Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

A Novel Nanoformulation of Ellagic Acid is Promising in Restoring Oxidative Homeostasis in Rat Brains with Alzheimer’s Disease

Author(s): Steve Harakeh*, Mohamad H. Qari, Wafaa S. Ramadan, Soad K. Al Jaouni, Mohammed S. Almuhayawi, Turki Al Amri, Ghulam Md. Ashraf, Dhruba J. Bharali and Shaker A. Mousa*

Volume 22, Issue 4, 2021

Published on: 16 December, 2020

Page: [299 - 307] Pages: 9

DOI: 10.2174/1389200221666201216170851

Price: $65

Abstract

Background: Aluminum toxicity induces neurodegenerative changes in the brain and results in Alzheimer’s disease (AD).

Objective: Here, the aim was to evaluate the antioxidant therapeutic effects of ellagic acid (EA) and EA-loaded nanoparticles (EA-NP) in an aluminum chloride-induced AD rat model.

Methods: The nanoparticles’ loading of EA was 0.84/1 w/w. The in vitro release kinetics of EA from EA-NP in fetal bovine serum showed 60% release in the first 1-5 hours, followed by sustained release at 60-70% over 6-24 hours. Six groups were implemented; group 1 served as the control, group 2 received EA, group 3 received EA-NP, group 4 was the AD rat model administered AlCl3 (50 mg/kg) for 4 weeks, groups 5 (AD+EA) and 6 (AD+EA-NP) were treated with EA and EA-NP, respectively, for 2 weeks after AlCl3 was stopped. The neurotoxicity in the rat brain was examined by measuring the brain antioxidant biomarkers catalase, glutathione, and total antioxidant activity and lipid peroxidation (thiobarbituric acid, TBA). Histopathological studies using hematoxylin and eosin, cresyl violet, silver stains, and the novel object recognition test were examined.

Results: Data revealed significant increase of antioxidant biomarkers and decreased TBA in the EA-NP group. The pathological hallmarks of AD-vacuolation of the neurons, chromatolysis, neurofibrillary tangles, and the senile plaques in brains of the AD rat model were decreased and restoration of Nissl granules was noted. The calculated discrimination index in the behavioral test increased more in cases treated with EA-NP.

Conclusion: The treatment of AD with EA-NP was more effective than EA in alleviating the oxidative neurotoxic effects on AD rat brains.

Keywords: Alzheimer`s disease, aluminum, oxidative stress, antioxidant biomarkers, ellagic acid, nanoformulation, nano-ellagic acid, neuroprotection.

Graphical Abstract
[1]
Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer's disease: past, present and future. Neuropharmacology, 2014, 76(4), 27-50.
[2]
Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging, 2007, 2(3), 401-412.
[PMID: 18044191]
[3]
Mangialasche, F.; Polidori, M.C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res. Rev., 2009, 8(4), 285-305.
[http://dx.doi.org/10.1016/j.arr.2009.04.002] [PMID: 19376275]
[4]
Mohsenzadegan, M.; Mirshafiey, A. The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iran. J. Allergy Asthma Immunol., 2012, 11(3), 203-216.
[PMID: 22947905]
[5]
Özkaya, A.; Çelik, S.; Yüce, A.; Şahin, Z.; Yılmaz, O. The effects of ellagic acid on some biochemical parameters in the liver of rats against oxidative stress induced by aluminum. J. Faculty Vet. Med., 2018, 16, 263-268.
[6]
Rosillo, M.A.; Sánchez-Hidalgo, M.; Cárdeno, A.; Aparicio-Soto, M.; Sánchez-Fidalgo, S.; Villegas, I.; de la Lastra, C.A. Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol. Res., 2012, 66(3), 235-242.
[http://dx.doi.org/10.1016/j.phrs.2012.05.006] [PMID: 22677088]
[7]
Malik, A.; Afaq, S.; Shahid, M.; Akhtar, K.; Assiri, A. Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pac. J. Trop. Med., 2011, 4(7), 550-555.
[http://dx.doi.org/10.1016/S1995-7645(11)60144-2] [PMID: 21803307]
[8]
Palinisamy, M.G.K.; Murugan, R. Antidiabetic efficacy of ellagic acid in streptozotocin induced diabetes mellitus in albino Wistar rats. Asian J. Pharm. Clin. Res., 2011, 4, 124-128.
[9]
Rani, U.P.; Kesavan, R.; Ganugula, R.; Avaneesh, T.; Kumar, U.P.; Reddy, G.B.; Dixit, M. Ellagic acid inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and prevents atheroma formation in streptozotocin-induced diabetic rats. J. Nutr. Biochem., 2013, 24(11), 1830-1839.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.004] [PMID: 23866995]
[10]
Hamad, A-W.R.; Al-Momani, W.M.; Janakat, S.; Oran, S.A. Bioavailability of ellagic acid after single dose administration using HPLC. Pak. J. Nutr., 2009, 8(10), 1661-1664.
[http://dx.doi.org/10.3923/pjn.2009.1661.1664]
[11]
Lee, R.W.; Shenoy, D.B.; Sheel, R. Micellar nanoparticles: applications for topical and passive transdermal drug delivery. In: Handbook of Non-Invasive Drug Delivery Systems; Kulkarni, V.S., Ed.; William Andrew Publishing: Boston, 2010; pp. 37-58.
[http://dx.doi.org/10.1016/B978-0-8155-2025-2.10002-2]
[12]
Shirode, A.B.; Bharali, D.J.; Nallanthighal, S.; Coon, J.K.; Mousa, S.A.; Reliene, R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int. J. Nanomedicine, 2015, 10, 475-484.
[PMID: 25624761]
[13]
Kuo, Y.C.; Chung, J.F. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf. B Biointerfaces, 2011, 83(2), 299-306.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.037] [PMID: 21194902]
[14]
Quafa, R.N.E. Chronic exposure to aluminum chloride in mice: exploratory behaviors and spatial learning. Adv. Biol. Res. (Faisalabad), 2008, 2(1-2), 26-33.
[15]
Antunes, M.; Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process., 2012, 13(2), 93-110.
[http://dx.doi.org/10.1007/s10339-011-0430-z] [PMID: 22160349]
[16]
Grayson, B.; Idris, N.F.; Neill, J.C. Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav. Brain Res., 2007, 184(1), 31-38.
[http://dx.doi.org/10.1016/j.bbr.2007.06.012] [PMID: 17675172]
[17]
Kumar, P.; Kumar, A. Neuroprotective effect of cyclosporine and FK506 against 3-nitropropionic acid induced cognitive dysfunction and glutathione redox in rat: possible role of nitric oxide. Neurosci. Res., 2009, 63(4), 302-314.
[http://dx.doi.org/10.1016/j.neures.2009.01.005] [PMID: 19367792]
[18]
Aebi, H.C. Methods in enzymatic analysis; Acadamic press: New York, 1974, 2, .
[19]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[20]
Bancroft, J.D.S.A. The haematoxylin and eosin. In: Theory and Practice of Histological Techniques, 4th ed; Livingstone, C., Ed.; Elsevier: London, 1996; pp. 99-113.
[21]
Robert, P. H.; Verhey, F. R.; Byrne, E. J.; Hurt, C.; De Deyn, P. P.; Nobili, F.; Riello, R.; Rodriguez, G.; Frisoni, G. B.; Tsolaki, M.; Kyriazopoulou, N.; Bullock, R.; Burns, A.; Vellas, B. Grouping for behavioral and psychological symptoms in dementia: clinical and biological aspects. Consensus paper of the European Alzheimer disease consortium. Eur. Psychiatry, 2005, 20(7), 490-496.
[22]
Aalten, P.; Jolles, J.; de Vugt, M.E.; Verhey, F.R. The influence of neuropsychological functioning on neuropsychiatric problems in dementia. J. Neuropsychiatry Clin. Neurosci., 2007, 19(1), 50-56.
[http://dx.doi.org/10.1176/jnp.2007.19.1.50] [PMID: 17308227]
[23]
Zhu, C.W.; Sano, M. Economic considerations in the management of Alzheimer’s disease. Clin. Interv. Aging, 2006, 1(2), 143-154.
[http://dx.doi.org/10.2147/ciia.2006.1.2.143] [PMID: 18044111]
[24]
Golub, M.S.; Germann, S.L. Long-term consequences of developmental exposure to aluminum in a suboptimal diet for growth and behavior of Swiss Webster mice. Neurotoxicol. Teratol., 2001, 23(4), 365-372.
[http://dx.doi.org/10.1016/S0892-0362(01)00144-1] [PMID: 11485839]
[25]
Buraimoh, A.A.; Ojo, S.A.; Hambolu, J.O.; Adebisi, S.S. Behavioural enpoints of adult Wistar rats, following aluminium chloride exposure. Br. J. Pharmacol. Toxicol., 2011, 2(5), 273-276.
[26]
Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118.
[http://dx.doi.org/10.1177/153331750602100211] [PMID: 16634467]
[27]
Downey, L.A.; Kean, J.; Nemeh, F.; Lau, A.; Poll, A.; Gregory, R.; Murray, M.; Rourke, J.; Patak, B.; Pase, M.P.; Zangara, A.; Lomas, J.; Scholey, A.; Stough, C. An acute, double-blind, placebo-controlled crossover study of 320 mg and 640 mg doses of a special extract of Bacopa monnieri (CDRI 08) on sustained cognitive performance. Phytother. Res., 2013, 27(9), 1407-1413.
[http://dx.doi.org/10.1002/ptr.4864] [PMID: 23281132]
[28]
Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem., 2006, 17(9), 611-625.
[http://dx.doi.org/10.1016/j.jnutbio.2005.09.004] [PMID: 16426830]
[29]
Ceci, C.; Graziani, G.; Faraoni, I.; Cacciotti, I. Strategies to improve ellagic acid bioavailability: from natural or semisynthetic derivatives to nanotechnological approaches based on innovative carriers. Nanotechnology, 2020, 31(38), 382001.
[http://dx.doi.org/10.1088/1361-6528/ab912c] [PMID: 32380485]
[30]
Usta, C.; Ozdemir, S.; Schiariti, M.; Puddu, P.E. The pharmacological use of ellagic acid-rich pomegranate fruit. Int. J. Food Sci. Nutr., 2013, 64(7), 907-913.
[http://dx.doi.org/10.3109/09637486.2013.798268] [PMID: 23700985]
[31]
Kyriakis, E.; Stravodimos, G.A.; Kantsadi, A.L.; Chatzileontiadou, D.S.; Skamnaki, V.T.; Leonidas, D.D. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b. FEBS Lett., 2015, 589(15), 1787-1794.
[http://dx.doi.org/10.1016/j.febslet.2015.05.013] [PMID: 25980608]
[32]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease. Cell Adhes. Migr., 2009, 3(1), 88-93.
[http://dx.doi.org/10.4161/cam.3.1.7402] [PMID: 19372765]
[33]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[34]
Paschen, W.; Mengesdorf, T. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium, 2005, 38(3-4), 409-415.
[http://dx.doi.org/10.1016/j.ceca.2005.06.019] [PMID: 16087231]
[35]
Schuessel, K.; Leutner, S.; Cairns, N.J.; Müller, W.E.; Eckert, A. Impact of gender on upregulation of antioxidant defence mechanisms in Alzheimer’s disease brain. J. Neural Transm. (Vienna), 2004, 111(9), 1167-1182.
[http://dx.doi.org/10.1007/s00702-004-0156-5] [PMID: 15338332]
[36]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[37]
Habib, L.K.; Lee, M.T.; Yang, J. Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity. J. Biol. Chem., 2010, 285(50), 38933-38943.
[http://dx.doi.org/10.1074/jbc.M110.132860] [PMID: 20923778]
[38]
Cristalli, D.O.; Arnal, N.; Marra, F.A.; de Alaniz, M.J.; Marra, C.A. Peripheral markers in neurodegenerative patients and their first-degree relatives. J. Neurol. Sci., 2012, 314(1-2), 48-56.
[http://dx.doi.org/10.1016/j.jns.2011.11.001] [PMID: 22113180]
[39]
Butterfield, D.A.; Castegna, A.; Lauderback, C.M.; Drake, J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging, 2002, 23(5), 655-664.
[http://dx.doi.org/10.1016/S0197-4580(01)00340-2] [PMID: 12392766]
[40]
Kwak, H.M.; Jeon, S.Y.; Sohng, B.H.; Kim, J.G.; Lee, J.M.; Lee, K.B.; Jeong, H.H.; Hur, J.M.; Kang, Y.H.; Song, K.S. beta-Secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch. Pharm. Res., 2005, 28(12), 1328-1332.
[http://dx.doi.org/10.1007/BF02977896] [PMID: 16392663]
[41]
Kiasalari, Z.; Heydarifard, R.; Khalili, M.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Zahedi, E.; Sanaierad, A.; Roghani, M. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer’s disease: an exploration of underlying mechanisms. Psychopharmacology (Berl.), 2017, 234(12), 1841-1852.
[http://dx.doi.org/10.1007/s00213-017-4589-6] [PMID: 28303372]
[42]
Braidy, N.; Selvaraju, S.; Essa, M.M.; Vaishnav, R.; Al-Adawi, S.; Al-Asmi, A.; Al-Senawi, H.; Abd Alrahman Alobaidy, A.; Lakhtakia, R.; Guillemin, G.J. Neuroprotective effects of a variety of pomegranate juice extracts against MPTP-induced cytotoxicity and oxidative stress in human primary neurons. Oxid. Med. Cell. Longev., 2013, 2013, 685909.
[http://dx.doi.org/10.1155/2013/685909] [PMID: 24223235]
[43]
Kreuter, J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J. Nanosci. Nanotechnol., 2004, 4(5), 484-488.
[http://dx.doi.org/10.1166/jnn.2003.077] [PMID: 15503433]
[44]
Michaelis, K.; Hoffmann, M.M.; Dreis, S.; Herbert, E.; Alyautdin, R.N.; Michaelis, M.; Kreuter, J.; Langer, K. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther., 2006, 317(3), 1246-1253.
[http://dx.doi.org/10.1124/jpet.105.097139] [PMID: 16554356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy