Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Flavonoids from Marine-Derived Actinobacteria as Anticancer Drugs

Author(s): Wael N. Hozzein*, Mohamed Mohany, Sana M.M. Alhawsawi, Mohamed Y. Zaky, Salim S. Al-Rejaie and Dalal H.M. Alkhalifah

Volume 27, Issue 4, 2021

Published on: 16 December, 2020

Page: [505 - 512] Pages: 8

DOI: 10.2174/1381612826666201216160154

Price: $65

Abstract

Flavonoids represent a large diverse group of natural products that are used as a traditional medicine against various infectious diseases. They possess many biological activities including antimicrobial, antioxidant, anti-inflammatory, anti-cancer and anti-diabetic activities. Commercially, flavonoids are mainly obtained from plants, however, several challenges are faced during their extraction. Microorganisms have been known as natural sources of a wide range of bioactive compounds including flavonoids. Actinobacteria are the most prolific group of microorganisms for the production of bioactive secondary metabolites, thus facilitating the production of flavonoids. The screening programs for bioactive compounds revealed the potential application of actinobacteria to produce flavonoids with interesting biological activities, especially anticancer activities. Since marine actinobacteria are recognized as a potential source of novel anticancer agents, they are highly expected to be potential producers of anticancer flavonoids with unusual structures and properties. In this review, we highlight the production of flavonoids by actinobacteria through classical fermentation, engineering of plant biosynthetic genes in a recombinant actinobacterium and the de novo biosynthesis approach. Through these approaches, we can control and improve the production of interesting flavonoids or their derivatives for the treatment of cancer.

Keywords: Flavonoids, marine actinobacteria, biological activities, anticancer drugs, polyphenols, bioactive compounds, secondary metabolites.

[1]
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 2015; 22(1): 132-49.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[2]
Shah FLA, Ramzi AB, Baharum SN, et al. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep 2019; 46(6): 6647-59.
[http://dx.doi.org/10.1007/s11033-019-05066-1] [PMID: 31535322]
[3]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016.5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[4]
Achika JI, Ayo RG, Oyewale AO, Habila JD. Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon 2020; 6(2)e03381
[http://dx.doi.org/10.1016/j.heliyon.2020.e03381] [PMID: 32072061]
[5]
Zhang X, Hung TM, Phuong PT, et al. Anti-inflammatory activity of flavonoids from Populus davidiana. Arch Pharm Res 2006; 29(12): 1102-8.
[http://dx.doi.org/10.1007/BF02969299] [PMID: 17225458]
[6]
Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc 2010; 69(3): 273-8.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[7]
Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin J Cancer 2017; 36(1): 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28629389]
[8]
Solnier J, Martin L, Bhakta S, Bucar F. Flavonoids as Novel Efflux Pump Inhibitors and Antimicrobials Against Both Environmental and Pathogenic Intracellular Mycobacterial Species. Molecules 2020; 25(3): 734.
[http://dx.doi.org/10.3390/molecules25030734] [PMID: 32046221]
[9]
Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96: 305-12.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[10]
Jiang J, Yan L, Shi Z, Wang L, Shan L, Efferth T. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 2019.64153082
[http://dx.doi.org/10.1016/j.phymed.2019.153082] [PMID: 31541796]
[11]
Cheng Y, Tan J, Li H, et al. Cardioprotective effects of total flavonoids from Jinhe Yangxin prescription by activating the PI3K/Akt signaling pathway in myocardial ischemia injury. Biomed Pharmacother 2018; 98: 308-17.
[http://dx.doi.org/10.1016/j.biopha.2017.12.052] [PMID: 29274587]
[12]
Vargas F, Romecín P, García-Guillén AI, et al. Flavonoids in Kidney Health and Disease. Front Physiol 2018; 9: 394.
[http://dx.doi.org/10.3389/fphys.2018.00394] [PMID: 29740333]
[13]
Braidy N, Behzad S, Habtemariam S, et al. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer’s and Parkinson’s Disease. CNS Neurol Disord Drug Targets 2017; 16(4): 387-97.
[http://dx.doi.org/10.2174/1871527316666170328113309] [PMID: 28474543]
[14]
Ma Q, Wei R, Sang Z, Dong J. Structural characterization, neuroprotective and hepatoprotective activities of flavonoids from the bulbs of Heleocharis dulcis. Bioorg Chem 2020.96103630
[http://dx.doi.org/10.1016/j.bioorg.2020.103630] [PMID: 32036163]
[15]
Iwasa H, Kameda H, Fukui N, et al. Bilberry anthocyanins neutralize the cytotoxicity of co-chaperonin GroES fibrillation intermediates. Biochemistry 2013; 52(51): 9202-11.
[http://dx.doi.org/10.1021/bi401135j] [PMID: 24308332]
[16]
D’Orazio N, Gemello E, Gammone MA, de Girolamo M, Ficoneri C, Riccioni G. Fucoxantin: a treasure from the sea. Mar Drugs 2012; 10(3): 604-16.
[http://dx.doi.org/10.3390/md10030604] [PMID: 22611357]
[17]
Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer’s Disease and in the Gut-Brain Axis. Microorganisms 2020; 8(2): 199.
[http://dx.doi.org/10.3390/microorganisms8020199] [PMID: 32023969]
[18]
Zhang S, Yu Z, Xia J, et al. Anti-Parkinson’s disease activity of phenolic acids from Eucommia ulmoides Oliver leaf extracts and their autophagy activation mechanism. Food Funct 2020; 11(2): 1425-40.
[http://dx.doi.org/10.1039/C9FO02288K] [PMID: 31971191]
[19]
Nicolaides AN. The Benefits of Micronized Purified Flavonoid Fraction (MPFF) Throughout the Progression of Chronic Venous Disease. Adv Ther 2020; 37(Suppl. 1): 1-5.
[http://dx.doi.org/10.1007/s12325-019-01218-8] [PMID: 31970659]
[20]
Shen CY, Lin JJ, Jiang JG, Wang TX, Zhu W. Potential roles of dietary flavonoids from Citrus aurantium L. var. amara Engl. in atherosclerosis development. Food Funct 2020; 11(1): 561-71.
[http://dx.doi.org/10.1039/C9FO02336D] [PMID: 31850465]
[21]
Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 2005; 32(10): 811-6.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[22]
Cotin S, Calliste CA, Mazeron MC, et al. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Res 2012; 96(2): 181-6.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.010] [PMID: 23000494]
[23]
Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res 2013; 97(1): 41-8.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.004] [PMID: 23098745]
[24]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[25]
Chemler JA, Leonard E, Koffas MA. Flavonoid biotransformations in microorganisms Anthocyanins. Springer 2008; pp. 191-255.
[http://dx.doi.org/10.1007/978-0-387-77335-3_7]
[26]
Goiris K, Muylaert K, Voorspoels S, et al. Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 2014; 50(3): 483-92.
[http://dx.doi.org/10.1111/jpy.12180] [PMID: 26988321]
[27]
Qiu M, Xie R-s, Shi Y, Zhang H, Chen H-m. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann Microbiol 2010; 60(1): 143-50.
[http://dx.doi.org/10.1007/s13213-010-0016-5]
[28]
Hamayun M. Indole acetic acid and flavonoids production by rhizospheric bacteria isolated from Medicago sativa L. rhizosphere. Int J Biosci 2017; 10(4): 19-26.
[http://dx.doi.org/10.12692/ijb/10.4.19-26]
[29]
Singh DP, Prabha R, Verma S, Meena KK, Yandigeri M. 2017.
[30]
Goodfellow M, Goodfellow M, Kämpfer P, Busse H, Trujillo M, Suzuki K, et al. Phylum XXVI. Actinobacteria phyl nov Bergey’s Manual of Systematic Bacteriology: The Actinobacteria 2012; 5: 171-206.
[31]
Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005; 58(1): 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[32]
Cragg GM, Kingston DG, Newman DJ. Anticancer agents from natural products. CRC press 2011.
[http://dx.doi.org/10.1201/b11185]
[33]
Jiang Z-D, Jensen PR, Fenical W. Actinoflavoside, a novel flavonoid-like glycoside produced by a marine bacterium of the genus Streptomyces. Tetrahedron Lett 1997; 38(29): 5065-8.
[http://dx.doi.org/10.1016/S0040-4039(97)01127-1]
[34]
El-Gendy MM, Shaaban M, El-Bondkly AM, Shaaban KA. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces. Appl Biochem Biotechnol 2008; 150(1): 85-96.
[http://dx.doi.org/10.1007/s12010-008-8192-5] [PMID: 18551256]
[35]
Ondrejíčková P, Šturdíková M, Hushegyi A, Švajdlenka E, Markošová K, Čertík M. Endophytic Streptomyces sp. AC35, a producer of bioactive isoflavone aglycones and antimycins. J Ind Microbiol Biotechnol 2016; 43(9): 1333-44.
[http://dx.doi.org/10.1007/s10295-016-1800-4] [PMID: 27344572]
[36]
Balachandran C, Sangeetha B, Duraipandiyan V, et al. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chem Biol Interact 2014; 224: 24-35.
[http://dx.doi.org/10.1016/j.cbi.2014.09.019] [PMID: 25289772]
[37]
Balachandran C, Duraipandiyan V, Arun Y, Sangeetha B, Emi N, Al-Dhabi NA, et al. Isolation and characterization of 2-hydroxy-9, 10-anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with antimicrobial and antiproliferative properties. Rev Bras Farmacogn 2016; 26(3): 285-95.
[http://dx.doi.org/10.1016/j.bjp.2015.12.003]
[38]
Guo ZK, Wang R, Liu TM, Chen FX, Yang MQ. A new flavonoid derivative and a new 5-hydroxyanthranilic acid derivative from the sea urchin-derived Streptomyces sp. HDa1. J Asian Nat Prod Res 2019; 21(10): 992-8.
[http://dx.doi.org/10.1080/10286020.2018.1485663] [PMID: 29972031]
[39]
Park SR, Paik JH, Ahn MS, Park JW, Yoon YJ. Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. J Microbiol Biotechnol 2010; 20(9): 1295-9.
[http://dx.doi.org/10.4014/jmb.1005.05038] [PMID: 20890094]
[40]
Cao DD, Do TQ, Doan Thi Mai H, et al. Antimicrobial lavandulylated flavonoids from a sponge-derived actinomycete. Nat Prod Res 2020; 34(3): 413-20.
[http://dx.doi.org/10.1080/14786419.2018.1538219] [PMID: 30580581]
[41]
Cao DD, Trinh TTV, Mai HDT, et al. Antimicrobial Lavandulylated Flavonoids from a Sponge-Derived Streptomyces sp. G248 in East Vietnam Sea. Mar Drugs 2019; 17(9): 529.
[http://dx.doi.org/10.3390/md17090529] [PMID: 31510079]
[42]
Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS. Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.) Mansf. J Appl Pharm Sci 2014; 4(4): 8.
[43]
Taechowisan T, Chanaphat S, Ruensamran W, Phutdhawong WS. Antibacterial and anticandidal activities of new flavonoids from Streptomyces sp. HK17; an endophyte in Curcuma longa Linn. Journal of Pharmaceutical Research International 2014.
[44]
Marín L, Gutiérrez-Del-Río I, Yagüe P, Manteca Á, Villar CJ, Lombó F. De Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and Production Improvement by Feeding and Spore Conditioning. Front Microbiol 2017; 8: 921.
[http://dx.doi.org/10.3389/fmicb.2017.00921] [PMID: 28611737]
[45]
Kurniawati N, Meryandini A, Sunarti TC. Introduction of actinomycetes starter on coffee fruits fermentation to enhance quality of coffee pulp. Emirates J Food Agricul 2016; pp. 188-95.
[46]
Weber JM, Reeves AR, Seshadri R, et al. Biotransformation and recovery of the isoflavones genistein and daidzein from industrial antibiotic fermentations. Appl Microbiol Biotechnol 2013; 97(14): 6427-37.
[http://dx.doi.org/10.1007/s00253-013-4839-4] [PMID: 23604533]
[47]
Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 1969; 223(5208): 858.
[http://dx.doi.org/10.1038/223858a0] [PMID: 5799036]
[48]
Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 2006; 10(3): 181-9.
[http://dx.doi.org/10.1007/s00792-005-0482-z] [PMID: 16538400]
[49]
Fenical W, Sethna K, Lloyd G. Marine microorganisms as a developing resource for drug discovery. Pharm News 2002; 9(6): 489-94.
[50]
Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2006; 23(1): 26-78.
[http://dx.doi.org/10.1039/b502792f] [PMID: 16453031]
[51]
Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 2010; 26(12): 2123-39.
[http://dx.doi.org/10.1007/s11274-010-0415-6]
[52]
Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W. Salinamides, antiinflammatory depsipeptides from a marine streptomycete. J Org Chem 1999; 64(4): 1145-50.
[http://dx.doi.org/10.1021/jo9814391]
[53]
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 2003; 42(3): 355-7.
[http://dx.doi.org/10.1002/anie.200390115] [PMID: 12548698]
[54]
Riedlinger J, Reicke A, Zähner H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot (Tokyo) 2004; 57(4): 271-9.
[http://dx.doi.org/10.7164/antibiotics.57.271] [PMID: 15217192]
[55]
Bister B, Bischoff D, Ströbele M, et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 2004; 43(19): 2574-6.
[http://dx.doi.org/10.1002/anie.200353160] [PMID: 15127456]
[56]
Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis 2017; 9(3): 448-51.
[http://dx.doi.org/10.21037/jtd.2017.02.75] [PMID: 28449441]
[57]
Golemis EA, Scheet P, Beck TN, et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32(13-14): 868-902.
[http://dx.doi.org/10.1101/gad.314849.118] [PMID: 29945886]
[58]
Pedraza-Fariña LG. Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J Biol Med 2006; 79(3-4): 95-103.
[PMID: 17940619]
[59]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[60]
Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[61]
Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol 2011; 4(6): 687-99.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00221.x] [PMID: 21375717]
[62]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[63]
Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int J Mol Sci 2017; 18(3): 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[64]
Dyshlovoy SA, Honecker F. Marine compounds and cancer: 2017 updates. Mar Drugs 2018; 16(2): 41.
[http://dx.doi.org/10.3390/md16020041] [PMID: 29364147]
[65]
Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH. Marine natural products as anticancer drugs. Mol Cancer Ther 2005; 4(2): 333-42.
[PMID: 15713904]
[66]
Stewart EJ. Growing unculturable bacteria. J Bacteriol 2012; 194(16): 4151-60.
[http://dx.doi.org/10.1128/JB.00345-12] [PMID: 22661685]
[67]
Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 2005; 7(7): 1039-48.
[http://dx.doi.org/10.1111/j.1462-2920.2005.00785.x] [PMID: 15946301]
[68]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70(3): 461-77.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[69]
Rodríguez JC, Fernández Puentes JL, Baz JP, Cañedo LM. IB-00208, a new cytotoxic polycyclic xanthone produced by a marine-derived Actinomadura. II. Isolation, physico-chemical properties and structure determination. J Antibiot (Tokyo) 2003; 56(3): 318-21.
[http://dx.doi.org/10.7164/antibiotics.56.318] [PMID: 12760690]
[70]
Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC. Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 2004; 67(8): 1400-2.
[http://dx.doi.org/10.1021/np049970g] [PMID: 15332863]
[71]
Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y. Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot (Tokyo) 2005; 58(4): 289-92.
[http://dx.doi.org/10.1038/ja.2005.36] [PMID: 15981418]
[72]
Li F, Maskey RP, Qin S, et al. Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 2005; 68(3): 349-53.
[http://dx.doi.org/10.1021/np030518r] [PMID: 15787434]
[73]
Olano C, Méndez C, Salas JA. Antitumor compounds from marine actinomycetes. Mar Drugs 2009; 7(2): 210-48.
[http://dx.doi.org/10.3390/md7020210] [PMID: 19597582]
[74]
Lee JE, Thuy NTT, Lee J, Cho N, Yoo HM. Platyphylloside isolated from Betula platyphylla is antiproliferative and induces apoptosis in colon cancer and leukemic cells. Molecules 2019; 24(16): 2960.
[http://dx.doi.org/10.3390/molecules24162960] [PMID: 31443270]
[75]
Li K, Cai J, Su Z, et al. Glycosylated natural products from marine microbes. Front Chem 2020; 7: 879.
[http://dx.doi.org/10.3389/fchem.2019.00879] [PMID: 31998682]
[76]
Pérez M, Crespo C, Schleissner C, Rodríguez P, Zúñiga P, Reyes F. Tartrolon D, a cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04-17-069. J Nat Prod 2009; 72(12): 2192-4.
[http://dx.doi.org/10.1021/np9006603] [PMID: 19968258]
[77]
Hawas UW, Shaaban M, Shaaban KA, et al. Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 2009; 72(12): 2120-4.
[http://dx.doi.org/10.1021/np900160g] [PMID: 19921834]
[78]
Fotso S, Yao CBF-F, Helmke E, Laatsch H. 2-Hydroxy-luisol A, a new quinone-derived tetraol from a marine Streptomyces sp. and oxidation products of luisol A. Z Naturforsch B 2011; 66(6): 629-s42.
[http://dx.doi.org/10.1515/znb-2011-0611]
[79]
Selim RM, Shaaban M, Hamdy AA, Abou Zeid AA, Ata A. Viscosine: A new microbial flavonoid from marine-derived, Streptomyces sp. RMS518F. Vietnam J Chemi 2019; 57(3): 288-95.
[http://dx.doi.org/10.1002/vjch.201900034]
[80]
Gopikrishnan V, Radhakrishnan M, Shanmugasundaram T, Pazhanimurugan R, Balagurunathan R. Antibiofouling potential of quercetin compound from marine-derived actinobacterium, Streptomyces fradiae PE7 and its characterization. Environ Sci Pollut Res Int 2016; 23(14): 13832-42.
[http://dx.doi.org/10.1007/s11356-016-6532-5] [PMID: 27032633]
[81]
Pham JV, Yilma MA, Feliz A, et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front Microbiol 2019; 10: 1404.
[http://dx.doi.org/10.3389/fmicb.2019.01404] [PMID: 31281299]
[82]
Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013; 3(6): 439-59.
[83]
Karakuş F, Eyol E, Yılmaz K, Ünüvar S. Inhibition of cell proliferation, migration and colony formation of LS174T Cells by carbonic anhydrase inhibitor. Afr Health Sci 2018; 18(4): 1303-10.
[http://dx.doi.org/10.4314/ahs.v18i4.51] [PMID: 30766596]
[84]
Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 2011; 76(1): R6-R15.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01957.x] [PMID: 21535705]
[85]
Santos CMM, Silva AMS. The Antioxidant Activity of Prenylflavonoids. Molecules 2020; 25(3): 696.
[http://dx.doi.org/10.3390/molecules25030696] [PMID: 32041233]
[86]
Corinaldesi C, Barone G, Marcellini F, Dell’Anno A, Danovaro R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar Drugs 2017; 15(4): 118.
[http://dx.doi.org/10.3390/md15040118] [PMID: 28417932]
[87]
Trantas EA, Koffas MA, Xu P, Ververidis F. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 2015; 6: 7.
[http://dx.doi.org/10.3389/fpls.2015.00007] [PMID: 25688249]
[88]
Park SR, Yoon JA, Paik JH, et al. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J Biotechnol 2009; 141(3-4): 181-8.
[http://dx.doi.org/10.1016/j.jbiotec.2009.03.013] [PMID: 19433224]
[89]
Park SR, Ahn MS, Han AR, Park JW, Yoon YJ. Enhanced flavonoid production in Streptomyces venezuelae via metabolic engineering. J Microbiol Biotechnol 2011; 21(11): 1143-6.
[http://dx.doi.org/10.4014/jmb.1108.08012] [PMID: 22127124]
[90]
Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 2011; 91(4): 949-56.
[http://dx.doi.org/10.1007/s00253-011-3449-2] [PMID: 21732240]
[91]
Wu J, Du G, Zhou J, Chen J. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J Biotechnol 2014; 188: 72-80.
[http://dx.doi.org/10.1016/j.jbiotec.2014.08.016] [PMID: 25160917]
[92]
Marín L, Gutiérrez-Del-Río I, Entrialgo-Cadierno R, Villar CJ, Lombó F. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS One 2018; 13(11)e0207278
[http://dx.doi.org/10.1371/journal.pone.0207278] [PMID: 30440014]
[93]
Srivastava V, Singla RK, Dubey AK. Inhibition of Biofilm and Virulence Factors of Candida albicans by Partially Purified Secondary Metabolites of Streptomyces chrestomyceticus Strain ADP4. Curr Top Med Chem 2018; 18(11): 925-45.
[http://dx.doi.org/10.2174/1568026618666180711154110] [PMID: 29992882]
[94]
Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF, Liras P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb Cell Fact 2015; 14: 178.
[http://dx.doi.org/10.1186/s12934-015-0373-7] [PMID: 26553209]
[95]
Choi KY, Jung E, Yang YH, Kim BG. Production of a novel O-methyl-isoflavone by regioselective sequential hydroxylation and O-methylation reactions in Streptomyces avermitilis host system. Biotechnol Bioeng 2013; 110(10): 2591-9.
[http://dx.doi.org/10.1002/bit.24931] [PMID: 23592181]
[96]
Koeduka T, Shitan N, Kumano T, et al. Production of prenylated flavonoids in tomato fruits expressing a prenyltransferase gene from Streptomyces coelicolor A3(2). Plant Biol (Stuttg) 2011; 13(2): 411-5.
[http://dx.doi.org/10.1111/j.1438-8677.2010.00409.x] [PMID: 21309988]
[97]
Milke L, Kallscheuer N, Kappelmann J, Marienhagen J. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin. Microb Cell Fact 2019; 18(1): 71.
[http://dx.doi.org/10.1186/s12934-019-1117-x] [PMID: 30975146]
[98]
Savi DC, Shaaban KA, Gos FMW, Thorson JS, Glienke C, Rohr J. Secondary metabolites produced by Microbacterium sp. LGMB471 with antifungal activity against the phytopathogen Phyllosticta citricarpa. Folia Microbiol (Praha) 2019; 64(3): 453-60.
[http://dx.doi.org/10.1007/s12223-018-00668-x] [PMID: 30565048]
[99]
Li X, Wu X, Zhu J, Shen Y. Amexanthomycins A-J, pentangular polyphenols produced by Amycolatopsis mediterranei S699∆rifA. Appl Microbiol Biotechnol 2018; 102(2): 689-702.
[http://dx.doi.org/10.1007/s00253-017-8648-z] [PMID: 29181568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy