Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Effects of Iron Chelation in Osteosarcoma

Author(s): Maura Argenziano, Alessandra Di Paola, Chiara Tortora, Daniela Di Pinto, Elvira Pota, Martina Di Martino, Silverio Perrotta, Francesca Rossi* and Francesca Punzo

Volume 21, Issue 5, 2021

Published on: 29 December, 2020

Page: [443 - 455] Pages: 13

DOI: 10.2174/1568009620666201230090531

Price: $65

Abstract

Background: Osteosarcoma is an aggressive bone tumor. It represents the principal cause of cancer-associated death in children. Considering the recent findings on the role of iron in cancer, iron chelation has been investigated for its antineoplastic properties in many tumors. Deferasirox is the most used iron chelator compound and in previous studies showed an anticancer effect in hematologic and solid malignancies. Eltrombopag is a Thrombopoietin receptor used in thrombocytopenia that also binds and mobilize iron. It demonstrated an effect on iron overload conditions and also in contrasting cancer cell proliferation.

Objective: We analyzed the effects of deferasirox and eltrombopag in human osteosarcoma cells in an attempt to identify other therapeutic approaches for this tumor.

Methods: We cultured and treated with deferasirox and Eltrombopag, alone and in combination, two human osteosarcoma cell lines, MG63 and 143B. After 72h exposure, we performed RTqPCR, Western Blotting, Iron Assay and cytofluorimetric assays to evaluate the effect on viability, apoptosis, cell cycle progression and ROS production.

Results: The iron-chelating properties of the two compounds are also confirmed in osteosarcoma, but we did not observe any direct effect on tumor progression.

Discussion: We tested deferasirox and eltrombopag, alone and in combination, in human osteosarcoma cells for the first time and demonstrated that their iron-chelating activity does not influence biochemical pathways related to cancer progression and maintenance.

Conclusion: Although further investigations on possible effects mediated by cells of the tumor microenvironment could be of great interest, in vitro iron chelation in osteosarcoma does not impair tumor progression.

Keywords: Osteosarcoma, deferasirox, eltrombopag, iron chelation, 143B, MG63.

« Previous
Graphical Abstract
[1]
Rivera-Valentin, R.K.; Zhu, L.; Hughes, D.P. Bone Sarcomas in Pediatrics: Progress in Our Understanding of Tumor Biology and Implications for Therapy. Paediatr. Drugs, 2015, 17(4), 257-271.
[http://dx.doi.org/10.1007/s40272-015-0134-4] [PMID: 26002157]
[2]
Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol., 2015, 33(27), 3029-3035.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[3]
Lee, J.A. Osteosarcoma in Korean children and adolescents. Korean J. Pediatr., 2015, 58(4), 123-128.
[http://dx.doi.org/10.3345/kjp.2015.58.4.123] [PMID: 25932033]
[4]
Botter, S.M.; Neri, D.; Fuchs, B. Recent advances in osteosarcoma. Curr. Opin. Pharmacol., 2014, 16, 15-23.
[http://dx.doi.org/10.1016/j.coph.2014.02.002] [PMID: 24632219]
[5]
Anderson, M.E. Update on survival in osteosarcoma. Orthop. Clin. North Am., 2016, 47(1), 283-292.
[http://dx.doi.org/10.1016/j.ocl.2015.08.022] [PMID: 26614941]
[6]
Brennecke, P.; Arlt, M.J.; Campanile, C.; Husmann, K.; Gvozdenovic, A.; Apuzzo, T.; Thelen, M.; Born, W.; Fuchs, B. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin. Exp. Metastasis, 2014, 31(3), 339-349.
[http://dx.doi.org/10.1007/s10585-013-9632-3] [PMID: 24390633]
[7]
Le, N.T.; Richardson, D.R. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta, 2002, 1603(1), 31-46.
[PMID: 12242109]
[8]
Raza, M.; Chakraborty, S.; Choudhury, M.; Ghosh, P.C.; Nag, A. Cellular iron homeostasis and therapeutic implications of iron chelators in cancer. Curr. Pharm. Biotechnol., 2014, 15(12), 1125-1140.
[http://dx.doi.org/10.2174/138920101512141202111915] [PMID: 25496094]
[9]
Corcé, V.; Gouin, S.G.; Renaud, S.; Gaboriau, F.; Deniaud, D. Recent advances in cancer treatment by iron chelators. Bioorg. Med. Chem. Lett., 2016, 26(2), 251-256.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.094] [PMID: 26684852]
[10]
Hassan, M.A.; Tolba, O.A. Iron chelation monotherapy in transfusion-dependent beta-thalassemia major patients: a comparative study of deferasirox and deferoxamine. Electron. Physician, 2016, 8(5), 2425-2431.
[http://dx.doi.org/10.19082/2425] [PMID: 27382454]
[11]
Linden, T.; Wenger, R.H. Iron chelation, angiogenesis and tumor therapy. Int. J. Cancer, 2003, 106(3), 458-459.
[http://dx.doi.org/10.1002/ijc.11223] [PMID: 12845689]
[12]
Kim, J.L.; Lee, D.H.; Na, Y.J.; Kim, B.R.; Jeong, Y.A.; Lee, S.I.; Kang, S.; Joung, S.Y.; Lee, S.Y.; Oh, S.C.; Min, B.W. Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumour Biol., 2016, 37(7), 9709-9719.
[http://dx.doi.org/10.1007/s13277-016-4878-4] [PMID: 26803514]
[13]
Taher, A.T.; Porter, J.B.; Kattamis, A.; Viprakasit, V.; Cappellini, M.D. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with nontransfusion-dependent thalassemia syndromes. Drug Des. Devel. Ther., 2016, 10, 4073-4078.
[http://dx.doi.org/10.2147/DDDT.S117080] [PMID: 28008230]
[14]
Bilgin, B.K.; Yozgat, A.K.; Isik, P.; Çulha, V.; Kacar, D.; Kara, A.; Ozbek, N.Y.; Yarali, N. The effect of deferasirox on endocrine complications in children with thalassemia. Pediatr. Hematol. Oncol., 2020, 37(6), 455-464.
[http://dx.doi.org/10.1080/08880018.2020.1734124] [PMID: 32131650]
[15]
Li, B.; Esposito, B. P.; Wang, S.; Zhang, J.; Xu, M.; Zhang, S.; Zhang, Z.; Liu, S. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells J. trace elements med. biol., 2019, 52, 232-238.
[16]
Li, P.; Zheng, X.; Shou, K.; Niu, Y.; Jian, C.; Zhao, Y.; Yi, W.; Hu, X.; Yu, A. The iron chelator Dp44mT suppresses osteosarcoma’s proliferation, invasion and migration: in vitro and in vivo. Am. J. Transl. Res., 2016, 8(12), 5370-5385.
[PMID: 28078009]
[17]
Rao, V.A.; Klein, S.R.; Agama, K.K.; Toyoda, E.; Adachi, N.; Pommier, Y.; Shacter, E.B. The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells. Cancer Res., 2009, 69(3), 948-957.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1437] [PMID: 19176392]
[18]
Zhou, J.; Jiang, Y.; Zhao, J.; Zhang, H.; Fu, J.; Luo, P.; Ma, Y.; Zou, D.; Gao, H.; Hu, J.; Zhang, Y.; Jing, Z. Dp44mT, an iron chelator, suppresses growth and induces apoptosis via RORA-mediated NDRG2-IL6/JAK2/STAT3 signaling in glioma. Cell Oncol. (Dordr.), 2020, 43(3), 461-475.
[http://dx.doi.org/10.1007/s13402-020-00502-y] [PMID: 32207044]
[19]
Krishan, S.; Sahni, S.; Leck, L.Y.W.; Jansson, P.J.; Richardson, D.R. Regulation of autophagy and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5)
[http://dx.doi.org/10.1016/j.bbadis.2019.165657] [PMID: 31904416]
[20]
Cappellini, M.D.; Cohen, A.; Piga, A.; Bejaoui, M.; Perrotta, S.; Agaoglu, L.; Aydinok, Y.; Kattamis, A.; Kilinc, Y.; Porter, J.; Capra, M.; Galanello, R.; Fattoum, S.; Drelichman, G.; Magnano, C.; Verissimo, M.; Athanassiou-Metaxa, M.; Giardina, P.; Kourakli-Symeonidis, A.; Janka-Schaub, G.; Coates, T.; Vermylen, C.; Olivieri, N.; Thuret, I.; Opitz, H.; Ressayre-Djaffer, C.; Marks, P.; Alberti, D. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood, 2006, 107(9), 3455-3462.
[http://dx.doi.org/10.1182/blood-2005-08-3430] [PMID: 16352812]
[21]
Shimizu, R.; Takeuchi, M.; Sakaida, E.; Ohwada, C.; Toyosaki, M.; Machida, S.; Onizuka, M.; Shono, K.; Onoda, M.; Saito, T.; Yano, S.; Tanaka, M.; Fujisawa, S.; Mori, T.; Usuki, K.; Takahashi, S.; Kanamori, H.; Nakaseko, C.; Okamoto, S. Efficacy and safety of oral deferasirox treatment for transfusional iron overload in pure red cell aplasia patients after allogeneic stem cell transplantation. Ann. Hematol., 2019, 98(7), 1781-1783.
[http://dx.doi.org/10.1007/s00277-019-03717-8] [PMID: 31119366]
[22]
Higashino, S.; Yasu, T.; Momo, K.; Kuroda, S. Effects of formulation changes for deferasirox from dispersible tablets to granules in patients with red blood cell transfusion-induced iron overload. Am. J. Ther., 2019, 26(6), e728-e730.
[http://dx.doi.org/10.1097/MJT.0000000000000882] [PMID: 31135385]
[23]
Dou, H.; Qin, Y.; Chen, G.; Zhao, Y. Effectiveness and Safety of Deferasirox in Thalassemia with Iron Overload: A Meta-Analysis. Acta Haematol., 2019, 141(1), 32-42.
[http://dx.doi.org/10.1159/000494487] [PMID: 30504715]
[24]
Messa, E.; Carturan, S.; Maffè, C.; Pautasso, M.; Bracco, E.; Roetto, A.; Messa, F.; Arruga, F.; Defilippi, I.; Rosso, V.; Zanone, C.; Rotolo, A.; Greco, E.; Pellegrino, R.M.; Alberti, D.; Saglio, G.; Cilloni, D. Deferasirox is a powerful NF-kappaB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica, 2010, 95(8), 1308-1316.
[http://dx.doi.org/10.3324/haematol.2009.016824] [PMID: 20534700]
[25]
Ohyashiki, J.H.; Kobayashi, C.; Hamamura, R.; Okabe, S.; Tauchi, T.; Ohyashiki, K. The oral iron chelator deferasirox represses signaling through the mTOR in myeloid leukemia cells by enhancing expression of REDD1. Cancer Sci., 2009, 100(5), 970-977.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01131.x] [PMID: 19298223]
[26]
Ford, S.J.; Obeidy, P.; Lovejoy, D.B.; Bedford, M.; Nichols, L.; Chadwick, C.; Tucker, O.; Lui, G.Y.; Kalinowski, D.S.; Jansson, P.J.; Iqbal, T.H.; Alderson, D.; Richardson, D.R.; Tselepis, C. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br. J. Pharmacol., 2013, 168(6), 1316-1328.
[http://dx.doi.org/10.1111/bph.12045] [PMID: 23126308]
[27]
Lui, G.Y.; Obeidy, P.; Ford, S.J.; Tselepis, C.; Sharp, D.M.; Jansson, P.J.; Kalinowski, D.S.; Kovacevic, Z.; Lovejoy, D.B.; Richardson, D.R. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action. Mol. Pharmacol., 2013, 83(1), 179-190.
[http://dx.doi.org/10.1124/mol.112.081893] [PMID: 23074173]
[28]
Choi, J.H.; Kim, J.S.; Won, Y.W.; Uhm, J.; Park, B.B.; Lee, Y.Y. The potential of deferasirox as a novel therapeutic modality in gastric cancer. World J. Surg. Oncol., 2016, 14, 77.
[http://dx.doi.org/10.1186/s12957-016-0829-1] [PMID: 26965928]
[29]
Saeki, I.; Yamamoto, N.; Yamasaki, T.; Takami, T.; Maeda, M.; Fujisawa, K.; Iwamoto, T.; Matsumoto, T.; Hidaka, I.; Ishikawa, T.; Uchida, K.; Tani, K.; Sakaida, I. Effects of an oral iron chelator, deferasirox, on advanced hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(40), 8967-8977.
[http://dx.doi.org/10.3748/wjg.v22.i40.8967] [PMID: 27833388]
[30]
Yamamoto, N.; Yamasaki, T.; Takami, T.; Uchida, K.; Fujisawa, K.; Matsumoto, T.; Saeki, I.; Terai, S.; Sakaida, I. Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib. J. Clin. Biochem. Nutr., 2016, 58(3), 202-209.
[http://dx.doi.org/10.3164/jcbn.15-127] [PMID: 27257345]
[31]
Cilloni, D.; Andreani, G.; Dragani, M.; De Gobbi, M.; Saglio, G. Synergistic effect of eltrombopag and deferasirox in aplastic anemia: a clinical case and review of the literature. Leuk. Lymphoma, 2020, 61(1), 234-236.
[http://dx.doi.org/10.1080/10428194.2019.1660969] [PMID: 31502895]
[32]
Fattizzo, B.; Levati, G.; Cassin, R.; Barcellini, W. Eltrombopag in immune thrombocytopenia, aplastic anemia, and myelodysplastic syndrome: from megakaryopoiesis to immunomodulation. Drugs, 2019, 79(12), 1305-1319.
[http://dx.doi.org/10.1007/s40265-019-01159-0] [PMID: 31292909]
[33]
Hong, Y.; Li, X.; Wan, B.; Li, N.; Chen, Y. Efficacy and safety of eltrombopag for aplastic anemia: a systematic review and meta-analysis. Clin. Drug Investig., 2019, 39(2), 141-156.
[http://dx.doi.org/10.1007/s40261-018-0725-2] [PMID: 30406906]
[34]
Zhao, Z.; Sun, Q.; Sokoll, L.J.; Streiff, M.; Cheng, Z.; Grasmeder, S.; Townsley, D.M.; Young, N.S.; Dunbar, C.E.; Winkler, T. Eltrombopag mobilizes iron in patients with aplastic anemia. Blood, 2018, 131(21), 2399-2402.
[http://dx.doi.org/10.1182/blood-2018-01-826784] [PMID: 29632023]
[35]
Fattizzo, B.; Cavallaro, F.; Milesi, G.; Barcellini, W. Iron mobilization in a real life cohort of aplastic anemia patients treated with eltrombopag. Am. J. Hematol., 2019, 94(9), E237-E239.
[http://dx.doi.org/10.1002/ajh.25550] [PMID: 31172568]
[36]
Vlachodimitropoulou, E.; Chen, Y.L.; Garbowski, M.; Koonyosying, P.; Psaila, B.; Sola-Visner, M.; Cooper, N.; Hider, R.; Porter, J. Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood, 2017, 130(17), 1923-1933.
[http://dx.doi.org/10.1182/blood-2016-10-740241] [PMID: 28864815]
[37]
Burness, C.B.; Keating, G.M.; Garnock-Jones, K.P. Eltrombopag: a review in paediatric chronic immune thrombocytopenia. Drugs, 2016, 76(8), 869-878.
[http://dx.doi.org/10.1007/s40265-016-0581-4] [PMID: 27151255]
[38]
Kuter, D.J. The biology of thrombopoietin and thrombopoietin receptor agonists. Int. J. Hematol., 2013, 98(1), 10-23.
[http://dx.doi.org/10.1007/s12185-013-1382-0] [PMID: 23821332]
[39]
Merli, P.; Strocchio, L.; Vinti, L.; Palumbo, G.; Locatelli, F. Eltrombopag for treatment of thrombocytopenia-associated disorders. Expert Opin. Pharmacother., 2015, 16(14), 2243-2256.
[http://dx.doi.org/10.1517/14656566.2015.1085512] [PMID: 26364898]
[40]
Punzo, F.; Tortora, C.; Argenziano, M.; Casale, M.; Perrotta, S.; Rossi, F. Iron chelating properties of Eltrombopag: Investigating its role in thalassemia-induced osteoporosis. PLoS One, 2018, 13(12)
[http://dx.doi.org/10.1371/journal.pone.0208102] [PMID: 30507954]
[41]
Kalota, A.; Selak, M.A.; Garcia-Cid, L.A.; Carroll, M. Eltrombopag modulates reactive oxygen species and decreases acute myeloid leukemia cell survival. PLoS One, 2015, 10(4)
[http://dx.doi.org/10.1371/journal.pone.0126691] [PMID: 25915523]
[42]
Roth, M.; Will, B.; Simkin, G.; Narayanagari, S.; Barreyro, L.; Bartholdy, B.; Tamari, R.; Mitsiades, C.S.; Verma, A.; Steidl, U. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood, 2012, 120(2), 386-394.
[http://dx.doi.org/10.1182/blood-2011-12-399667] [PMID: 22627766]
[43]
Shi, M.; Xu, F.; Yang, X.; Bai, Y.; Niu, J.; Drokow, E.K.; Chen, M.; Chen, Y.; Sun, K. The synergistic antileukemic effects of eltrombopag and decitabine in myeloid leukemia cells. Cancer Manag. Res., 2019, 11, 8229-8238.
[http://dx.doi.org/10.2147/CMAR.S213931] [PMID: 31564981]
[44]
Kurokawa, T.; Murata, S.; Zheng, Y.W.; Iwasaki, K.; Kohno, K.; Fukunaga, K.; Ohkohchi, N. The Eltrombopag antitumor effect on hepatocellular carcinoma. Int. J. Oncol., 2015, 47(5), 1696-1702.
[http://dx.doi.org/10.3892/ijo.2015.3180] [PMID: 26397763]
[45]
Sun, W.; Wang, B.; Qu, X.L.; Zheng, B.Q.; Huang, W.D.; Sun, Z.W.; Wang, C.M.; Chen, Y. Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications. Cells, 2019, 9(1), E87.
[http://dx.doi.org/10.3390/cells9010087] [PMID: 31905813]
[46]
Lambert, M.P.; Witmer, C.M.; Kwiatkowski, J.L. Therapy induced iron deficiency in children treated with eltrombopag for immune thrombocytopenia. Am. J. Hematol., 2017, 92(6), E88-E91.
[http://dx.doi.org/10.1002/ajh.24705] [PMID: 28240793]
[47]
Bastian, T.W.; Duck, K.A.; Michalopoulos, G.C.; Chen, M.J.; Liu, Z.J.; Connor, J.R.; Lanier, L.M.; Sola-Visner, M.C.; Georgieff, M.K. Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development. J. Thromb. Haemost., 2017, 15(3), 565-574.
[http://dx.doi.org/10.1111/jth.13602] [PMID: 28005311]
[48]
Yanatori, I.; Kishi, F. DMT1 and iron transport. Free Radic. Biol. Med., 2019, 133, 55-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.020] [PMID: 30055235]
[49]
Cheli, V.T.; Santiago González, D.A.; Marziali, L.N.; Zamora, N.N.; Guitart, M.E.; Spreuer, V.; Pasquini, J.M.; Paez, P.M. The divalent metal transporter 1 (DMT1) is required for iron uptake and normal development of oligodendrocyte progenitor cells. J. Neurosci., 2018, 38(43), 9142-9159.
[http://dx.doi.org/10.1523/JNEUROSCI.1447-18.2018] [PMID: 30190412]
[50]
Worthington, M.T.; Browne, L.; Battle, E.H.; Luo, R.Q. Functional properties of transfected human DMT1 iron transporter. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1265-G1273.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1265] [PMID: 11093950]
[51]
Andrews, N.C. The iron transporter DMT1. Int. J. Biochem. Cell Biol., 1999, 31(10), 991-994.
[http://dx.doi.org/10.1016/S1357-2725(99)00065-5] [PMID: 10582331]
[52]
Nevil, G.; Roth, M.; Gill, J.; Zhang, W.; Teicher, B.; Erickson, S.W.; Gatto, G.; Smith, M.; Kolb, E.A.; Gorlick, R. Initial in vivo testing of TPO-receptor agonist eltrombopag in osteosarcoma patient-derived xenograft models by the pediatric preclinical testing consortium. Pediatr. Hematol. Oncol., 2020, •••, 1-6.
[http://dx.doi.org/10.1080/08880018.2020.1802539] [PMID: 32804009]
[53]
Shen, Y.; Zhang, B.; Su, Y.; Badshah, S.A.; Wang, X.; Li, X.; Xue, Y.; Xie, L.; Wang, Z.; Yang, Z.; Zhang, G.; Shang, P. Iron promotes dihydroartemisinin cytotoxicity via ROS production and blockade of autophagic flux via lysosomal damage in osteosarcoma. Front. Pharmacol., 2020, 11, 444.
[http://dx.doi.org/10.3389/fphar.2020.00444] [PMID: 32431605]
[54]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[55]
Giotakis, A.I.; Kontos, C.K.; Manolopoulos, L.D.; Sismanis, A.; Konstadoulakis, M.M.; Scorilas, A. High BAX/BCL2 mRNA ratio predicts favorable prognosis in laryngeal squamous cell carcinoma, particularly in patients with negative lymph nodes at the time of diagnosis. Clin. Biochem., 2016, 49(12), 890-896.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.04.010] [PMID: 27129795]
[56]
Choudhary, G.S.; Al-Harbi, S.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2015, 1219, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-1661-0_1] [PMID: 25308257]
[57]
Abu-Qare, A.W.; Abou-Donia, M.B. Biomarkers of apoptosis: release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2′-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J. Toxicol. Environ. Health B Crit. Rev., 2001, 4(3), 313-332.
[http://dx.doi.org/10.1080/109374001301419737] [PMID: 11503418]
[58]
Casimiro, M.C.; Crosariol, M.; Loro, E.; Li, Z.; Pestell, R.G. Cyclins and cell cycle control in cancer and disease. Genes Cancer, 2012, 3(11-12), 649-657.
[http://dx.doi.org/10.1177/1947601913479022] [PMID: 23634253]
[59]
Nam, E.J.; Kim, Y.T. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int. J. Gynecol. Cancer, 2008, 18(6), 1169-1182.
[http://dx.doi.org/10.1111/j.1525-1438.2008.01191.x] [PMID: 18298566]
[60]
Hashiguchi, Y.; Tsuda, H.; Inoue, T.; Nishimura, S.; Suzuki, T.; Kawamura, N. Alteration of cell cycle regulators correlates with survival in epithelial ovarian cancer patients. Hum. Pathol., 2004, 35(2), 165-175.
[http://dx.doi.org/10.1016/j.humpath.2003.07.018] [PMID: 14991533]
[61]
Yin, X.; Yu, J.; Zhou, Y.; Wang, C.; Jiao, Z.; Qian, Z.; Sun, H.; Chen, B. Identification of CDK2 as a novel target in treatment of prostate cancer. Future Oncol., 2018, 14(8), 709-718.
[http://dx.doi.org/10.2217/fon-2017-0561] [PMID: 29323532]
[62]
Chohan, T.A.; Qian, H.; Pan, Y.; Chen, J.Z. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr. Med. Chem., 2015, 22(2), 237-263.
[http://dx.doi.org/10.2174/0929867321666141106113633] [PMID: 25386824]
[63]
Shang, S.; Hua, F.; Hu, Z.W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017, 8(20), 33972-33989.
[http://dx.doi.org/10.18632/oncotarget.15687] [PMID: 28430641]
[64]
Cheng, X.; Xu, X.; Chen, D.; Zhao, F.; Wang, W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother., 2019, 110, 473-481.
[http://dx.doi.org/10.1016/j.biopha.2018.11.082] [PMID: 30530050]
[65]
Cui, C.; Zhou, X.; Zhang, W.; Qu, Y.; Ke, X. Is β-catenin a druggable target for cancer therapy? Trends Biochem. Sci., 2018, 43(8), 623-634.
[http://dx.doi.org/10.1016/j.tibs.2018.06.003] [PMID: 30056837]
[66]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[67]
Rozpędek, W.; Pytel, D.; Dziki, Ł.; Nowak, A.; Dziki, A.; Diehl, J.A.; Majsterek, I. Inhibition of PERK-dependent pro-adaptive signaling pathway as a promising approach for cancer treatment. Pol. Przegl. Chir., 2017, 89(3), 7-10.
[http://dx.doi.org/10.5604/01.3001.0010.1020] [PMID: 28703114]
[68]
Bu, Y.; Diehl, J.A. PERK integrates oncogenic signaling and cell survival during cancer development. J. Cell. Physiol., 2016, 231(10), 2088-2096.
[http://dx.doi.org/10.1002/jcp.25336] [PMID: 26864318]
[69]
Pezzuto, A.; Carico, E. Role of HIF-1 in cancer progression: novel insights. a review. Curr. Mol. Med., 2018, 18(6), 343-351.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[70]
Xie, Y.B.; Li, J.P.; Shen, K.; Meng, F.; Wang, L.; Han, G.X.; Ai, G.; Jiang, B.L.; Zhao, Q.Q.; Hou, Y.; Yang, H.Y.; Li, W.Q. Effect of HIF-1α on angiogenesis-related factors in K562 cells Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2019, 27(5), 1476-1481.
[PMID: 31607301]
[71]
Makker, K.; Afolayan, A.J.; Teng, R.J.; Konduri, G.G. Altered hypoxia-inducible factor-1α (HIF-1α) signaling contributes to impaired angiogenesis in fetal lambs with persistent pulmonary hypertension of the newborn (PPHN). Physiol. Rep., 2019, 7(3)
[http://dx.doi.org/10.14814/phy2.13986] [PMID: 30706701]
[72]
Li, J.; Zhang, H.; Guo, X.; Cui, S.; Liu, H. Expression of HIF-1α and correlation with angiogenesis in tissue of breast cancer complicated with diabetes Zhonghua Yi Xue Za Zhi, 2015, 95(4), 252-255.
[PMID: 25877238]
[73]
Feng, L.; Tao, L.; Dawei, H.; Xuliang, L.; Xiaodong, L. HIF-1α expression correlates with cellular apoptosis, angiogenesis and clinical prognosis in rectal carcinoma. Pathol. Oncol. Res., 2014, 20(3), 603-610.
[http://dx.doi.org/10.1007/s12253-013-9738-6] [PMID: 24374863]
[74]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062]
[75]
Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol., 2019, 25
[http://dx.doi.org/10.1016/j.redox.2018.101084] [PMID: 30612957]
[76]
Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated nf-κb signaling pathway. Int. J. Mol. Sci., 2019, 21(1), E131.
[http://dx.doi.org/10.3390/ijms21010131] [PMID: 31878204]
[77]
Punzo, F.; Bellini, G.; Tortora, C.; Pinto, D.D.; Argenziano, M.; Pota, E.; Paola, A.D.; Martino, M.D.; Rossi, F. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget, 2020, 11(7), 687-698.
[http://dx.doi.org/10.18632/oncotarget.27479] [PMID: 32133045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy