Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase

Author(s): Michelyne Haroun*, Christophe Tratrat*, Hafedh Kochkar and Anroop B. Nair

Volume 21, Issue 6, 2021

Published on: 14 December, 2020

Page: [462 - 506] Pages: 45

DOI: 10.2174/1568026621999201214232018

Price: $65

Abstract

1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.

Keywords: 1, 2, 3-triazole, Hybrid compounds, Fungal growth inhibition, Pathogenic fungi, Pharmacomodulation, Molecular modeling.

Graphical Abstract
[1]
Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida species biofilms’ antifungal resistance. J. Fungi (Basel), 2017, 3(1)E8
[http://dx.doi.org/10.3390/jof3010008] [PMID: 29371527]
[2]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; Zaoutis, T.E.; Sobel, J.D. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin. Infect. Dis., 2016, 62(4), e1-e50.
[http://dx.doi.org/10.1093/cid/civ933] [PMID: 26679628]
[3]
Ishida, K.; Fernandes Rodrigues, J.C.; Cammerer, S.; Urbina, J.A.; Gilbert, I.; de Souza, W.; Rozental, S. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, candida tropicalis and candida parapsilopsis. Ann. Clin. Microbiol. Antimicrob., 2011, 10, 3-3.
[http://dx.doi.org/10.1186/1476-0711-10-3] [PMID: 21255433]
[4]
Hacioglu, M.; Birteksoz Tan, A.S.; Dosler, S.; Inan, N.; Otuk, G. In vitro activities of antifungals alone and in combination with tigecycline against Candida albicans biofilms. PeerJ, 2018, 6e5263
[http://dx.doi.org/10.7717/peerj.5263] [PMID: 30065873]
[5]
Li, Y.; Sun, L.; Lu, C.; Gong, Y.; Li, M.; Sun, S. Promising antifungal targets against candida albicans based on ion homeostasis. Front. Cell. Infect. Microbiol., 2018, 8, 286-286.
[http://dx.doi.org/10.3389/fcimb.2018.00286] [PMID: 30234023]
[6]
Sun, L.; Liao, K.; Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One, 2015, 10(2)e0117695
[http://dx.doi.org/10.1371/journal.pone.0117695] [PMID: 25710475]
[7]
Turecka, K.; Chylewska, A.; Kawiak, A.; Waleron, K.F. Antifungal activity and mechanism of action of the co(iii) coordination complexes with diamine chelate ligands against reference and clinical strains of Candida spp. Front. Microbiol., 2018, 9, 1594-1594.
[http://dx.doi.org/10.3389/fmicb.2018.01594] [PMID: 30072969]
[8]
Clark, C.; Drummond, R.A. The hidden cost of modern medical interventions: how medical advances have shaped the prevalence of human fungal disease. Pathogens, 2019, 8(2), 45.
[http://dx.doi.org/10.3390/pathogens8020045] [PMID: 30987351]
[9]
Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. A promising copper(ii) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856.
[http://dx.doi.org/10.3390/molecules23081856] [PMID: 30049937]
[10]
Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.J.F.N.; Duse, A.G.; Aqlan, F.M.; Al-Bogami, A.S. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. MedChemComm, 2017, 8(12), 2195-2207.
[http://dx.doi.org/10.1039/C7MD00440K] [PMID: 30108736]
[11]
Perumalla, S.R.; Pedireddi, V.R.; Sun, C.C. Design, synthesis, and characterization of new 5-fluorocytosine salts. Mol. Pharm., 2013, 10(6), 2462-2466.
[http://dx.doi.org/10.1021/mp400070a] [PMID: 23631720]
[12]
Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther., 2015, 13(6), 787-798.
[http://dx.doi.org/10.1586/14787210.2015.1032939] [PMID: 25843556]
[13]
Tobudic, S.; Lassnigg, A.; Kratzer, C.; Graninger, W.; Presterl, E. Antifungal activity of amphotericin B, caspofungin and posaconazole on Candida albicans biofilms in intermediate and mature development phases. Mycoses, 2010, 53(3), 208-214.
[http://dx.doi.org/10.1111/j.1439-0507.2009.01690.x] [PMID: 19298353]
[14]
Herbrecht, R.; Natarajan-Amé, S.; Nivoix, Y.; Letscher-Bru, V. The lipid formulations of amphotericin B. Expert Opin. Pharmacother., 2003, 4(8), 1277-1287.
[http://dx.doi.org/10.1517/14656566.4.8.1277] [PMID: 12877636]
[15]
Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol., 2009, 26(4), 223-227.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[16]
Lepesheva, G.I.; Waterman, M.R. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta, 2007, 1770(3), 467-477.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.018] [PMID: 16963187]
[17]
Di Mambro, T.; Guerriero, I.; Aurisicchio, L.; Magnani, M.; Marra, E. The yin and yang of current antifungal therapeutic strategies: how can we harness our natural defenses? Front. Pharmacol., 2019, 10, 80-80.
[http://dx.doi.org/10.3389/fphar.2019.00080] [PMID: 30804788]
[18]
Perfect, J.R. The antifungal pipeline: a reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[19]
Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The fungal cyp51s: their functions, structures, related drug resistance, and inhibitors. Front. Microbiol., 2019, 10, 691-691.
[http://dx.doi.org/10.3389/fmicb.2019.00691] [PMID: 31068906]
[20]
Barrett-Bee, K.; Newboult, L.; Pinder, P. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. FEMS Microbiol. Lett., 1991, 63(2-3), 127-131.
[http://dx.doi.org/10.1111/j.1574-6968.1991.tb04517.x] [PMID: 2060756]
[21]
Dangroo, N.; Dar, A.; Shankar, R.; Khuroo, M.; Sangwan, P. An efficient synthesis of phosphoramidates from halides in aqueous ethanol. Tetrahedron Lett., 2016, 57(25), 2717-2722.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.003]
[22]
Praveena, K.S.S.; Murthy, N.Y.S.; Pal, S. Syntheses and biological activities of 1, 4‐disubstituted‐1, 2, 3‐triazoles. ChemInform, 2016, 47(13)
[23]
Dheer, D.; Reddy, K.R.; Rath, S.K.; Sangwan, P.; Das, P.; Shankar, R. Cu (I)-catalyzed double C–H amination: synthesis of 2-iodo-imidazo [1, 2-a] pyridines. RSC Advances, 2016, 6(44), 38033-38036.
[http://dx.doi.org/10.1039/C6RA02953A]
[24]
Malik, M.S.; Ahmed, S.A.; Althagafi, I.I.; Ansari, M.A.; Kamal, A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Medicinal Chemistry, 2020, 11(3), 327-348.
[http://dx.doi.org/10.1039/C9MD00458K]
[25]
Sahu, A.; Jayshree, B.S.; Muppavarapu, S.; Venugopala, K. Synthesis, determination of partition coefficient and antimicrobial activity of triazolo thiadiazinyl bromocoumarin derivatives. Mat. Sci. Res. India, 2005, 3, 187-190.
[26]
Tratrat, C. 1,2,4-triazole: a privileged scaffold for the development of potent antifungal agents - a brief review. Curr. Top. Med. Chem., 2020, 20(24), 2235-2258.
[http://dx.doi.org/10.2174/1568026620666200704140107] [PMID: 32621720]
[27]
Jayashree, B.; Sahu, A.; Murthy, M.S.; Venugopala, K. Synthesis, characterization and determination of partition coefficient of some triazole derivatives of coumarins for their antimicrobial activity. Asian J. Chem., 2007, 19(1), 73-78.
[28]
Venugopala, K.N.; Kandeel, M.; Pillay, M.; Deb, P.K.; Abdallah, H.H.; Mahomoodally, M.F.; Chopra, D. Anti-tubercular properties of 4-amino-5-(4-fluoro-3- phenoxyphenyl)-4h-1,2,4-triazole-3-thiol and its schiff bases: computational input and molecular dynamics. Antibiotics (Basel), 2020, 9(9), 559.
[http://dx.doi.org/10.3390/antibiotics9090559] [PMID: 32878018]
[29]
Stingaci, E.; Zveaghinteva, M.; Pogrebnoi, S.; Lupascu, L.; Valica, V.; Uncu, L.; Smetanscaia, A.; Drumea, M.; Petrou, A.; Ciric, A.; Glamoclija, J.; Sokovic, M.; Kravtsov, V.; Geronikaki, A.; Macaev, F. New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett., 2020, 30(17)127368
[http://dx.doi.org/10.1016/j.bmcl.2020.127368] [PMID: 32738986]
[30]
Mohamed, M.A.A.; Abd Allah, O.A.; Bekhit, A.A.; Kadry, A.M.; El-Saghier, A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem., 2020, 57(6), 2365-2378.
[http://dx.doi.org/10.1002/jhet.3951]
[31]
Pragathi, Y.J.; Sreenivasulu, R.; Veronica, D.; Raju, R.R. Design, synthesis, and biological evaluation of 1,2,4-thiadiazole-1,2,4-triazole derivatives bearing amide functionality as anticancer agents. Arab. J. Sci. Eng., 2021, 46, 225-232.
[http://dx.doi.org/10.1007/s13369-020-04626-z] [PMID: 32837812]
[32]
Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska-Banachiewicz, B.; Michalkiewicz, J. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg. Med. Chem. Lett., 2015, 25(13), 2664-2667.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.079] [PMID: 25978961]
[33]
Hanif, M.; Hassan, M.; Rafiq, M.; Abbas, Q.; Ishaq, A.; Shahzadi, S.; Seo, S-Y.; Saleem, M. Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities, and molecular docking study of new substituted schiff base derivatives. Pharm. Chem. J., 2018, 52(5), 424-437.
[http://dx.doi.org/10.1007/s11094-018-1835-0]
[34]
Küçükgüzel, I.; Tatar, E.; Küçükgüzel, Ş.G.; Rollas, S.; De Clercq, E. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem., 2008, 43(2), 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010] [PMID: 17583388]
[35]
Brzozowski, Z. 2-mercapto N-(azolyl)benzenesulfonamides. VI. Synthesis and anti-HIV activity of some new 2-mercapto-N-(1,2,4-triazol-3-yl)benzenesulfonamide derivatives containing the 1,2,4-triazole moiety fused with a variety of heteroaromatic rings. Acta Pol. Pharm., 1998, 55(6), 473-480.
[PMID: 10073134]
[36]
Küçükgüzel, Ş.G.; Çıkla-Süzgün, P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem., 2015, 97, 830-870.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.033] [PMID: 25563511]
[37]
Boutaleb-Charki, S.; Marín, C.; Maldonado, C.R.; Rosales, M.J.; Urbano, J.; Guitierrez-Sánchez, R.; Quirós, M.; Salas, J.M.; Sánchez-Moreno, M. Copper (II) complexes of [1,2,4]triazolo [1,5-a]pyrimidine derivatives as potential anti-parasitic agents. Drug Metab. Lett., 2009, 3(1), 35-44.
[http://dx.doi.org/10.2174/187231209787176317] [PMID: 19356115]
[38]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[39]
Ahmadi, F.; Ghayahbashi, M.R.; Sharifzadeh, M.; Alipoiur, E.; Ostad, S.N.; Vosooghi, M. khademi, H.R.; Amini, M. Synthesis and evaluation of anti-inflammatory and analgesic activities of new 1,2,4-triazole derivatives. Med. Chem., 2014, 11(1), 69-76.
[http://dx.doi.org/10.2174/1573406410666140613154507] [PMID: 23638926]
[40]
Tan, C-X.; Shi, Y-X.; Weng, J-Q.; Liu, X-H.; Li, B-J.; Zhao, W-G. Synthesis and antifungal activity of 1, 2, 4-triazole derivatives containing cyclopropane moiety. Lett. Drug Des. Discov., 2012, 9(4), 431-435.
[http://dx.doi.org/10.2174/157018012799859954]
[41]
Kaur, R.; Dwivedi, A.R.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds. Anticancer. Agents Med. Chem., 2016, 16(4), 465-489.
[http://dx.doi.org/10.2174/1871520615666150819121106] [PMID: 26286663]
[42]
Hassan, B.A.; Nasera, H.N.; Abdulridha, M.M. Synthesis and antimicrobial evaluation of fused heterocyclic compound [1, 2, 4] triazolo [4, 3-b][1, 2, 4, 5] tetra zine. Int. J. Res. Pharma. Sci., 2019, 10(2), 1254-1258.
[http://dx.doi.org/10.26452/ijrps.v10i2.417]
[43]
Katea, A.H. Synthesis, Characterization, Antimicrobial New 2, 2′-[(1E, 2E)-ethane-1, 2-diylidenedi (2E) hydrazin-1-yl-2-ylidene] bis (5-methyl-1, 3, 4-oxadiazole) and their transition metal complexes. University of Thi-Qar J. Sci., 2017, 6(2), 1-18.
[44]
Kim, T.W.; Yong, Y.; Shin, S.Y.; Jung, H.; Park, K.H.; Lee, Y.H.; Lim, Y.; Jung, K-Y. Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents. Bioorg. Chem., 2015, 59, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2015.01.003] [PMID: 25658192]
[45]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Advances, 2020, 10(10), 5610-5635.
[http://dx.doi.org/10.1039/C9RA09510A]
[46]
Angajala, K.K.; Vianala, S.; Macha, R.; Raghavender, M.; Thupurani, M.K.; Pathi, P.J. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry. Springerplus, 2016, 5(1), 423.
[http://dx.doi.org/10.1186/s40064-016-2052-5] [PMID: 27104111]
[47]
Babu, H.; Ravinder, M.; Narsimha, S. 2020.
[48]
Chen, Y.; Liu, X.; Sun, X.; Zhang, J.; Mi, Y.; Li, Q.; Guo, Z. Synthesis and antioxidant activity of cationic 1,2,3-triazole functionalized starch derivatives. Polymers (Basel), 2020, 12(1), 112.
[http://dx.doi.org/10.3390/polym12010112] [PMID: 31948022]
[49]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652-112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[50]
da Rocha, D.R.; Santos, W.C.; Lima, E.S.; Ferreira, V.F. Synthesis of 1,2,3-triazole glycoconjugates as inhibitors of α-glucosidases. Carbohydr. Res., 2012, 350, 14-19.
[http://dx.doi.org/10.1016/j.carres.2011.12.026] [PMID: 22269981]
[51]
Asgari, M.S.; Mohammadi-Khanaposhtani, M.; Kiani, M.; Ranjbar, P.R.; Zabihi, E.; Pourbagher, R.; Rahimi, R.; Faramarzi, M.A.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Hajimiri, M.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem., 2019, 92103206
[http://dx.doi.org/10.1016/j.bioorg.2019.103206] [PMID: 31445191]
[52]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[53]
Kumar, S.; Bains, T.; Won Kim, A.S.; Tam, C.; Kim, J.; Cheng, L.W.; Land, K.M.; Debnath, A.; Kumar, V. Highly potent 1h-1,2,3-triazole-tethered isatin-metronidazole conjugates against anaerobic foodborne, waterborne, and sexually-transmitted protozoal parasites. Front. Cell. Infect. Microbiol., 2018, 8(380), 380.
[http://dx.doi.org/10.3389/fcimb.2018.00380] [PMID: 30425970]
[54]
Venugopala, K.N.; Dharma Rao, G.B.; Bhandary, S.; Pillay, M.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K. Design, synthesis, and characterization of (1-(4-aryl)- 1H-1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2681-2690.
[http://dx.doi.org/10.2147/DDDT.S109760] [PMID: 27601885]
[55]
Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Kalam Khan, F.A.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. MedChemComm, 2015, 6(6), 1104-1116.
[http://dx.doi.org/10.1039/C5MD00057B]
[56]
Badar, A.D.; Sulakhe, S.M.; Muluk, M.B.; Rehman, N.N.M.A.; Dixit, P.P.; Choudhari, P.B.; Rekha, E.M.; Sriram, D.; Haval, K.P.
[57]
Ashok, D.; Reddy, M.R.; Dharavath, R.; Ramakrishna, K.; Nagaraju, N.; Sarasija, M. Microwave-assisted synthesis of some new 1,2,3-triazole derivatives and their antimicrobial activity. J. Chem. Sci., 2020, 132(1), 47.
[http://dx.doi.org/10.1007/s12039-020-1748-9]
[58]
El Malah, T.; Nour, H.F.; Satti, A.A.E.; Hemdan, B.A.; El-Sayed, W.A. Design, synthesis, and antimicrobial activities of 1,2,3-triazole glycoside clickamers. Molecules, 2020, 25(4), 790.
[http://dx.doi.org/10.3390/molecules25040790] [PMID: 32059480]
[59]
Sun, L.; Huang, T.; Dick, A.; Meuser, M.E.; Zalloum, W.A.; Chen, C-H.; Ding, X.; Gao, P.; Cocklin, S.; Lee, K-H.; Zhan, P.; Liu, X. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur. J. Med. Chem., 2020, 190112085
[http://dx.doi.org/10.1016/j.ejmech.2020.112085] [PMID: 32066010]
[60]
El Bourakadi, K.; Mekhzoum, M.E.M.; Saby, C.; Morjani, H.; Chakchak, H.; Merghoub, N.; Qaiss, A.k.; Bouhfid, R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New J. Chem., 2020, 44(28), 12099-12106.
[http://dx.doi.org/10.1039/C9NJ05685H]
[61]
Xu, Z.; Zhao, S-J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[62]
Krishna, R.; Sridhar, G.; Jayaprakash, H.V. Synthesis and anticancer activity of novel 1,2,3-triazole ringincorporated 1,2,4-oxadiazole-1,3-oxazole derivatives. Russ. J. Gen. Chem., 2020, 90(5), 901-906.
[http://dx.doi.org/10.1134/S1070363220050242]
[63]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis of 1,2,3-triazole derivatives and evaluation of their anticancer activity. Sci. Pharm., 2013, 81(3), 663-676.
[http://dx.doi.org/10.3797/scipharm.1302-04] [PMID: 24106665]
[64]
da Silva, Fde. C.; de Souza, M.C.B.V.; Frugulhetti, I.I.P.; Castro, H.C.; Souza, S.L.O.; de Souza, T.M.L.; Rodrigues, D.Q.; Souza, A.M.T.; Abreu, P.A.; Passamani, F.; Rodrigues, C.R.; Ferreira, V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem., 2009, 44(1), 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[65]
Giffin, M.J.; Heaslet, H.; Brik, A.; Lin, Y-C.; Cauvi, G.; Wong, C-H.; McRee, D.E.; Elder, J.H.; Stout, C.D.; Torbett, B.E.A. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem., 2008, 51(20), 6263-6270.
[http://dx.doi.org/10.1021/jm800149m] [PMID: 18823110]
[66]
Cocklin, S.; Gopi, H.; Querido, B.; Nimmagadda, M.; Kuriakose, S.; Cicala, C.; Ajith, S.; Baxter, S.; Arthos, J.; Martín-García, J.; Chaiken, I.M. Broad-spectrum anti-human immunodeficiency virus (HIV) potential of a peptide HIV type 1 entry inhibitor. J. Virol., 2007, 81(7), 3645-3648.
[http://dx.doi.org/10.1128/JVI.01778-06] [PMID: 17251295]
[67]
Brik, A.; Alexandratos, J.; Lin, Y-C.; Elder, J.H.; Olson, A.J.; Wlodawer, A.; Goodsell, D.S.; Wong, C-H. 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem, 2005, 6(7), 1167-1169.
[http://dx.doi.org/10.1002/cbic.200500101] [PMID: 15934050]
[68]
Yu, W.; Rao, Q.; Wang, M.; Tian, Z.; Lin, D.; Liu, X.; Wang, J. The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level. Leuk. Res., 2006, 30(5), 575-582.
[http://dx.doi.org/10.1016/j.leukres.2005.08.028] [PMID: 16213582]
[69]
Peterson, L.B.; Blagg, B.S.J. Click chemistry to probe Hsp90: Synthesis and evaluation of a series of triazole-containing novobiocin analogues. Bioorg. Med. Chem. Lett., 2010, 20(13), 3957-3960.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.140] [PMID: 20570149]
[70]
Doiron, J.; Soultan, A.H.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Cuperlović-Culf, M.; Robichaud, G.A.; Touaibia, M. Synthesis and structure-activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4010-4024.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.074] [PMID: 21703734]
[71]
Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N. “Clicktophycin-52”: a bioactive cryptophycin-52 triazole analogue. Org. Lett., 2010, 12(5), 1064-1067.
[http://dx.doi.org/10.1021/ol1000473] [PMID: 20131817]
[72]
Abdel-Wahab, B.F.; Mohamed, H.A.; Awad, G.E. Synthesis and biological activity of some new 1, 2, 3-triazole hydrazone derivatives. Eur. Chem. Bull., 2015, 4(1-3), 106-109.
[73]
Fichtali, I.; Chraibi, M.; Aroussi, F.; Ben-Tama, A.; Hadrami, E.; Benbrahim, K.; Stiriba, S. Synthesis of some 1, 2, 3-triazoles derivatives and evaluation of their antimicrobial activity. Der Pharma Chem, 2016, 8, 236-242.
[74]
Abstracts from the international science symposium on hiv and infectious diseases (isshid 2019): infectious diseases: Chennai, India. 12-14 October 2019. BMC Infect. Dis., 2020, 20(1)(Suppl. 1)324
[PMID: 32429962]
[75]
Bhandary, S.; Girish, Y.R.; Venugopala, K.N.; Chopra, D. Crystal structure analysis of [5-(4-meth-oxy-phen-yl)-2-methyl-2H-1,2,3-triazol-4-yl](thio-phen-2-yl)methanone. Acta Crystallogr. E Crystallogr. Commun., 2018, 74(Pt 8), 1178-1181.
[http://dx.doi.org/10.1107/S2056989018010654] [PMID: 30116588]
[76]
Venugopala, K.N.; Khedr, M.A.; Girish, Y.R.; Bhandary, S.; Chopra, D.; Morsy, M.A.; Aldhubiab, B.E.; Deb, P.K.; Attimarad, M.; Nair, A.B.; Sreeharsha, N. v, R.; Kandeel, M.; Akrawi, S.H.; Reddy M B, M.; Shashikanth, S.; Alwassil, O.I.; Mohanlall, V. Crystallography, in silico studies, and in vitro antifungal studies of 2, 4, 5 trisubstituted 1, 2, 3-triazole analogues. Antibiotics (Basel), 2020, 9(6), 350.
[http://dx.doi.org/10.3390/antibiotics9060350] [PMID: 32575727]
[77]
Molloy, L.; Abdulhamid, I.; Srivastava, R.; Ang, J.Y. Ceftolozane/tazobactam treatment of multidrug-resistant Pseudomonas aeruginosa infections in children. Pediatr. Infect. Dis. J., 2020, 39(5), 419-420.
[http://dx.doi.org/10.1097/INF.0000000000002593] [PMID: 32032173]
[78]
Zheng, J.; Chen, Z.; Lin, Z.; Sun, X.; Bai, B.; Xu, G.; Chen, J.; Yu, Z.; Qu, D. Radezolid is more effective than linezolid against planktonic cells and inhibits enterococcus faecalis biofilm formation. Front. Microbiol., 2020, 11(196), 196.
[http://dx.doi.org/10.3389/fmicb.2020.00196] [PMID: 32117185]
[79]
Actor, P.; Pitkin, D.H.; Lucyszyn, G.; Weisbach, J.A.; Bran, J.L. Cefatrizine (SK&F 60771), a new oral cephalosporin: serum levels and urinary recovery in humans after oral or intramuscular administration--comparative study with cephalexin and cefazolin. Antimicrob. Agents Chemother., 1976, 9(5), 800-803.
[http://dx.doi.org/10.1128/AAC.9.5.800] [PMID: 949177]
[80]
Ju, R. Metabolic mechanisms and a rational combinational application of carboxyamidotriazole in fighting pancreatic cancer progression after chemotherapy. J. Pharmacol. Exp. Ther., 2018, 367(1), 20-27.
[81]
Das, K.; Bauman, J.D.; Rim, A.S.; Dharia, C.; Clark, A.D., Jr; Camarasa, M-J.; Balzarini, J.; Arnold, E. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J. Med. Chem., 2011, 54(8), 2727-2737.
[http://dx.doi.org/10.1021/jm101536x] [PMID: 21446702]
[82]
Lee, H.; Lee, D.G. Novel approaches for efficient antifungal drug action. J. Microbiol. Biotechnol., 2018, 28(11), 1771-1781.
[http://dx.doi.org/10.4014/jmb.1807.07002] [PMID: 30178649]
[83]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[84]
Zhao, L.; Tian, L.; Sun, N.; Sun, Y.; Chen, Y.; Wang, X.; Zhao, S.; Su, X.; Zhao, D.; Cheng, M. Design, synthesis, and structure-activity relationship studies of l-amino alcohol derivatives as broad-spectrum antifungal agents. Eur. J. Med. Chem., 2019, 177, 374-385.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.047] [PMID: 31158751]
[85]
Martin, M.V. The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review. J. Antimicrob. Chemother., 1999, 44(4), 429-437.
[http://dx.doi.org/10.1093/jac/44.4.429] [PMID: 10588302]
[86]
Chen, A.; Sobel, J.D. Emerging azole antifungals. Expert Opin. Emerg. Drugs, 2005, 10(1), 21-33.
[http://dx.doi.org/10.1517/14728214.10.1.21] [PMID: 15757401]
[87]
Benitez, L.L.; Carver, P.L. Adverse effects associated with long-term administration of azole antifungal agents. Drugs, 2019, 79(8), 833-853.
[http://dx.doi.org/10.1007/s40265-019-01127-8] [PMID: 31093949]
[88]
Roemer, T.; Krysan, D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5)a019703
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[89]
Wang, T.; Shao, J.; Da, W.; Li, Q.; Shi, G.; Wu, D.; Wang, C. Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of Candida species and efflux-associated antifungal mechanism. Front. Microbiol., 2018, 9, 2892-2892.
[http://dx.doi.org/10.3389/fmicb.2018.02892] [PMID: 30559726]
[90]
Gupta, D.; Jain, D.K. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives. J. Adv. Pharm. Technol. Res., 2015, 6(3), 141-146.
[http://dx.doi.org/10.4103/2231-4040.161515] [PMID: 26317080]
[91]
Andes, D.; Azie, N.; Yang, H.; Harrington, R.; Kelley, C.; Tan, R-D.; Wu, E.Q.; Franks, B.; Kristy, R.; Lee, E.; Khandelwal, N.; Spalding, J. Drug-drug interaction associated with mold-active triazoles among hospitalized patients. Antimicrob. Agents Chemother., 2016, 60(6), 3398-3406.
[http://dx.doi.org/10.1128/AAC.00054-16] [PMID: 27001815]
[92]
Parente-Rocha, J.A.; Bailão, A.M.; Amaral, A.C.; Taborda, C.P.; Paccez, J.D.; Borges, C.L.; Pereira, M. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm., 2017, 2017, 9870679-9870679.
[http://dx.doi.org/10.1155/2017/9870679] [PMID: 28694566]
[93]
Trösken, E.R.; Adamska, M.; Arand, M.; Zarn, J.A.; Patten, C.; Völkel, W.; Lutz, W.K. Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology, 2006, 228(1), 24-32.
[http://dx.doi.org/10.1016/j.tox.2006.08.007] [PMID: 16989930]
[94]
Cortés, J.C.G.; Curto, M.Á.; Carvalho, V.S.D.; Pérez, P.; Ribas, J.C. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol. Adv., 2019, 37(6)107352
[http://dx.doi.org/10.1016/j.biotechadv.2019.02.008] [PMID: 30797093]
[95]
Geronikaki, A.; Fesatidou, M.; Kartsev, V.; Macaev, F. Synthesis and biological evaluation of potent antifungal agents. Curr. Top. Med. Chem., 2013, 13(21), 2684-2733.
[http://dx.doi.org/10.2174/15680266113136660195] [PMID: 24083791]
[96]
Nami, S.; Aghebati-Maleki, A.; Morovati, H.; Aghebati-Maleki, L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed. Pharmacother., 2019, 110, 857-868.
[http://dx.doi.org/10.1016/j.biopha.2018.12.009] [PMID: 30557835]
[97]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[98]
Jiang, Z.; Gu, J.; Wang, C.; Wang, S.; Liu, N.; Jiang, Y.; Dong, G.; Wang, Y.; Liu, Y.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains. Eur. J. Med. Chem., 2014, 82, 490-497.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.079] [PMID: 24934573]
[99]
Sheng, C.; Zhang, W.; Zhang, M.; Song, Y.; Ji, H.; Zhu, J.; Yao, J.; Yu, J.; Yang, S.; Zhou, Y.; Zhu, J.; Lü, J. Homology modeling of lanosterol 14α-demethylase of Candida albicans and Aspergillus fumigatus and insights into the enzyme-substrate Interactions. J. Biomol. Struct. Dyn., 2004, 22(1), 91-99.
[http://dx.doi.org/10.1080/07391102.2004.10506984] [PMID: 15214809]
[100]
Sheng, C.; Chen, S.; Ji, H.; Dong, G.; Che, X.; Wang, W.; Miao, Z.; Yao, J.; Lü, J.; Guo, W.; Zhang, W. Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design. J. Mol. Model., 2010, 16(2), 279-284.
[http://dx.doi.org/10.1007/s00894-009-0527-9] [PMID: 19593597]
[101]
Sheng, C.; Zhang, W.; Ji, H.; Zhang, M.; Song, Y.; Xu, H.; Zhu, J.; Miao, Z.; Jiang, Q.; Yao, J.; Zhou, Y.; Zhu, J.; Lü, J. Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking. J. Med. Chem., 2006, 49(8), 2512-2525.
[http://dx.doi.org/10.1021/jm051211n] [PMID: 16610794]
[102]
Jiang, Z.; Wang, Y.; Wang, W.; Wang, S.; Xu, B.; Fan, G.; Dong, G.; Liu, Y.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement. Eur. J. Med. Chem., 2013, 64, 16-22.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.025] [PMID: 23643831]
[103]
Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism. Eur. J. Med. Chem., 2011, 46(11), 5276-5282.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.019] [PMID: 21983332]
[104]
Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Yao, J.; Miao, Z.; Zhang, W. Structure-based design, synthesis, and antifungal activity of new triazole derivatives. Chem. Biol. Drug Des., 2011, 78(2), 309-313.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01138.x] [PMID: 21585708]
[105]
Wang, W.; Sheng, C.; Che, X.; Ji, H.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Discovery of highly potent novel antifungal azoles by structure-based rational design. Bioorg. Med. Chem. Lett., 2009, 19(20), 5965-5969.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.144] [PMID: 19748782]
[106]
Wang, W.; Sheng, C.; Che, X.; Ji, H.; Miao, Z.; Yao, J.; Zhang, W.N. Design, synthesis, and antifungal activity of novel conformationally restricted triazole derivatives. Arch. Pharm. (Weinheim), 2009, 342(12), 732-739.
[http://dx.doi.org/10.1002/ardp.200900103] [PMID: 19899102]
[107]
Wang, W.; Wang, S.; Liu, Y.; Dong, G.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel conformationally restricted triazole derivatives with potent antifungal activity. Eur. J. Med. Chem., 2010, 45(12), 6020-6026.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.070] [PMID: 20950895]
[108]
Xu, Y.; Sheng, C.; Wang, W.; Che, X.; Cao, Y.; Dong, G.; Wang, S.; Ji, H.; Miao, Z.; Yao, J.; Zhang, W. Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(9), 2942-2945.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.014] [PMID: 20362444]
[109]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 759-763.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[110]
Chen, H-J.; Jiang, Y-J.; Zhang, Y-Q.; Jing, Q-W.; Liu, N.; Wang, Y.; Zhang, W-N.; Sheng, C-Q. New triazole derivatives containing substituted 1, 2, 3-triazole side chains: Design, synthesis and antifungal activity. Chin. Chem. Lett., 2017, 28(4), 913-918.
[http://dx.doi.org/10.1016/j.cclet.2016.11.027]
[111]
He, X.; Jiang, Y.; Zhang, Y.; Wu, S.; Dong, G.; Liu, N.; Liu, Y.; Yao, J.; Miao, Z.; Wang, Y. Discovery of highly potent triazole antifungal agents with piperidine-oxadiazole side chains. MedChemComm, 2015, 6(4), 653-664.
[http://dx.doi.org/10.1039/C4MD00505H]
[112]
Wang, W.; Wang, S.; Dong, G.; Liu, Y.; Guo, Z.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Discovery of highly potent antifungal triazoles by structure-based lead fusion. MedChemComm, 2011, 2(11), 1066-1072.
[http://dx.doi.org/10.1039/c1md00103e]
[113]
Savanur, H.M.; Naik, K.N.; Ganapathi, S.M.; Kim, K.M.; Kalkhambkar, R.G. Click chemistry inspired design, synthesis and molecular docking studies of coumarin, quinolinone linked 1,2,3-triazoles as promising anti-microbial agents. ChemistrySelect, 2018, 3(19), 5296-5303.
[http://dx.doi.org/10.1002/slct.201800319]
[114]
Sutar, S.M.; Savanur, H.M.; Patil, C.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Kalkhambkar, R.G. Synthesis, molecular modelling studies and antimicrobial activity of coumarin and 1-azacoumarin linked 1,2,3-triazole. Chemical Data Collections, 2020, 28100480
[http://dx.doi.org/10.1016/j.cdc.2020.100480]
[115]
Shaikh, M.H.; Subhedar, D.D.; Shingate, B.B.; Kalam Khan, F.A.; Sangshetti, J.N.; Khedkar, V.M.; Nawale, L.; Sarkar, D.; Navale, G.R.; Shinde, S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res., 2016, 25(4), 790-804.
[http://dx.doi.org/10.1007/s00044-016-1519-9]
[116]
Shaikh, M.H.; Subhedar, D.D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin. Chem. Lett., 2016, 27(2), 295-301.
[http://dx.doi.org/10.1016/j.cclet.2015.11.003]
[117]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[118]
Vani, I.; Prasad, K. Design, synthesis, antimicrobial, and antioxidant activity of dimers of chromene containing 1, 2, 3-triazole derivatives bearing an alkyl spacer. Russ. J. Gen. Chem., 2019, 89(10), 2108-2114.
[http://dx.doi.org/10.1134/S1070363219100190]
[119]
Al-Blewi, F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; El Ashry, E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J., 2018, 12(1), 110.
[http://dx.doi.org/10.1186/s13065-018-0479-1] [PMID: 30387018]
[120]
Subhashini, N.J.P.; Praveen Kumar, E.; Gurrapu, N.; Yerragunta, V. Design and synthesis of imidazolo-1, 2,3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J. Mol. Struct., 2019, 1180, 618-628.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.029]
[121]
Kumar, B.S.; Veena, B.S.; Anantha Lakshmi, P.V.; Kamala, L.; Sujatha, E. Synthesis and antimicrobial activity of novel 1,4,5-triphenyl-1H-imidazol-[1,2,3]-triazole derivatives. Russ. J. Bioorganic Chem., 2017, 43(5), 589-594.
[http://dx.doi.org/10.1134/S1068162017050120]
[122]
Nalawade, J.; Shinde, A.; Chavan, A.; Patil, S.; Suryavanshi, M.; Modak, M.; Choudhari, P.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2019, 179, 649-659.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.074] [PMID: 31279297]
[123]
Sindhu, J.; Singh, H.; Khurana, J.M.; Bhardwaj, J.K.; Saraf, P.; Sharma, C. Synthesis and biological evaluation of some functionalized 1H-1,2,3-triazole tethered pyrazolo[3,4-b]pyridin-6(7H)-ones as antimicrobial and apoptosis inducing agents. Med. Chem. Res., 2016, 25(9), 1813-1830.
[http://dx.doi.org/10.1007/s00044-016-1604-0]
[124]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Gill, C.H. Ultrasound-mediated synthesis of novel 1,2,3-triazole-based pyrazole and pyrimidine derivatives as antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 3195-3201.
[http://dx.doi.org/10.1002/jhet.2935]
[125]
Pervaram, S.; Ashok, D.; Boddu, A.R.; Sarasija, M.; Reddy, C. Design and synthesis of new 1,2,3-triazole-pyrazole hybrids as antimicrobial agents. Russ. J. Gen. Chem., 2017, 87, 2454-2461.
[http://dx.doi.org/10.1134/S1070363217100280]
[126]
Subhashini, N.J.P.; Sravanthi, K.; Sravanthi, C.; Reddy, M.S. Microwave-assisted synthesis of pyrazole-based 1,2,3-triazole derivatives and evaluation of their antimicrobial activity. Russ. J. Gen. Chem., 2016, 86(12), 2777-2784.
[http://dx.doi.org/10.1134/S1070363216120392]
[127]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G. Microwave-assisted synthesis, antioxidant and antimicrobial evaluation of 2-indolinone-based bis-1,2,3-triazole derivatives. Mol. Divers., 2018, 22(1), 57-70.
[http://dx.doi.org/10.1007/s11030-017-9791-2] [PMID: 29116620]
[128]
Sampath, S.; Vadivelu, M.; Ravindran, R.; Perumal, P.T.; Velkannan, V.; Karthikeyan, K. Synthesis of 1,2,3-triazole tethered 3-hydroxy-2-oxindoles: promising corrosion inhibitors for steel in acidic medium and their anti-microbial evaluation. ChemistrySelect, 2020, 5(7), 2130-2134.
[http://dx.doi.org/10.1002/slct.201904320]
[129]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Strohmann, C.; Mastouri, M. One-pot four-component domino strategy for the synthesis of novel spirooxindole–pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: In vitro antibacterial and antifungal studies. C. R. Chim., 2018, 21(1), 41-53.
[http://dx.doi.org/10.1016/j.crci.2017.11.009]
[130]
Aouad, M.R. Click synthesis and antimicrobial screening of novel isatin-1,2,3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int., 2017, 49(3), 216-227.
[http://dx.doi.org/10.1080/00304948.2017.1320515]
[131]
Yagnam, S.; Ramireddy, E.; Trivedi, R.; Krishna, N.; Lingamallu, G.; Rathod, B.; Prakasham, R.; Sridhar, B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation: Ferrocenylidene-oxindole triazole. Appl. Organomet. Chem., 2019, 33e4817
[http://dx.doi.org/10.1002/aoc.4817]
[132]
Xu, G.; Zhao, J.; Jiang, Y.; Zhang, P.; Li, W. Design, synthesis and antifungal activity of novel indole derivatives linked with the 1, 2, 3-triazole moiety via the CuAAC click reaction. J. Chem. Res., 2016, 40(5), 269-272.
[http://dx.doi.org/10.3184/174751916X14597828245275]
[133]
Kamala, L.; Veena, B.S.; Anantha Lakshmi, P.V.; Vasantha, P.; Sujatha, E. Synthesis and antimicrobial activity of novel 5-[(1H-indol-3-yl)methylene]thiazolidine-2,4-dione–[1,2,3]triazole hybrids. Russ. J. Gen. Chem., 2017, 87(2), 316-321.
[http://dx.doi.org/10.1134/S107036321702027X]
[134]
Huo, X-Y.; Guo, L.; Chen, X-F.; Zhou, Y-T.; Zhang, J.; Han, X-Q.; Dai, B. Design, synthesis, and antifungal activity of novel aryl-1,2,3-triazole-β-carboline hybrids. Molecules, 2018, 23(6), 1344.
[http://dx.doi.org/10.3390/molecules23061344] [PMID: 29866988]
[135]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene-d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]
[136]
Maddila, S.; Nagaraju, K.; Jonnalagadda, S.B. Synthesis and antimicrobial evaluation of novel pyrano[2,3-d]-pyrimidine bearing 1,2,3-triazoles. Chemical Data Collections, 2020, 28100486
[http://dx.doi.org/10.1016/j.cdc.2020.100486]
[137]
Khare, S.P.; Deshmukh, T.R.; Sangshetti, J.N.; Krishna, V.S.; Sriram, D.; Khedkar, V.M.; Shingate, B.B. Design, synthesis and molecular docking studies of novel triazole-chromene conjugates as antitubercular, antioxidant and antifungal agents. ChemistrySelect, 2018, 3(46), 13113-13122.
[http://dx.doi.org/10.1002/slct.201801859]
[138]
Khare, S.P.; Deshmukh, T.R.; Akolkar, S.V.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. New 1,2,3-triazole-linked tetrahydrobenzo[b]pyran derivatives: Facile synthesis, biological evaluation and molecular docking study. Res. Chem. Intermed., 2019, 45(10), 5159-5182.
[http://dx.doi.org/10.1007/s11164-019-03906-0]
[139]
Głowacka, I.E.; Grzonkowski, P.; Lisiecki, P.; Kalinowski, Ł.; Piotrowska, D.G. Synthesis and antimicrobial activity of novel 1,2,3-triazole-conjugates of quinazolin-4-ones. Arch. Pharm. (Weinheim), 2019, 352(3)e1800302
[http://dx.doi.org/10.1002/ardp.201800302] [PMID: 30698294]
[140]
Mir, M.; Masood, M.M.; Irfan, M.; Khan, P.; Alajmi, M.; Hussain, A.; Garrison, J.; Mt, R.; Abid, M. 2,3-Triazole-quinazolin-4(3H)-one conjugates: evolution of ergosterol inhibitor as anticandidal agent †. RSC Advances, 2018, 8, 39611-39625.
[http://dx.doi.org/10.1039/C8RA08426B]
[141]
Keniya, M.V.; Sabherwal, M.; Wilson, R.K.; Woods, M.A.; Sagatova, A.A.; Tyndall, J.D.A.; Monk, B.C. Crystal structures of full-length lanosterol 14α-demethylases of prominent fungal pathogens candida albicans and candida glabrata provide tools for antifungal discovery. Antimicrob. Agents Chemother., 2018, 62(11), e01134-e01118.
[PMID: 30126961]
[142]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[143]
Yerrabelly, J.R.; Mallepaka, P. Facile synthesis of novel isoflavone/1,2,3-triazole hybridheterocycles as potential antimicrobial agents. Russ. J. Gen. Chem., 2020, 90(5), 911-916.
[http://dx.doi.org/10.1134/S1070363220050266]
[144]
Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem., 2018, 77, 236-244.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.016] [PMID: 29421698]
[145]
Sunitha, V.; Kumar, A.K.; Jalapathi, P.; Lincoln, C.A. Synthesis and antimicrobial activity of bis-1,2,3-triazole based chalcones. Russ. J. Gen. Chem., 2020, 90(1), 154-159.
[http://dx.doi.org/10.1134/S1070363220010247]
[146]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.055] [PMID: 29890388]
[147]
Ashok, D.; Kavitha, R.; Gundu, S.; Hanumantha, R. Microwave-assisted synthesis of new pyrazole derivatives bearing 1,2,3-triazole scaffold as potential antimicrobial agents. J. Serb. Chem. Soc., 2017, 82, 16-16.
[http://dx.doi.org/10.2298/JSC160205016A]
[148]
Kumar, K.S.; Siddaiah, V.; Lilakar, J.D.; Ganesh, A. An efficient continuous-flow synthesis and evaluation of antimicrobial activity of novel 1,2,3-Triazole-Furan hybrid chalcone derivatives. Chemical Data Collections, 2020, 28100457
[http://dx.doi.org/10.1016/j.cdc.2020.100457]
[149]
Wei, J-J.; Jin, L.; Wan, K.; Zhou, C-H. Synthesis of novel D-glucose-derived benzyl and alkyl 1, 2, 3-triazoles as potential antifungal and antibacterial agents. Bull. Korean Chem. Soc., 2011, 32(1), 229-238.
[http://dx.doi.org/10.5012/bkcs.2011.32.1.229]
[150]
Petrova, K.T.; Potewar, T.M.; Correia-da-Silva, P.; Barros, M.T.; Calhelha, R.C.; Ćiric, A.; Soković, M.; Ferreira, I.C.F.R. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr. Res., 2015, 417, 66-71.
[http://dx.doi.org/10.1016/j.carres.2015.09.003] [PMID: 26432609]
[151]
Li, Q.; Tan, W.; Zhang, C.; Gu, G.; Guo, Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int. J. Biol. Macromol., 2016, 91, 623-629.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.006] [PMID: 27267573]
[152]
Kommagalla, Y.; Cornea, S.; Riehle, R.; Torchilin, V.; Degterev, A.; Ramana, C.V. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole. MedChemComm, 2014, 5(9), 1359-1363.
[http://dx.doi.org/10.1039/C4MD00109E] [PMID: 25505943]
[153]
Miao, B.; Skidan, I.; Yang, J.; Lugovskoy, A.; Reibarkh, M.; Long, K.; Brazell, T.; Durugkar, K.A.; Maki, J.; Ramana, C.V.; Schaffhausen, B.; Wagner, G.; Torchilin, V.; Yuan, J.; Degterev, A. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20126-20131.
[http://dx.doi.org/10.1073/pnas.1004522107] [PMID: 21041639]
[154]
Pulya, S.; Kommagalla, Y.; Sant, D.G.; Jorwekar, S.U.; Tupe, S.G.; Deshpande, M.V.; Ramana, C.V. Re-engineering of PIP3-antagonist triazole PITENIN’s chemical scaffold: development of novel antifungal leads. RSC Advances, 2016, 6(14), 11691-11701.
[http://dx.doi.org/10.1039/C5RA25145A]
[155]
Li, Y.; Lei, S.; Liu, Y. Design, synthesis and fungicidal activities of novel 1,2,3-triazole functionalized strobilurins. ChemistrySelect, 2019, 4(3), 1015-1018.
[http://dx.doi.org/10.1002/slct.201803597]
[156]
Reddy, B.J.; Reddy, V.P.; Goud, G.L.; Rao, Y.J. Premkumar; Supriya, K. Synthesis of novel 1-benzyl/aryl-4-{[(1-aryl-1H-1,2,3-triazol-4-yl)methoxy]methyl}-1H-1,2,3-triazole derivatives and evaluation of their antimicrobial activity. Russ. J. Gen. Chem., 2016, 86(6), 1424-1429.
[http://dx.doi.org/10.1134/S107036321606030X]
[157]
Pertino, M.W.; Theoduloz, C.; Butassi, E.; Zacchino, S.; Schmeda-Hirschmann, G. Synthesis, antiproliferative and antifungal activities of 1,2,3-triazole-substituted carnosic Acid and carnosol derivatives. Molecules, 2015, 20(5), 8666-8686.
[http://dx.doi.org/10.3390/molecules20058666] [PMID: 26007173]
[158]
Rajasekaran, A.; Murugesan, S. AnandaRajagopal, K. Antibacterial, antifungal and anticonvulsant evaluation of novel newly synthesized 1-[2-(1H-tetrazol-5-yl)ethyl]-1H-benzo[d][1, 2,3]triazoles. Arch. Pharm. Res., 2006, 29(7), 535-540.
[http://dx.doi.org/10.1007/BF02969261] [PMID: 16903071]
[159]
Marepu, N.; Yeturu, S.; Pal, M. 1,2,3-Triazole fused with pyridine/pyrimidine as new template for antimicrobial agents: Regioselective synthesis and identification of potent N-heteroarenes. Bioorg. Med. Chem. Lett., 2018, 28(20), 3302-3306.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.021] [PMID: 30243590]
[160]
Wang, X-L.; Wan, K.; Zhou, C-H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[161]
Darandale, S.N.; Mulla, N.A.; Pansare, D.N.; Sangshetti, J.N.; Shinde, D.B. A novel amalgamation of 1,2,3-triazoles, piperidines and thieno pyridine rings and evaluation of their antifungal activity. Eur. J. Med. Chem., 2013, 65, 527-532.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.045] [PMID: 23807083]
[162]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[163]
Lal, K.; Poonia, N.; Rani, P.; Kumar, A.; Kumar, A. Design, synthesis, antimicrobial evaluation and docking studies of urea-triazole-amide hybrids. J. Mol. Struct., 2020, 1215128234
[http://dx.doi.org/10.1016/j.molstruc.2020.128234]
[164]
Thotla, K.; Noole, V.; Reddy, C.K. Synthesis and antimicrobial activity of a novel hybrid benzo[b]thiophene-1,2,3-triazole analogues. Chemical Data Collections, 2020, 27100361
[http://dx.doi.org/10.1016/j.cdc.2020.100361]
[165]
Yan, W.; Wang, X.; Li, K.; Li, T-X.; Wang, J-J.; Yao, K-C.; Cao, L-L.; Zhao, S-S.; Ye, Y-H. Design, synthesis, and antifungal activity of carboxamide derivatives possessing 1,2,3-triazole as potential succinate dehydrogenase inhibitors. Pestic. Biochem. Physiol., 2019, 156, 160-169.
[http://dx.doi.org/10.1016/j.pestbp.2019.02.017] [PMID: 31027576]
[166]
Naveen; Tittal, R.K.; Ghule, V.D.; Yadav, P.; Lal, K.; Kumar, A. Synthesis, antimicrobial potency with in silico study of Boc-leucine-1,2,3-triazoles. Steroids, 2020, 161108675
[http://dx.doi.org/10.1016/j.steroids.2020.108675]
[167]
Awolade, P.; Cele, N.; Kerru, N.; Singh, P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline-1H-1,2,3-triazole molecular hybrids. InMolecular Diversity; Springer: Berlin, 2020.
[http://dx.doi.org/10.1007/s11030-020-10112-3] [PMID: 32507981]
[168]
Senthil, S.; Gopi, R. N-Substituted-1,2,3-triazoles: Synthesis, characterization and antimicrobial activity studies. Pharma Chem., 2015, 7, 15-23.
[169]
Hamid, A.M.A.; El-Sayed, H.A.; Mohammed, S.M.; Moustafa, A.H.; Morsy, H.A. Functionalization of 1,2,3-triazole to pyrimidine, pyridine, pyrazole, and isoxazole fluorophores with antimicrobial activity. Russ. J. Gen. Chem., 2020, 90(3), 476-482.
[http://dx.doi.org/10.1134/S1070363220030226]
[170]
Rachakonda, S.; Krs, P.; Basaveswararao, M.; Syed, S. Synthesis and antimicrobial activity of 1,2,3-triazole-tethered nitroguaiacol ethers. Asian J Pharm Clin Res, 2019, 12(5), 329-334.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i5.29603]
[171]
Al Ghami, H.A.; Alam, M.M. Synthesis and characterization of 1,2,3-triazole and hydrazone derivatives as potent antimicrobial agent. Int. J. Bio. Pharma. Allied Sci., 2019, 8(1), 37-52.
[172]
Swetha, Y.; Reddy, E.R.; Kumar, J.R.; Trivedi, R.; Giribabu, L.; Sridhar, B.; Rathod, B.; Prakasham, R.S. Synthesis, characterization and antimicrobial evaluation of ferrocen… oxime ether benzyl 1H-1,2,3-triazole hybrids. New J. Chem., 2019, 43, 8341-8351.
[http://dx.doi.org/10.1039/C9NJ00660E]
[173]
Jadhav, R.; Raundal, H.; Patil, A.; Bobade, V. Synthesis and biological evaluation of series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc., 2017, 21(2), 152-159.
[174]
Rambabu, N.; Dubey, P.K.; Ram, B.; Balram, B. Synthesis, Characterization and Antimicrobial Evaluation of (E)-N′-[(1-(2-methoxy-6-pentadecylbenzyl)-1H-1,2,3-triazol-4-yl]-methylene) benzohydrazide Derivatives. Asian J. Chem., 2016, 28, 175-180.
[http://dx.doi.org/10.14233/ajchem.2016.19310]
[175]
Vijai Kumar Reddy, T.; Jyotsna, A.; Prabhavathi Devi, B.L.A.; Prasad, R.B.N.; Poornachandra, Y.; Ganesh Kumar, C. Design, synthesis and in vitro biological evaluation of short-chain C12-sphinganine and its 1,2,3-triazole analogs as potential antimicrobial and anti-biofilm agents. Eur. J. Med. Chem., 2016, 118, 98-106.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.020] [PMID: 27128176]
[176]
Kaushik, C.P.; Luxmi, R. Facile expeditious one-pot synthesis and antifungal evaluation of disubstituted 1,2,3-triazole with two amide linkages. Synth. Commun., 2017, 47(23), 2225-2231.
[http://dx.doi.org/10.1080/00397911.2017.1369124]
[177]
Kaushik, C.; Kumar, K.; Narasimhan, B.; Singh, D.; Kumar, P.; Pahwa, A. 2017.
[178]
Kaushik, C.P.; Luxmi, R.; Singh, D.; Kumar, A. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Mol. Divers., 2017, 21(1), 137-145.
[http://dx.doi.org/10.1007/s11030-016-9710-y] [PMID: 27900513]
[179]
Kaushik, C.P.; Lal, K.; Kumar, A.; Kumar, S. Synthesis and biological evaluation of amino acid-linked 1,2,3-bistriazole conjugates as potential antimicrobial agents. Med. Chem. Res., 2014, 23(6), 2995-3004.
[http://dx.doi.org/10.1007/s00044-013-0882-z]
[180]
Jiang, Y-Q.; Jia, S-H.; Li, X-Y.; Sun, Y-M.; Li, W.; Zhang, W-W.; Xu, G-Q. Design, synthesis, and antifungal evaluation of novel benzoxazole derivatives containing a 1,2,3-triazole moiety. J. Chin. Chem. Soc. (Taipei), 2017, 64(10), 1197-1202.
[http://dx.doi.org/10.1002/jccs.201700129]
[181]
Ramirez, A.; González-Calderón, D.; Rojas-García, R.; González-Romero, C.; Tamariz, J.; Morales-Rodríguez, M.; Zavala-Segovia, N.; Fuentes-Benítes, A. Synthesis and antifungal activity of novel oxazolidin-2-one linked-1,2,3-triazole derivatives. MedChemComm, 2017, 8, 2258-2262.
[http://dx.doi.org/10.1039/C7MD00442G] [PMID: 30108741]
[182]
Santos, T.F.; de Jesus, J.B.; Neufeld, P.M.; Jordão, A.K.; Campos, V.R.; Cunha, A.C.; Castro, H.C.; de Souza, M.C.B.V.; Ferreira, V.F.; Rodrigues, C.R.; Abreu, P.A. Exploring 1,2,3-triazole derivatives by using in vitro and in silico assays to target new antifungal agents and treat Candidiasis. Med. Chem. Res., 2017, 26(3), 680-689.
[http://dx.doi.org/10.1007/s00044-017-1789-x]
[183]
Shaikh, M.H.; Subhedar, D.D.; Khedkar, V.M.; Jha, P.C.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole tethered acetophenones: Synthesis, bioevaluation and molecular docking study. Chin. Chem. Lett., 2016, 27(7), 1058-1063.
[http://dx.doi.org/10.1016/j.cclet.2016.03.014]
[184]
Chaudhary, P.; Tupe, S.; Jorwekar, S.; Sant, D.; Deshpande, S.; Maybhate, S.; Likhite, A.; Deshpande, M. Synthesis and antifungal potential of 1,2,3-triazole and 1,2,4- triazole thiol substituted strobilurin derivatives. Indian J. Chem. Sect. B, 2015, 54B, 908-917.
[185]
Jiang, Y.; Ren, B.; Lv, X.; Zhang, W.; Li, W.; Xu, G. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1,2,3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39(4), 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[186]
He, J-B.; He, H-F.; Zhao, L-L.; Zhang, L.; You, G-Y.; Feng, L-L.; Wan, J.; He, H-W. Synthesis and antifungal activity of 5-iodo-1,4-disubstituted-1,2,3-triazole derivatives as pyruvate dehydrogenase complex E1 inhibitors. Bioorg. Med. Chem., 2015, 23(7), 1395-1401.
[http://dx.doi.org/10.1016/j.bmc.2015.02.047] [PMID: 25766628]
[187]
Irfan, M.; Aneja, B.; Yadava, U.; Khan, S.I.; Manzoor, N.; Daniliuc, C.G.; Abid, M. Synthesis, QSAR and anticandidal evaluation of 1,2,3-triazoles derived from naturally bioactive scaffolds. Eur. J. Med. Chem., 2015, 93, 246-254.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.007] [PMID: 25686593]
[188]
Komsani, J.R.; Avula, S.; Koppireddi, S.; Koochana, P.K. USN, M.; Yadla, R. Synthesis and antimicrobial activity of N-Aryl-4-(cyano/alkoxycarbonyl)-5-(pyridin-3-yl)-1H/3H-1,2,3-triazole derivatives. J. Heterocycl. Chem., 2015, 52(3), 764-772.
[http://dx.doi.org/10.1002/jhet.2186]
[189]
Aouad, M.R.; Mayaba, M.M.; Naqvi, A.; Bardaweel, S.K.; Al-Blewi, F.F.; Messali, M.; Rezki, N. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J., 2017, 11(1), 117-117.
[http://dx.doi.org/10.1186/s13065-017-0347-4] [PMID: 29159721]
[190]
Modhumpuram, N.; Pochampalli, J.; Angajala, K.K.; Bhookya, S. Synthesis and anti-microbial evaluation of some novel bridged benzofuran and 1,2,3-triazole based analogues. Pharma Chem., 2017, 9(4), 36-42.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy