fernando, K.; Reddy, P.; Hettiarachchige, I.K.; Spangenberg, G.C.; Rochfort, S.J.; Guthridge, K.M. Novel antifungal activity of lolium-associated epichloë endophytes. Microorganisms, 2020, 8(6), E955.
[http://dx.doi.org/10.3390/microorganisms8060955] [PMID: 32599897]
[217]
Khan, H.; Mubarak, M.S.; Amin, S. Antifungal potential of alkaloids as an emerging therapeutic target. Curr. Drug Targets, 2017, 18(16), 1825-1835.
[http://dx.doi.org/10.2174/1389450117666160719095517] [PMID: 27440186]
[218]
Noguti, J.; Rajinia, M.; Zancope, B.R.; Marquezin, M.C.S.; Seleem, D.; Pardi, V.; Murata, R.M. Antifungal activity of alkaloids against Candida albicans. J. Calif. Dent. Assoc., 2016, 44(8), 493-498.
[PMID: 28737849]
[219]
Long, S.Y.; Li, C.L.; Hu, J.; Zhao, Q.J.; Chen, D. Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia, 2018, 129, 145-149.
[http://dx.doi.org/10.1016/j.fitote.2018.06.017] [PMID: 29935259]
[220]
Zehavi, U.; Polacheck, I. Saponins as antimycotic agents: glycosides of medicagenic acid. Adv. Exp. Med. Biol., 1996, 404, 535-546.
[http://dx.doi.org/10.1007/978-1-4899-1367-8_44] [PMID: 8957322]
[221]
Subedi, Y.P.; AlFindee, M.N.; Takemoto, J.Y.; Chang, C.T. Antifungal amphiphilic kanamycins: new life for an old drug. MedChemComm, 2018, 9(6), 909-919.
[http://dx.doi.org/10.1039/C8MD00155C] [PMID: 30108980]
[222]
Urabe, H.; Nakama, T. [Antifungal activity of Kasugamycin]. J. Antibiot. [B], 1967, 20(6), 424-426.
[PMID: 5301340]
[223]
Lee, H.B.; Kim, Y.; Kim, J.C.; Choi, G.J.; Park, S.H.; Kim, C.J.; Jung, H.S. Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J. Appl. Microbiol., 2005, 99(4), 836-843.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02684.x] [PMID: 16162234]
[224]
Shrestha, S.; Grilley, M.; Fosso, M.Y.; Chang, C.W.; Takemoto, J.Y. Membrane lipid-modulated mechanism of action and non-cytotoxicity of novel fungicide aminoglycoside FG08. PLoS One, 2013, 8(9), e73843.
[http://dx.doi.org/10.1371/journal.pone.0073843] [PMID: 24040088]
[225]
Berkov-Zrihen, Y.; Herzog, I.M.; Benhamou, R.I.; Feldman, M.; Steinbuch, K.B.; Shaul, P.; Lerer, S.; Eldar, A.; Fridman, M. Tobramycin and nebramine as pseudo-oligosaccharide scaffolds for the development of antimicrobial cationic amphiphiles. Chemistry, 2015, 21(11), 4340-4349.
[http://dx.doi.org/10.1002/chem.201406404] [PMID: 25652188]
[226]
Shrestha, S.K.; Chang, C.W.; Meissner, N.; Oblad, J.; Shrestha, J.P.; Sorensen, K.N.; Grilley, M.M.; Takemoto, J.Y. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action. Front. Microbiol., 2014, 5, 671.
[http://dx.doi.org/10.3389/fmicb.2014.00671] [PMID: 25538692]
[227]
Alfindee, M.N.; Subedi, Y.P.; Grilley, M.M.; Takemoto, J.Y.; Chang, C.T. Antifungal activities of 4″,6″-disubstituted amphiphilic kanamycins. Molecules, 2019, 24(10), 1882.
[http://dx.doi.org/10.3390/molecules24101882] [PMID: 31100822]
[228]
Banfalvi, G. Antifungal activity of gentamicin B1 against systemic plant mycoses. Molecules, 2020, 25(10), 2401.
[http://dx.doi.org/10.3390/molecules25102401] [PMID: 32455775]
[229]
Niewerth, M.; Kunze, D.; Seibold, M.; Schaller, M.; Korting, H.C.; Hube, B. Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chemother., 2003, 47(6), 1805-1817.
[http://dx.doi.org/10.1128/AAC.47.6.1805-1817.2003] [PMID: 12760852]
[230]
Sigle, H.C.; Thewes, S.; Niewerth, M.; Korting, H.C.; Schäfer-Korting, M.; Hube, B. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. J. Antimicrob. Chemother., 2005, 55(5), 663-673.
[http://dx.doi.org/10.1093/jac/dki089] [PMID: 15790671]
[231]
Leem, S.H.; Park, J.E.; Kim, I.S.; Chae, J.Y.; Sugino, A.; Sunwoo, Y. The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells, 2003, 15(1), 55-61.
[PMID: 12661761]
[232]
Conley, Z.C.; Carlson-Banning, K.M.; Carter, A.G.; de la Cova, A.; Song, Y.; Zechiedrich, L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One, 2019, 14(1), e0210547.
[http://dx.doi.org/10.1371/journal.pone.0210547] [PMID: 30633761]
[233]
Hagihara, K.; Kita, A.; Mizukura, A.; Yao, M.; Kitai, Y.; Kunoh, T.; Masuko, T.; Matzno, S.; Chiba, K.; Sugiura, R. Fingolimod (FTY720) stimulates Ca(2+)/calcineurin signaling in fission yeast. PLoS One, 2013, 8(12), e81907.
[http://dx.doi.org/10.1371/journal.pone.0081907] [PMID: 24312601]
[234]
Hagihara, K.; Kinoshita, K.; Ishida, K.; Hojo, S.; Kameoka, Y.; Satoh, R.; Takasaki, T.; Sugiura, R. A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis. Microb. Cell, 2017, 4(12), 390-401.
[http://dx.doi.org/10.15698/mic2017.12.601] [PMID: 29234668]
[235]
Pan, J.; Hu, C.; Yu, J.H. Lipid Biosynthesis as an Antifungal Target. J. Fungi (Basel), 2018, 4(2), 50.
[http://dx.doi.org/10.3390/jof4020050] [PMID: 29677130]
[236]
Cassilly, C.D.; Reynolds, T.B. Ps, it’s complicated: The roles of phosphatidylserine and phosphatidylethanolamine in the pathogenesis of Candida albicans and other microbial pathogens. J. Fungi (Basel), 2018, 4(1), 28.
[http://dx.doi.org/10.3390/jof4010028] [PMID: 29461490]
[237]
Cassilly, C.D.; Maddox, M.M.; Cherian, P.T.; Bowling, J.J.; Hamann, M.T.; Lee, R.E.; Reynolds, T.B. Sb-224289 antagonizes the antifungal mechanism of the marine depsipeptide papuamide A. PLoS One, 2016, 11(5), e0154932.
[http://dx.doi.org/10.1371/journal.pone.0154932] [PMID: 27183222]
[238]
Chayakulkeeree, M.; Rude, T.H.; Toffaletti, D.L.; Perfect, J.R. Fatty acid synthesis is essential for survival of Cryptococcus neoformans and a potential fungicidal target. Antimicrob. Agents Chemother., 2007, 51(10), 3537-3545.
[http://dx.doi.org/10.1128/AAC.00442-07] [PMID: 17698629]
[239]
Nguyen, L.N.; Trofa, D.; Nosanchuk, J.D. Fatty acid synthase impacts the pathobiology of Candida parapsilosisin vitro and during mammalian infection. PLoS One, 2009, 4(12), e8421.
[http://dx.doi.org/10.1371/journal.pone.0008421] [PMID: 20027295]
[240]
Wiederhold, N.P. The antifungal arsenal: alternative drugs and future targets. Int. J. Antimicrob. Agents, 2018, 51(3), 333-339.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.09.002] [PMID: 28890395]
[241]
Sharma, S.; Chattopadhyay, S.K.; Yadav, D.K.; Khan, F.; Mohanty, S.; Maurya, A.; Bawankule, D.U. QSAR, docking and in vitro studies for anti-inflammatory activity of cleomiscosin A methyl ether derivatives. Eur. J. Pharm. Sci., 2012, 47(5), 952-964.
[http://dx.doi.org/10.1016/j.ejps.2012.09.008] [PMID: 23022518]
[242]
Colley, T.; Sharma, C.; Alanio, A.; Kimura, G.; Daly, L.; Nakaoki, T.; Nishimoto, Y.; Bretagne, S.; Kizawa, Y.; Strong, P.; Rapeport, G.; Ito, K.; Meis, J.F.; Chowdhary, A. Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant Aspergillus fumigatus and other species of Aspergillus. J. Antimicrob. Chemother., 2019, 74(10), 2950-2958.
[http://dx.doi.org/10.1093/jac/dkz302] [PMID: 31361006]
[243]
Chapman, S.W.; Sullivan, D.C.; Cleary, J.D. In search of the holy grail of antifungal therapy. Trans. Am. Clin. Climatol. Assoc., 2008, 119, 197-215.
[PMID: 18596853]
[244]
Hope, W.; Drusano, G.L.; Rex, J.H. Pharmacodynamics for antifungal drug development: an approach for acceleration, risk minimization and demonstration of causality. J. Antimicrob. Chemother., 2016, 71(11), 3008-3019.
[http://dx.doi.org/10.1093/jac/dkw298] [PMID: 27494925]
[245]
Basenko, E.Y.; Pulman, J.A.; Shanmugasundram, A.; Harb, O.S.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.J., Jr; Kissinger, J.C.; Roos, D.S.; Hertz-Fowler, C. FungiDB: An integrated bioinformatic resource for Fungi and Oomycetes. J. Fungi (Basel), 2018, 4(1), 39.
[http://dx.doi.org/10.3390/jof4010039] [PMID: 30152809]
[246]
Fungal and Oomycete Genomics Resources Database (FungiDB). Available from: http://fungidb.org/fungidb/
[247]
Saccharomyces Genome Database. Available from: http://www.yeastgenome.org/
[248]
Candida Genome Database. Available from: http://www.candidagenome.org/
[249]
Aspergillus Genome Database. Available from: http://www.aspergillusgenome.org/
[250]
Kley, N. Chemical dimerizers and three-hybrid systems: scanning the proteome for targets of organic small molecules. Chem. Biol., 2004, 11(5), 599-608.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.017] [PMID: 15157871]
[251]
Delom, F.; Szponarski, W.; Sommerer, N.; Boyer, J.C.; Bruneau, J.M.; Rossignol, M.; Gibrat, R. The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics, 2006, 6(10), 3029-3039.
[http://dx.doi.org/10.1002/pmic.200500762] [PMID: 16622836]
[252]
Agarwal, A.K.; Xu, T.; Jacob, M.R.; Feng, Q.; Li, X.C.; Walker, L.A.; Clark, A.M. Genomic and genetic approaches for the identification of antifungal drug targets. Infect. Disord. Drug Targets, 2008, 8(1), 2-15.
[http://dx.doi.org/10.2174/187152608784139613] [PMID: 18473903]
[253]
Hoehamer, C.F.; Cummings, E.D.; Hilliard, G.M.; Rogers, P.D. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob. Agents Chemother., 2010, 54(5), 1655-1664.
[http://dx.doi.org/10.1128/AAC.00756-09] [PMID: 20145080]
[254]
Chan, J.N.; Vuckovic, D.; Sleno, L. Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Mol Cell Proteomics, 2012, 11(7)
[http://dx.doi.org/10.1074/mcp.M111.016642]
[255]
Agarwal, A.K.; Tripathi, S.K.; Xu, T.; Jacob, M.R.; Li, X-C.; Clark, A.M. Exploring the molecular basis of antifungal synergies using genome-wide approaches. Front. Microbiol., 2012, 3, 115.
[http://dx.doi.org/10.3389/fmicb.2012.00115] [PMID: 22470373]
[256]
Prado, R.S.; Bailão, A.M.; Silva, L.C.; de Oliveira, C.M.; Marques, M.F.; Silva, L.P.; Silveira-Lacerda, E.P.; Lima, A.P.; Soares, C.M.; Pereira, M. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone. Front. Microbiol., 2015, 6, 616.
[http://dx.doi.org/10.3389/fmicb.2015.00616] [PMID: 26150808]
[257]
Avelar-Rivas, J.A.; Munguía-Figueroa, M.; Juárez-Reyes, A.; Garay, E.; Campos, S.E.; Shoresh, N.; DeLuna, A. An optimized competitive-aging method reveals gene-drug interactions underlying the chronological lifespan of saccharomyces cerevisiae. Front. Genet., 2020, 11, 468.
[http://dx.doi.org/10.3389/fgene.2020.00468] [PMID: 32477409]
[258]
Price, A.J.; Howard, S.; Cons, B.D. Fragment-based drug discovery and its application to challenging drug targets. Essays Biochem., 2017, 61(5), 475-484.
[http://dx.doi.org/10.1042/EBC20170029] [PMID: 29118094]
[259]
Kashyap, A.; Singh, P.K.; Silakari, O. Counting on fragment based drug design approach for drug discovery. Curr. Top. Med. Chem., 2018, 18(27), 2284-2293.
[http://dx.doi.org/10.2174/1568026619666181130134250] [PMID: 30499406]
[260]
Miller, M.A.; Lee, Y.M. Applying pharmacogenomics to antifungal selection and dosing: are we there yet? Curr. Fungal Infect. Rep., 2020, 14(1), 63-75.
[http://dx.doi.org/10.1007/s12281-020-00371-w] [PMID: 32256938]
[261]
Souza, A.C.; Amaral, A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front. Microbiol., 2017, 8, 336.
[http://dx.doi.org/10.3389/fmicb.2017.00336] [PMID: 28326065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy