Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies

Author(s): Pobitra Borah, Pran K. Deb*, Katharigatta N. Venugopala, Nizar A. Al-Shar’i, Vinayak Singh, Satyendra Deka, Amavya Srivastava, Vinod Tiwari and Raghu P. Mailavaram

Volume 21, Issue 6, 2021

Published on: 11 December, 2020

Page: [547 - 570] Pages: 24

DOI: 10.2174/1568026621999201211200447

Price: $65

Abstract

Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.

Keywords: Tuberculosis, Mycobacterium tuberculosis, Host-directed therapy, Bedaquiline, Delamanid, Drug resistance, MDR-TB.

« Previous
Graphical Abstract
[1]
Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2018, 16(4), 202-213.
[http://dx.doi.org/10.1038/nrmicro.2018.8] [PMID: 29456241]
[2]
Garnier, T.; Eiglmeier, K.; Camus, J-C.; Medina, N.; Mansoor, H.; Pryor, M.; Duthoy, S.; Grondin, S.; Lacroix, C.; Monsempe, C.; Simon, S.; Harris, B.; Atkin, R.; Doggett, J.; Mayes, R.; Keating, L.; Wheeler, P.R.; Parkhill, J.; Barrell, B.G.; Cole, S.T.; Gordon, S.V.; Hewinson, R.G. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7877-7882.
[http://dx.doi.org/10.1073/pnas.1130426100] [PMID: 12788972]
[3]
Coscolla, M.; Gagneux, S. Consequences of genomic diversity in Mycobacterium tuberculosis.Seminars in immunology; Elsevier: Amsterdam, 2014, Vol. 26, pp. 431-444.
[http://dx.doi.org/10.1016/j.smim.2014.09.012]
[4]
Ehrt, S.; Schnappinger, D.; Rhee, K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol., 2018, 16(8), 496-507.
[http://dx.doi.org/10.1038/s41579-018-0013-4] [PMID: 29691481]
[5]
Nandi, S.; Ahmed, S.; Saxena, A.K. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ. Res., 2018, 29(2), 151-170.
[http://dx.doi.org/10.1080/1062936X.2017.1419375 PMID: 29347843]
[6]
Gutierrez, M.C.; Brisse, S.; Brosch, R.; Fabre, M.; Omaïs, B.; Marmiesse, M.; Supply, P.; Vincent, V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog., 2005, 1(1)e5
[http://dx.doi.org/10.1371/journal.ppat.0010005] [PMID: 16201017]
[7]
Rohde, K.H.; Russell, D.G. The minimal unit of infection: Mycobacterium tuberculosis in the macrophage. Microbiol. Spectr., 2016, 4(6), 10.
[8]
Brites, D.; Gagneux, S. Old and new selective pressures on Mycobacterium tuberculosis. Infect. Genet. Evol., 2012, 12(4), 678-685.
[http://dx.doi.org/10.1016/j.meegid.2011.08.010] [PMID: 21867778]
[9]
Ernst, J.D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol., 2012, 12(8), 581-591.
[http://dx.doi.org/10.1038/nri3259] [PMID: 22790178]
[11]
Cantini, F.; Niccoli, L.; Capone, A.; Petrone, L.; Goletti, D. Risk of tuberculosis reactivation associated with traditional disease modifying anti-rheumatic drugs and non-anti-tumor necrosis factor biologics in patients with rheumatic disorders and suggestion for clinical practice. Expert Opin. Drug Saf., 2019, 18(5), 415-425.
[http://dx.doi.org/10.1080/14740338.2019.1612872 PMID: 31066297]
[12]
Kwan, C.K.; Ernst, J.D. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev., 2011, 24(2), 351-376.
[http://dx.doi.org/10.1128/CMR.00042-10] [PMID: 21482729]
[13]
Bei, C.; Fu, M.; Zhang, Y.; Xie, H.; Yin, K.; Liu, Y.; Zhang, L.; Xie, B.; Li, F.; Huang, H.; Liu, Y.; Yang, L.; Zhou, J. Mortality and associated factors of patients with extensive drug-resistant tuberculosis: an emerging public health crisis in China. BMC Infect. Dis., 2018, 18(1), 261.
[http://dx.doi.org/10.1186/s12879-018-3169-7] [PMID: 29879908]
[14]
Lienhardt, C.; Glaziou, P.; Uplekar, M.; Lönnroth, K.; Getahun, H.; Raviglione, M. Global tuberculosis control: lessons learnt and future prospects. Nat. Rev. Microbiol., 2012, 10(6), 407-416.
[http://dx.doi.org/10.1038/nrmicro2797] [PMID: 22580364]
[15]
Mase, S.R.; Chorba, T. Treatment of drug-resistant tuberculosis. Clin. Chest Med., 2019, 40(4), 775-795.
[http://dx.doi.org/10.1016/j.ccm.2019.08.002] [PMID: 31731984]
[16]
Caminero, J.A.; Cayla, J.A.; García-García, J-M.; García-Pérez, F.J.; Palacios, J.J.; Ruiz-Manzano, J. Diagnosis and treatment of drug-resistant tuberculosis. Arch. Bronconeumol., 2017, 53(9), 501-509.
[PMID: 28359606] [http://dx.doi.org/10.1016/j.arbr.2017.07.005]]
[17]
Senousy, B.E.; Belal, S.I.; Draganov, P.V. Hepatotoxic effects of therapies for tuberculosis. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(10), 543-556.
[http://dx.doi.org/10.1038/nrgastro.2010.134] [PMID: 20808293]
[18]
Iacobino, A.; Fattorini, L.; Giannoni, F. Drug-resistant tuberculosis 2020: where we stand. Appl. Sci. (Basel), 2020, 10(6), 2153.
[http://dx.doi.org/10.3390/app10062153]
[19]
WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; WHO: Geneva, 2019.
[20]
Dey, R.; Nandi, S.; Samadder, A.; Saxena, A.; Saxena, A.K. Exploring the potential inhibition of candidate drug molecules for clinical investigation based on their docking or crystallographic analyses against M. tuberculosis enzyme targets. Curr. Top. Med. Chem., 2020, 20(29), 2662-2680.
[http://dx.doi.org/10.2174/1568026620666200903163921] [PMID: 32885754]
[21]
Günther, G.; Lange, C.; Alexandru, S.; Altet, N.; Avsar, K.; Bang, D.; Barbuta, R.; Bothamley, G.; Ciobanu, A.; Crudu, V.; Danilovits, M.; Dedicoat, M.; Duarte, R.; Gualano, G.; Kunst, H.; de Lange, W.; Leimane, V.; Magis-Escurra, C.; McLaughlin, A.M.; Muylle, I.; Polcová, V.; Popa, C.; Rumetshofer, R.; Skrahina, A.; Solodovnikova, V.; Spinu, V.; Tiberi, S.; Viiklepp, P.; van Leth, F. for TBNET. Treatment outcomes in multidrug-resistant tuberculosis. N. Engl. J. Med., 2016, 375(11), 1103-1105.
[http://dx.doi.org/10.1056/NEJMc1603274] [PMID: 27626539]
[22]
Kang, D.D.; Lin, Y.; Moreno, J-R.; Randall, T.D.; Khader, S.A. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One, 2011, 6(1)e16161
[http://dx.doi.org/10.1371/journal.pone.0016161] [PMID: 21249199]
[23]
Wolf, A.J.; Linas, B.; Trevejo-Nuñez, G.J.; Kincaid, E.; Tamura, T.; Takatsu, K.; Ernst, J.D. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol., 2007, 179(4), 2509-2519.
[http://dx.doi.org/10.4049/jimmunol.179.4.2509] [PMID: 17675513]
[24]
Coulombe, F.; Divangahi, M.; Veyrier, F.; de Léséleuc, L.; Gleason, J.L.; Yang, Y.; Kelliher, M.A.; Pandey, A.K.; Sassetti, C.M.; Reed, M.B.; Behr, M.A. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med., 2009, 206(8), 1709-1716.
[http://dx.doi.org/10.1084/jem.20081779] [PMID: 19581406]
[25]
Brooks, M.N.; Rajaram, M.V.; Azad, A.K.; Amer, A.O.; Valdivia-Arenas, M.A.; Park, J-H.; Núñez, G.; Schlesinger, L.S. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell. Microbiol., 2011, 13(3), 402-418.
[http://dx.doi.org/10.1111/j.1462-5822.2010.01544.x PMID: 21040358]
[26]
Mishra, B.B.; Moura-Alves, P.; Sonawane, A.; Hacohen, N.; Griffiths, G.; Moita, L.F.; Anes, E. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol., 2010, 12(8), 1046-1063.
[http://dx.doi.org/10.1111/j.1462-5822.2010.01450.x PMID: 20148899]
[27]
Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol., 2012, 12(5), 352-366.
[http://dx.doi.org/10.1038/nri3211] [PMID: 22517424]
[28]
Golubinskaya, E.P.; Filonenko, T.G.; Kramar, T.V.; Yermola, Y.A.; Kubyshkin, A.V.; Gerashenko, A.V.; Kalfa, M.A.; Shramko, I.I. Dysregulation of VEGF-dependent angiogenesis in cavernous lung tuberculosis. Pathophysiology, 2019, 26(3-4), 381-387.
[http://dx.doi.org/10.1016/j.pathophys.2019.11.004 PMID: 31791834]
[29]
Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; Menzies, D.; Raviglione, M. Tuberculosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16076.
[http://dx.doi.org/10.1038/nrdp.2016.76] [PMID: 27784885]
[30]
Ramakrishnan, L. Mycobacterium tuberculosis pathogenicity viewed through the lens of molecular Koch’s postulates. Curr. Opin. Microbiol., 2020, 54, 103-110.
[http://dx.doi.org/10.1016/j.mib.2020.01.011] [PMID: 32062573]
[31]
Famelis, N.; Rivera-Calzada, A.; Degliesposti, G.; Wingender, M.; Mietrach, N.; Skehel, J.M.; Fernandez-Leiro, R.; Böttcher, B.; Schlosser, A.; Llorca, O.; Geibel, S. Architecture of the mycobacterial type VII secretion system. Nature, 2019, 576(7786), 321-325.
[http://dx.doi.org/10.1038/s41586-019-1633-1] [PMID: 31597161]
[32]
Gallegos, A.M.; Pamer, E.G.; Glickman, M.S. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J. Exp. Med., 2008, 205(10), 2359-2368.
[http://dx.doi.org/10.1084/jem.20080353] [PMID: 18779346]
[33]
Blomgran, R.; Ernst, J.D. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J. Immunol., 2011, 186(12), 7110-7119.
[http://dx.doi.org/10.4049/jimmunol.1100001] [PMID: 21555529]
[34]
Bertolini, T.B.; Piñeros, A.R.; Prado, R.Q.; Gembre, A.F.; Ramalho, L.N.Z.; Alves-Filho, J.C.; Bonato, V.L.D. CCR4-dependent reduction in the number and suppressor function of CD4+Foxp3+ cells augments IFN-γ-mediated pulmonary inflammation and aggravates tuberculosis pathogenesis. Cell Death Dis., 2018, 10(1), 11.
[http://dx.doi.org/10.1038/s41419-018-1240-3] [PMID: 30584243]
[35]
Kasmar, A.G.; van Rhijn, I.; Cheng, T-Y.; Turner, M.; Seshadri, C.; Schiefner, A.; Kalathur, R.C.; Annand, J.W.; de Jong, A.; Shires, J.; Leon, L.; Brenner, M.; Wilson, I.A.; Altman, J.D.; Moody, D.B. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med., 2011, 208(9), 1741-1747.
[http://dx.doi.org/10.1084/jem.20110665] [PMID: 21807869]
[36]
Montamat-Sicotte, D.J.; Millington, K.A.; Willcox, C.R.; Hingley-Wilson, S.; Hackforth, S.; Innes, J.; Kon, O.M.; Lammas, D.A.; Minnikin, D.E.; Besra, G.S.; Willcox, B.E.; Lalvani, A. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Invest., 2011, 121(6), 2493-2503.
[http://dx.doi.org/10.1172/JCI46216] [PMID: 21576820]
[37]
Joosten, S.A.; van Meijgaarden, K.E.; van Weeren, P.C.; Kazi, F.; Geluk, A.; Savage, N.D.; Drijfhout, J.W.; Flower, D.R.; Hanekom, W.A.; Klein, M.R.; Ottenhoff, T.H. Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity. PLoS Pathog., 2010, 6(2)e1000782
[http://dx.doi.org/10.1371/journal.ppat.1000782] [PMID: 20195504]
[38]
Lewinsohn, D.M.; Lewinsohn, D.A. New concepts in tuberculosis host defense. Clin. Chest Med., 2019, 40(4), 703-719.
[http://dx.doi.org/10.1016/j.ccm.2019.07.002] [PMID: 31731979]
[39]
Orme, I.M.; Robinson, R.T.; Cooper, A.M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol., 2015, 16(1), 57-63.
[http://dx.doi.org/10.1038/ni.3048] [PMID: 25521685]
[40]
Gill, W.P.; Harik, N.S.; Whiddon, M.R.; Liao, R.P.; Mittler, J.E.; Sherman, D.R. A replication clock for Mycobacterium tuberculosis. Nat. Med., 2009, 15(2), 211-214.
[http://dx.doi.org/10.1038/nm.1915] [PMID: 19182798]
[41]
Ford, C.B.; Lin, P.L.; Chase, M.R.; Shah, R.R.; Iartchouk, O.; Galagan, J.; Mohaideen, N.; Ioerger, T.R.; Sacchettini, J.C.; Lipsitch, M.; Flynn, J.L.; Fortune, S.M. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet., 2011, 43(5), 482-486.
[http://dx.doi.org/10.1038/ng.811] [PMID: 21516081]
[42]
Chao, M.C.; Rubin, E.J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol., 2010, 64, 293-311.
[http://dx.doi.org/10.1146/annurev.micro.112408.134043] [PMID: 20825351]
[43]
Russell-Goldman, E.; Xu, J.; Wang, X.; Chan, J.; Tufariello, J.M. A Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immunity phenotypes. Infect. Immun., 2008, 76(9), 4269-4281.
[http://dx.doi.org/10.1128/IAI.01735-07] [PMID: 18591237]
[44]
Harris, J.; Keane, J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin. Exp. Immunol., 2010, 161(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04146.x PMID: 20491796]
[45]
Harries, A.D.; Lin, Y.; Satyanarayana, S.; Lönnroth, K.; Li, L.; Wilson, N.; Chauhan, L.S.; Zachariah, R.; Baker, M.A.; Jeon, C.Y.; Murray, M.B.; Maher, D.; Bygbjerg, I.C.; Enarson, D.A.; Billo, N.E.; Kapur, A. The looming epidemic of diabetes-associated tuberculosis: learning lessons from HIV-associated tuberculosis. Int. J. Tuberc. Lung Dis., 2011, 15(11), 1436-1444. [i.
[46]
Jick, S.S.; Lieberman, E.S.; Rahman, M.U.; Choi, H.K. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum., 2006, 55(1), 19-26.
[http://dx.doi.org/10.1002/art.21705] [PMID: 16463407]
[47]
Geldmacher, C.; Ngwenyama, N.; Schuetz, A.; Petrovas, C.; Reither, K.; Heeregrave, E.J.; Casazza, J.P.; Ambrozak, D.R.; Louder, M.; Ampofo, W.; Pollakis, G.; Hill, B.; Sanga, E.; Saathoff, E.; Maboko, L.; Roederer, M.; Paxton, W.A.; Hoelscher, M.; Koup, R.A. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J. Exp. Med., 2010, 207(13), 2869-2881.
[http://dx.doi.org/10.1084/jem.20100090] [PMID: 21115690]
[48]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[49]
Dambuza, I.M.; Keeton, R.; Hsu, N-J.; Allie, N.; Quesniaux, V.F.; Ryffel, B.; Jacobs, M. Persistent p55TNFR expression impairs T cell responses during chronic tuberculosis and promotes reactivation. Sci. Rep., 2016, 6(1), 39499.
[http://dx.doi.org/10.1038/srep39499] [PMID: 27995986]
[50]
Moreira-Teixeira, L.; Tabone, O.; Graham, C.M.; Singhania, A.; Stavropoulos, E.; Redford, P.S.; Chakravarty, P.; Priestnall, S.L.; Suarez-Bonnet, A.; Herbert, E.; Mayer-Barber, K.D.; Sher, A.; Fonseca, K.L.; Sousa, J.; Cá, B.; Verma, R.; Haldar, P.; Saraiva, M.; O’Garra, A. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat. Immunol., 2020, 21(4), 464-476.
[http://dx.doi.org/10.1038/s41590-020-0610-z] [PMID: 32205882]
[51]
Turner, R.D. Cough in pulmonary tuberculosis: Existing knowledge and general insights. Pulm. Pharmacol. Ther., 2019, 55, 89-94.
[http://dx.doi.org/10.1016/j.pupt.2019.01.008] [PMID: 30716411]
[52]
Gyimah, F.T.; Dako-Gyeke, P. Perspectives on tb patients’ care and support: a qualitative study conducted in accra metropolis, Ghana. Global. Health, 2019, 15(1), 19.
[http://dx.doi.org/10.1186/s12992-019-0459-9] [PMID: 30836960]
[53]
Daley, C.L. The global fight against tuberculosis. Thorac. Surg. Clin., 2019, 29(1), 19-25.
[http://dx.doi.org/10.1016/j.thorsurg.2018.09.010] [PMID: 30454918]
[54]
Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care: 2017 Update; WHO: Geneva, 2017.
[55]
Rapid Communication: on forthcoming changes to the programmatic management of tuberculosis preventive treatment; WHO: Geneva, 2020.
[56]
WHO consolidated guidelines on tuberculosis: module 1: prevention: tuberculosis preventive treatment; WHO: Geneva, 2020.
[57]
Mitchison, D.A.; Davies, G.R. Assessment of the efficacy of new anti-tuberculosis drugs. Open Infect. Dis. J., 2008, 2, 59-76.
[http://dx.doi.org/10.2174/1874279300802010059 PMID: 23814629]
[58]
Venugopala, K.N.; Kandeel, M.; Pillay, M.; Deb, P.K.; Abdallah, H.H.; Mahomoodally, M.F.; Chopra, D. Anti-tubercular properties of 4-amino-5-(4-fluoro-3- phenoxyphenyl)-4h-1,2,4-triazole-3-thiol and its schiff bases: computational input and molecular dynamics. Antibiotics (Basel), 2020, 9(9), 559.
[http://dx.doi.org/10.3390/antibiotics9090559] [PMID: 32878018]
[59]
Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: molecular target identification and molecular docking studies. Antibiotics (Basel), 2020, 9(5), 233.
[http://dx.doi.org/10.3390/antibiotics9050233] [PMID: 32392709]
[60]
Lynch, M. The lower bound to the evolution of mutation rates. Genome Biol. Evol., 2011, 3, 1107-1118.
[http://dx.doi.org/10.1093/gbe/evr066] [PMID: 21821597]
[61]
Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2020, 9(1), 1651-1663.
[http://dx.doi.org/10.1080/22221751.2020.1785334 PMID: 32573374]
[62]
Lomovskaya, O.; Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem. Pharmacol., 2006, 71(7), 910-918.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[63]
Nasiri, M.J.; Haeili, M.; Ghazi, M.; Goudarzi, H.; Pormohammad, A.; Imani Fooladi, A.A.; Feizabadi, M.M. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol., 2017, 8, 681.
[http://dx.doi.org/10.3389/fmicb.2017.00681] [PMID: 28487675]
[64]
Gupta, R.; Lavollay, M.; Mainardi, J-L.; Arthur, M.; Bishai, W.R.; Lamichhane, G. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med., 2010, 16(4), 466-469.
[http://dx.doi.org/10.1038/nm.2120] [PMID: 20305661]
[65]
Brammer Basta, L.A.; Ghosh, A.; Pan, Y.; Jakoncic, J.; Lloyd, E.P.; Townsend, C.A.; Lamichhane, G.; Bianchet, M.A. Loss of a functionally and structurally distinct ld-transpeptidase, ldtmt5, compromises cell wall integrity in Mycobacterium tuberculosis. J. Biol. Chem., 2015, 290(42), 25670-25685.
[http://dx.doi.org/10.1074/jbc.M115.660753] [PMID: 26304120]
[66]
Steiner, E.M.; Schneider, G.; Schnell, R. Binding and processing of β-lactam antibiotics by the transpeptidase LdtMt2 from Mycobacterium tuberculosis. FEBS J., 2017, 284(5), 725-741.
[http://dx.doi.org/10.1111/febs.14010] [PMID: 28075068]
[67]
Wivagg, C.N.; Wellington, S.; Gomez, J.E.; Hung, D.T. Loss of a class a penicillin-binding protein alters β-lactam susceptibilities in Mycobacterium tuberculosis. ACS Infect. Dis., 2016, 2(2), 104-110.
[http://dx.doi.org/10.1021/acsinfecdis.5b00119] [PMID: 27624961]
[68]
Torres, J.N.; Paul, L.V.; Rodwell, T.C.; Victor, T.C.; Amallraja, A.M.; Elghraoui, A.; Goodmanson, A.P.; Ramirez-Busby, S.M.; Chawla, A.; Zadorozhny, V.; Streicher, E.M.; Sirgel, F.A.; Catanzaro, D.; Rodrigues, C.; Gler, M.T.; Crudu, V.; Catanzaro, A.; Valafar, F. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg. Microbes Infect., 2015, 4(7)e42
[http://dx.doi.org/10.1038/emi.2015.42] [PMID: 26251830]
[69]
Lingaraju, S.; Rigouts, L.; Gupta, A.; Lee, J.; Umubyeyi, A.N.; Davidow, A.L.; German, S.; Cho, E.; Lee, J.I.; Cho, S.N.; Kim, C.T.; Alland, D.; Safi, H. Geographic differences in the contribution of ubiA mutations to high-level ethambutol resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(7), 4101-4105.
[http://dx.doi.org/10.1128/AAC.03002-15] [PMID: 27139478]
[70]
Nguyen, L.; Chinnapapagari, S.; Thompson, C.J. FbpA-Dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J. Bacteriol., 2005, 187(19), 6603-6611.
[http://dx.doi.org/10.1128/JB.187.19.6603-6611.2005 PMID: 16166521]
[71]
Chen, C.; Han, X.; Yan, Q.; Wang, C.; Jia, L.; Taj, A.; Zhao, L.; Ma, Y. The inhibitory effect of glmu acetyltransferase inhibitor tpsa on Mycobacterium tuberculosis may be affected due to its methylation by methyltransferase rv0560c. Front. Cell. Infect. Microbiol., 2019, 9, 251.
[http://dx.doi.org/10.3389/fcimb.2019.00251] [PMID: 31380295]
[72]
Cook, R.; Barnhart, R.; Majumdar, S. Effect of ph on the kinetics of alanine racemase from Mycobacterium tuberculosis. J. Young Investig., 2019, 36(1)
[http://dx.doi.org/10.22186/jyi.36.1.1-4]
[73]
Kimura, K.I. Liposidomycin, the first reported nucleoside antibiotic inhibitor of peptidoglycan biosynthesis translocase I: The discovery of liposidomycin and related compounds with a perspective on their application to new antibiotics. J. Antibiot. (Tokyo), 2019, 72(12), 877-889.
[http://dx.doi.org/10.1038/s41429-019-0241-5] [PMID: 31582803]
[74]
Siroy, A.; Mailaender, C.; Harder, D.; Koerber, S.; Wolschendorf, F.; Danilchanka, O.; Wang, Y.; Heinz, C.; Niederweis, M. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J. Biol. Chem., 2008, 283(26), 17827-17837.
[http://dx.doi.org/10.1074/jbc.M800866200] [PMID: 18434314]
[75]
Colangeli, R.; Helb, D.; Vilchèze, C.; Hazbón, M.H.; Lee, C-G.; Safi, H.; Sayers, B.; Sardone, I.; Jones, M.B.; Fleischmann, R.D.; Peterson, S.N.; Jacobs, W.R., Jr; Alland, D. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog., 2007, 3(6)e87
[http://dx.doi.org/10.1371/journal.ppat.0030087] [PMID: 17590082]
[76]
Ghajavand, H.; Kargarpour Kamakoli, M.; Khanipour, S.; Pourazar Dizaji, S.; Masoumi, M.; Rahimi Jamnani, F.; Fateh, A.; Yaseri, M.; Siadat, S.D.; Vaziri, F. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps. Antimicrob. Resist. Infect. Control, 2019, 8(1), 70.
[http://dx.doi.org/10.1186/s13756-019-0516-4] [PMID: 31073401]
[77]
Li, X.; Li, P.; Ruan, C.; Xie, L.X.; Gu, Y.; Li, J.; Yi, Q.; Lv, X.; Xie, J. Mycobacterium tuberculosis Rv0191 is an efflux pump of major facilitator superfamily transporter regulated by Rv1353c. Arch. Biochem. Biophys., 2019, 667, 59-66.
[http://dx.doi.org/10.1016/j.abb.2019.04.010] [PMID: 31054279]
[78]
Gupta, A.K.; Reddy, V.P.; Lavania, M.; Chauhan, D.S.; Venkatesan, K.; Sharma, V.D.; Tyagi, A.K.; Katoch, V.M. jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J. Med. Res., 2010, 132(2), 176-188.
[79]
AlMatar, M.; Var, I.; Kayar, B.; Köksal, F. Differential expression of resistant and efflux pump genes in mdr-tb isolates. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(2), 271-287.
[80]
Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[81]
Manson, A.L.; Cohen, K.A.; Abeel, T.; Desjardins, C.A.; Armstrong, D.T.; Barry, C.E., III; Brand, J.; Chapman, S.B.; Cho, S.N.; Gabrielian, A.; Gomez, J.; Jodals, A.M.; Joloba, M.; Jureen, P.; Lee, J.S.; Malinga, L.; Maiga, M.; Nordenberg, D.; Noroc, E.; Romancenco, E.; Salazar, A.; Ssengooba, W.; Velayati, A.A.; Winglee, K.; Zalutskaya, A.; Via, L.E.; Cassell, G.H.; Dorman, S.E.; Ellner, J.; Farnia, P.; Galagan, J.E.; Rosenthal, A.; Crudu, V.; Homorodean, D.; Hsueh, P.R.; Narayanan, S.; Pym, A.S.; Skrahina, A.; Swaminathan, S.; Van der Walt, M.; Alland, D.; Bishai, W.R.; Cohen, T.; Hoffner, S.; Birren, B.W.; Earl, A.M. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet., 2017, 49(3), 395-402.
[http://dx.doi.org/10.1038/ng.3767] [PMID: 28092681]
[82]
Liu, J.; Shi, W.; Zhang, S.; Hao, X.; Maslov, D.A.; Shur, K.V.; Bekker, O.B.; Danilenko, V.N.; Zhang, Y. Mutations in efflux pump rv1258c (tap) cause resistance to pyrazinamide, isoniazid, and streptomycin in m. tuberculosis. Front. Microbiol., 2019, 10, 216.
[http://dx.doi.org/10.3389/fmicb.2019.00216] [PMID: 30837962]
[83]
Unissa, A.N.; Dusthackeer, V.N.A.; Kumar, M.P.; Nagarajan, P.; Sukumar, S.; Kumari, V.I.; Lakshmi, A.R.; Hanna, L.E. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India. Tuberculosis (Edinb.), 2017, 107, 144-148.
[http://dx.doi.org/10.1016/j.tube.2017.07.014] [PMID: 29050763]
[84]
Gengenbacher, M.; Kaufmann, S.H. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev., 2012, 36(3), 514-532.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00331.x PMID: 22320122]
[85]
Hu, Y.M.; Butcher, P.D.; Sole, K.; Mitchison, D.A.; Coates, A.R. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol. Lett., 1998, 158(1), 139-145.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12813.x PMID: 9453166]
[86]
Wayne, L.G.; Hayes, L.G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun., 1996, 64(6), 2062-2069.
[http://dx.doi.org/10.1128/IAI.64.6.2062-2069.1996 PMID: 8675308]
[87]
Lavollay, M.; Arthur, M.; Fourgeaud, M.; Dubost, L.; Marie, A.; Veziris, N.; Blanot, D.; Gutmann, L.; Mainardi, J-L. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol., 2008, 190(12), 4360-4366.
[http://dx.doi.org/10.1128/JB.00239-08] [PMID: 18408028]
[88]
Vaubourgeix, J.; Lin, G.; Dhar, N.; Chenouard, N.; Jiang, X.; Botella, H.; Lupoli, T.; Mariani, O.; Yang, G.; Ouerfelli, O.; Unser, M.; Schnappinger, D.; McKinney, J.; Nathan, C. Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe, 2015, 17(2), 178-190.
[http://dx.doi.org/10.1016/j.chom.2014.12.008] [PMID: 25620549]
[89]
Botella, H.; Vaubourgeix, J.; Lee, M.H.; Song, N.; Xu, W.; Makinoshima, H.; Glickman, M.S.; Ehrt, S. Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J., 2017, 36(4), 536-548.
[http://dx.doi.org/10.15252/embj.201695028] [PMID: 28057704]
[90]
Ballesteros, M.; Fredriksson, A.; Henriksson, J.; Nyström, T. Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J., 2001, 20(18), 5280-5289.
[http://dx.doi.org/10.1093/emboj/20.18.5280] [PMID: 11566891]
[91]
Lupoli, T.J.; Fay, A.; Adura, C.; Glickman, M.S.; Nathan, C.F. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proc. Natl. Acad. Sci. USA, 2016, 113(49), E7947-E7956.
[http://dx.doi.org/10.1073/pnas.1617644113] [PMID: 27872278]
[92]
El Meouche, I.; Siu, Y.; Dunlop, M.J. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Sci. Rep., 2016, 6(1), 19538.
[http://dx.doi.org/10.1038/srep19538] [PMID: 26758525]
[93]
Wakamoto, Y.; Dhar, N.; Chait, R.; Schneider, K.; Signorino-Gelo, F.; Leibler, S.; McKinney, J.D. Dynamic persistence of antibiotic-stressed mycobacteria. Science, 2013, 339(6115), 91-95.
[http://dx.doi.org/10.1126/science.1229858] [PMID: 23288538]
[94]
Rieck, B.; Degiacomi, G.; Zimmermann, M.; Cascioferro, A.; Boldrin, F.; Lazar-Adler, N.R.; Bottrill, A.R.; le Chevalier, F.; Frigui, W.; Bellinzoni, M.; Lisa, M.N.; Alzari, P.M.; Nguyen, L.; Brosch, R.; Sauer, U.; Manganelli, R.; O’Hare, H.M. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog., 2017, 13(5)e1006399
[http://dx.doi.org/10.1371/journal.ppat.1006399] [PMID: 28545104]
[95]
Buriánková, K.; Doucet-Populaire, F.; Dorson, O.; Gondran, A.; Ghnassia, J-C.; Weiser, J.; Pernodet, J-L. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother., 2004, 48(1), 143-150.
[http://dx.doi.org/10.1128/AAC.48.1.143-150.2004 PMID: 14693532]
[96]
Andini, N.; Nash, K.A. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agents Chemother., 2006, 50(7), 2560-2562.
[http://dx.doi.org/10.1128/AAC.00264-06] [PMID: 16801446]
[97]
Hegde, S.S.; Vetting, M.W.; Roderick, S.L.; Mitchenall, L.A.; Maxwell, A.; Takiff, H.E.; Blanchard, J.S. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science, 2005, 308(5727), 1480-1483.
[http://dx.doi.org/10.1126/science.1110699] [PMID: 15933203]
[98]
Ferber, D. Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science, 2005, 308(5727), 1393.
[http://dx.doi.org/10.1126/science.308.5727.1393a] [PMID: 15933168]
[99]
Boyaci, H.; Chen, J.; Lilic, M.; Palka, M.; Mooney, R.A.; Landick, R.; Darst, S.A.; Campbell, E.A. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife, 2018, 7e34823
[http://dx.doi.org/10.7554/eLife.34823] [PMID: 29480804]
[100]
Sudalaiyadum Perumal, A.; Vishwakarma, R.K.; Hu, Y.; Morichaud, Z.; Brodolin, K.; Rbp, A. RbpA relaxes promoter selectivity of M. tuberculosis RNA polymerase. Nucleic Acids Res., 2018, 46(19), 10106-10118.
[http://dx.doi.org/10.1093/nar/gky714] [PMID: 30102406]
[101]
Wivagg, C.N.; Bhattacharyya, R.P.; Hung, D.T. Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J. Antibiot. (Tokyo), 2014, 67(9), 645-654.
[http://dx.doi.org/10.1038/ja.2014.94] [PMID: 25052484]
[102]
Hugonnet, J-E.; Blanchard, J.S. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry, 2007, 46(43), 11998-12004.
[http://dx.doi.org/10.1021/bi701506h] [PMID: 17915954]
[103]
Tremblay, L.W.; Fan, F.; Blanchard, J.S. Biochemical and structural characterization of Mycobacterium tuberculosis β-lactamase with the carbapenems ertapenem and doripenem. Biochemistry, 2010, 49(17), 3766-3773.
[http://dx.doi.org/10.1021/bi100232q] [PMID: 20353175]
[104]
Hugonnet, J-E.; Tremblay, L.W.; Boshoff, H.I.; Barry, C.E., III; Blanchard, J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science, 2009, 323(5918), 1215-1218.
[http://dx.doi.org/10.1126/science.1167498] [PMID: 19251630]
[105]
Mainardi, J.L.; Hugonnet, J.E.; Gutmann, L.; Arthur, M. Fighting resistant tuberculosis with old compounds: the carbapenem paradigm. Clin. Microbiol. Infect., 2011, 17(12), 1755-1756.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03699.x PMID: 22044680]
[106]
Green, K.D.; Chen, W.; Garneau-Tsodikova, S. Identification and characterization of inhibitors of the aminoglycoside resistance acetyltransferase Eis from Mycobacterium tuberculosis. ChemMedChem, 2012, 7(1), 73-77.
[http://dx.doi.org/10.1002/cmdc.201100332] [PMID: 21898832]
[107]
Vetting, M.W.; Hegde, S.S.; Javid-Majd, F.; Blanchard, J.S.; Roderick, S.L. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat. Struct. Biol., 2002, 9(9), 653-658.
[http://dx.doi.org/10.1038/nsb830] [PMID: 12161746]
[108]
Burian, J.; Ramón-García, S.; Sweet, G.; Gómez-Velasco, A.; Av-Gay, Y.; Thompson, C.J. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J. Biol. Chem., 2012, 287(1), 299-310.
[http://dx.doi.org/10.1074/jbc.M111.302588] [PMID: 22069311]
[109]
Ma, S.; Minch, K.J.; Rustad, T.R.; Hobbs, S.; Zhou, S-L.; Sherman, D.R.; Price, N.D. Integrated modeling of gene regulatory and metabolic networks in Mycobacterium tuberculosis. PLOS Comput. Biol., 2015, 11(11)e1004543
[http://dx.doi.org/10.1371/journal.pcbi.1004543] [PMID: 26618656]
[110]
Wei, J.; Dahl, J.L.; Moulder, J.W.; Roberts, E.A.; O’Gaora, P.; Young, D.B.; Friedman, R.L. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J. Bacteriol., 2000, 182(2), 377-384.
[http://dx.doi.org/10.1128/JB.182.2.377-384.2000 PMID: 10629183]
[111]
Geiman, D.E.; Raghunand, T.R.; Agarwal, N.; Bishai, W.R. Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob. Agents Chemother., 2006, 50(8), 2836-2841.
[http://dx.doi.org/10.1128/AAC.00295-06] [PMID: 16870781]
[112]
Wang, Q.; Xu, Y.; Gu, Z.; Liu, N.; Jin, K.; Li, Y.; Crabbe, M.J.C.; Zhong, Y. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites. Comput. Biol. Chem., 2018, 73, 25-30.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.002] [PMID: 29413813]
[113]
Commandeur, S.; Lin, M.Y.; van Meijgaarden, K.E.; Friggen, A.H.; Franken, K.L.M.C.; Drijfhout, J.W.; Korsvold, G.E.; Oftung, F.; Geluk, A.; Ottenhoff, T.H.M. Double- and monofunctional CD4+ and CD8+ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur. J. Immunol., 2011, 41(10), 2925-2936.
[http://dx.doi.org/10.1002/eji.201141602] [PMID: 21728172]
[114]
McMahon, M.D.; Rush, J.S.; Thomas, M.G. Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. J. Bacteriol., 2012, 194(11), 2809-2818.
[http://dx.doi.org/10.1128/JB.00088-12] [PMID: 22447909]
[115]
Schreuder, L.J.; Parish, T. Mycobacterium tuberculosis DosR is required for activity of the PmbtB and PmbtI promoters under hypoxia. PLoS One, 2014, 9(9)e107283
[http://dx.doi.org/10.1371/journal.pone.0107283] [PMID: 25211224]
[116]
Park, H-D.; Guinn, K.M.; Harrell, M.I.; Liao, R.; Voskuil, M.I.; Tompa, M.; Schoolnik, G.K.; Sherman, D.R. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol., 2003, 48(3), 833-843.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03474.x PMID: 12694625]
[117]
Nandakumar, M.; Nathan, C.; Rhee, K.Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun., 2014, 5(1), 4306.
[http://dx.doi.org/10.1038/ncomms5306] [PMID: 24978671]
[118]
Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66(7), 1417-1430.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[119]
Singh, V.; Mizrahi, V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov. Today, 2017, 22(3), 503-509.
[http://dx.doi.org/10.1016/j.drudis.2016.09.010] [PMID: 27649943]
[120]
Vilchèze, C.; Wang, F.; Arai, M.; Hazbón, M.H.; Colangeli, R.; Kremer, L.; Weisbrod, T.R.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med., 2006, 12(9), 1027-1029.
[http://dx.doi.org/10.1038/nm1466] [PMID: 16906155]
[121]
Larsen, M.H.; Vilchèze, C.; Kremer, L.; Besra, G.S.; Parsons, L.; Salfinger, M.; Heifets, L.; Hazbon, M.H.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Jr Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol., 2002, 46(2), 453-466.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03162.x PMID: 12406221]
[122]
Jamieson, F.B.; Guthrie, J.L.; Neemuchwala, A.; Lastovetska, O.; Melano, R.G.; Mehaffy, C. Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J. Clin. Microbiol., 2014, 52(6), 2157-2162.
[http://dx.doi.org/10.1128/JCM.00691-14] [PMID: 24740074]
[123]
Ocheretina, O.; Escuyer, V.E.; Mabou, M-M.; Royal-Mardi, G.; Collins, S.; Vilbrun, S.C.; Pape, J.W.; Fitzgerald, D.W. Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results. PLoS One, 2014, 9(3)e90569
[http://dx.doi.org/10.1371/journal.pone.0090569] [PMID: 24599230]
[124]
Aye, K.S.; Nakajima, C.; Yamaguchi, T.; Win, M.M.; Shwe, M.M.; Win, A.A.; Lwin, T.; Nyunt, W.W.; Ti, T.; Suzuki, Y. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar. J. Infect. Chemother., 2016, 22(3), 174-179.
[http://dx.doi.org/10.1016/j.jiac.2015.12.009] [PMID: 26806152]
[125]
Mboowa, G.; Namaganda, C.; Ssengooba, W. Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert® MTB/RIF in Kampala, Uganda: a retrospective study. BMC Infect. Dis., 2014, 14(1), 481.
[http://dx.doi.org/10.1186/1471-2334-14-481] [PMID: 25190040]
[126]
Cavusoglu, C.; Karaca-Derici, Y.; Bilgic, A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin. Microbiol. Infect., 2004, 10(7), 662-665.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00917.x PMID: 15214882]
[127]
Karmakar, M.; Rodrigues, C.H.M.; Horan, K.; Denholm, J.T.; Ascher, D.B. Structure guided prediction of Pyrazinamide resistance mutations in pncA. Sci. Rep., 2020, 10(1), 1875.
[http://dx.doi.org/10.1038/s41598-020-58635-x] [PMID: 32024884]
[128]
Khan, M.T.; Khan, A.; Rehman, A.U.; Wang, Y.; Akhtar, K.; Malik, S.I.; Wei, D-Q. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci. Rep., 2019, 9(1), 7482.
[http://dx.doi.org/10.1038/s41598-019-44013-9] [PMID: 31097767]
[129]
Zhang, S.; Chen, J.; Shi, W.; Cui, P.; Zhang, J.; Cho, S.; Zhang, W.; Zhang, Y. Mutation in clpC1 encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2017, 6(2)e8
[http://dx.doi.org/10.1038/emi.2017.1] [PMID: 28196969]
[130]
Xu, Y.; Jia, H.; Huang, H.; Sun, Z.; Zhang, Z. Mutations found in embcab, embr, and ubia genes of ethambutol-sensitive and-resistant Mycobacterium tuberculosis clinical isolates from China. BioMed Res. Int., 2015, 2015951706
[131]
Jugheli, L.; Bzekalava, N.; de Rijk, P.; Fissette, K.; Portaels, F.; Rigouts, L. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene. Antimicrob. Agents Chemother., 2009, 53(12), 5064-5068.
[http://dx.doi.org/10.1128/AAC.00851-09] [PMID: 19752274]
[132]
Sirgel, F.A.; Tait, M.; Warren, R.M.; Streicher, E.M.; Böttger, E.C.; van Helden, P.D.; Gey van Pittius, N.C.; Coetzee, G.; Hoosain, E.Y.; Chabula-Nxiweni, M.; Hayes, C.; Victor, T.C.; Trollip, A. Mutations in the rrs A1401G gene and phenotypic resistance to amikacin and capreomycin in Mycobacterium tuberculosis. Microb. Drug Resist., 2012, 18(2), 193-197.
[http://dx.doi.org/10.1089/mdr.2011.0063] [PMID: 21732736]
[133]
Maus, C.E.; Plikaytis, B.B.; Shinnick, T.M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(8), 3192-3197.
[http://dx.doi.org/10.1128/AAC.49.8.3192-3197.2005 PMID: 16048924]
[134]
Jnawali, H.N.; Yoo, H.; Ryoo, S.; Lee, K-J.; Kim, B-J.; Koh, W-J.; Kim, C-K.; Kim, H-J.; Park, Y.K. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World J. Microbiol. Biotechnol., 2013, 29(6), 975-982.
[http://dx.doi.org/10.1007/s11274-013-1256-x] [PMID: 23329063]
[135]
Pi, R.; Liu, Q.; Jiang, Q.; Gao, Q. Characterization of linezolid-resistance-associated mutations in Mycobacterium tuberculosis through WGS. J. Antimicrob. Chemother., 2019, 74(7), 1795-1798.
[http://dx.doi.org/10.1093/jac/dkz150] [PMID: 31225608]
[136]
Von Groll, A.; Martin, A.; Jureen, P.; Hoffner, S.; Vandamme, P.; Portaels, F.; Palomino, J.C.; da Silva, P.A. Fluoroquinolone resistance in Mycobacterium tuberculosis and mutations in gyrA and gyrB. Antimicrob. Agents Chemother., 2009, 53(10), 4498-4500.
[http://dx.doi.org/10.1128/AAC.00287-09] [PMID: 19687244]
[137]
Nosova, E.Yu.; Bukatina, A.A.; Isaeva, Y.D.; Makarova, M.V.; Galkina, K.Yu.; Moroz, A.M. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J. Med. Microbiol., 2013, 62(Pt 1), 108-113.
[http://dx.doi.org/10.1099/jmm.0.046821-0] [PMID: 23019190]
[138]
Maruri, F.; Sterling, T.R.; Kaiga, A.W.; Blackman, A.; van der Heijden, Y.F.; Mayer, C.; Cambau, E.; Aubry, A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother., 2012, 67(4), 819-831.
[http://dx.doi.org/10.1093/jac/dkr566] [PMID: 22279180]
[139]
Antonova, O.V.; Gryadunov, D.A.; Lapa, S.A.; Kuz’min, A.V.; Larionova, E.E.; Smirnova, T.G.; Nosova, E.Yu.; Skotnikova, O.I.; Chernousova, L.N.; Moroz, A.M.; Zasedatelev, A.S.; Mikhailovich, V.M. Detection of mutations in Mycobacterium tuberculosis genome determining resistance to fluoroquinolones by hybridization on biological microchips. Bull. Exp. Biol. Med., 2008, 145(1), 108-113.
[http://dx.doi.org/10.1007/s10517-008-0034-5] [PMID: 19024017]
[140]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[http://dx.doi.org/10.1016/S1473-3099(03)00671-6 PMID: 12837348]
[141]
Ismail, N.; Ismail, N.A.; Omar, S.V.; Peters, R.P.H. In vitro study of stepwise acquisition of rv0678 and atpe mutations conferring bedaquiline resistance. Antimicrob. Agents Chemother., 2019, 63(8), e00292-e19.
[http://dx.doi.org/10.1128/AAC.00292-19] [PMID: 31138569]
[142]
Briffotaux, J.; Huang, W.; Wang, X.; Gicquel, B. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb.), 2017, 107, 13-19.
[http://dx.doi.org/10.1016/j.tube.2017.08.001] [PMID: 29050760]
[143]
Polsfuss, S.; Hofmann-Thiel, S.; Merker, M.; Krieger, D.; Niemann, S.; Rüssmann, H.; Schönfeld, N.; Hoffmann, H.; Kranzer, K. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin. Infect. Dis., 2019, 69(7), 1229-1231.
[http://dx.doi.org/10.1093/cid/ciz074] [PMID: 30933266]
[144]
Villellas, C.; Coeck, N.; Meehan, C.J.; Lounis, N.; de Jong, B.; Rigouts, L.; Andries, K. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J. Antimicrob. Chemother., 2017, 72(3), 684-690.
[145]
Nieto Ramirez, L.M.; Quintero Vargas, K.; Diaz, G. Whole genome sequencing for the analysis of drug resistant strains of Mycobacterium tuberculosis: a systematic review for bedaquiline and delamanid. Antibiotics (Basel), 2020, 9(3), 133.
[http://dx.doi.org/10.3390/antibiotics9030133] [PMID: 32209979]
[146]
Bloemberg, G.V.; Keller, P.M.; Stucki, D.; Trauner, A.; Borrell, S.; Latshang, T.; Coscolla, M.; Rothe, T.; Hömke, R.; Ritter, C.; Feldmann, J.; Schulthess, B.; Gagneux, S.; Böttger, E.C. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med., 2015, 373(20), 1986-1988.
[http://dx.doi.org/10.1056/NEJMc1505196] [PMID: 26559594]
[147]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11)e466
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[148]
Sasaki, H.; Haraguchi, Y.; Itotani, M.; Kuroda, H.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Matsumoto, M.; Komatsu, M.; Tsubouchi, H. Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J. Med. Chem., 2006, 49(26), 7854-7860.
[http://dx.doi.org/10.1021/jm060957y] [PMID: 17181168]
[149]
The use of delamanid in the treatment of multidrug-resistant tuberculosis: Interim policy guidance; WHO: Geneva, 2014.
[150]
The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents: Interim policy guidance; WHO: Geneva, 2014.
[151]
von Groote-Bidlingmaier, F.; Patientia, R.; Sanchez, E.; Balanag, V., Jr; Ticona, E.; Segura, P.; Cadena, E.; Yu, C.; Cirule, A.; Lizarbe, V.; Davidaviciene, E.; Domente, L.; Variava, E.; Caoili, J.; Danilovits, M.; Bielskiene, V.; Staples, S.; Hittel, N.; Petersen, C.; Wells, C.; Hafkin, J.; Geiter, L.J.; Gupta, R. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir. Med., 2019, 7(3), 249-259.
[http://dx.doi.org/10.1016/S2213-2600(18)30426-0 PMID: 30630778]
[153]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[154]
Haagsma, A.C.; Abdillahi-Ibrahim, R.; Wagner, M.J.; Krab, K.; Vergauwen, K.; Guillemont, J.; Andries, K.; Lill, H.; Koul, A.; Bald, D. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother., 2009, 53(3), 1290-1292.
[http://dx.doi.org/10.1128/AAC.01393-08] [PMID: 19075053]
[155]
Use of Bedaquiline in the Treatment of Multidrug Resistant Tuberculosis; WHO: Geneva, 2013.
[156]
Mingote, L.R.; Namutamba, D.; Apina, F.; Barnabas, N.; Contreras, C.; Elnour, T.; Frick, M.W.; Lee, C.; Seaworth, B.; Shelly, D.; Skipper, N.; dos Santos Filho, E.T. The use of bedaquiline in regimens to treat drug-resistant and drug-susceptible tuberculosis: a perspective from tuberculosis-affected communities. Lancet, 2015, 385(9966), 477-479.
[http://dx.doi.org/10.1016/S0140-6736(14)60523-7 PMID: 25018118]
[157]
Guglielmetti, L.; Le Dû, D.; Jachym, M.; Henry, B.; Martin, D.; Caumes, E.; Veziris, N.; Métivier, N.; Robert, J. MDR-TB Management Group of the French National Reference Center for Mycobacteria and the Physicians of the French MDR-TB Cohort. Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin. Infect. Dis., 2015, 60(2), 188-194.
[http://dx.doi.org/10.1093/cid/ciu786] [PMID: 25320286]
[158]
Furin, J. Informed use of bedaquiline for tuberculosis. Lancet, 2015, 385(9979), 1724-1725.
[http://dx.doi.org/10.1016/S0140-6736(15)60886-8 PMID: 25943932]
[159]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[160]
FDA approves new drug for treatment-resistant forms of tuberculosis that affects the lungs., https://www.fda.gov/news-events/press-announce ments/fda-approves-new-drug-treatment-resistant-forms-tuberculo
[161]
Li, X.; Hernandez, V.; Rock, F.L.; Choi, W.; Mak, Y.S.L.; Mohan, M.; Mao, W.; Zhou, Y.; Easom, E.E.; Plattner, J.J.; Zou, W.; Pérez-Herrán, E.; Giordano, I.; Mendoza-Losana, A.; Alemparte, C.; Rullas, J.; Angulo-Barturen, I.; Crouch, S.; Ortega, F.; Barros, D.; Alley, M.R.K. Discovery of a Potent and Specific M. tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J. Med. Chem., 2017, 60(19), 8011-8026.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00631 PMID: 28953378]
[162]
Tenero, D.; Derimanov, G.; Carlton, A.; Tonkyn, J.; Davies, M.; Cozens, S.; Gresham, S.; Gaudion, A.; Puri, A.; Muliaditan, M.; Rullas-Trincado, J.; Mendoza-Losana, A.; Skingsley, A.; Barros-Aguirre, D. First-time-in-human study and prediction of early bactericidal activity for gsk3036656, a potent leucyl-trna synthetase inhibitor for tuberculosis treatment. Antimicrob. Agents Chemother., 2019, 63(8), e00240-e19.
[http://dx.doi.org/10.1128/AAC.00240-19] [PMID: 31182528]
[163]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[164]
Li, L.; Wu, H.; Chen, Y.; Yuan, H.; Wu, J.; Wu, X.; Zhang, Y.; Cao, G.; Guo, B.; Wu, J.; Zhao, M.; Zhang, J. Population pharmacokinetics study of contezolid (mrx-i), a novel oxazolidinone antibacterial agent, in chinese patients. Clin. Ther., 2020, 42(5), 818-829.
[http://dx.doi.org/10.1016/j.clinthera.2020.03.020 PMID: 32389326]
[165]
Shoen, C.; DeStefano, M.; Hafkin, B.; Cynamon, M. In vitro and in vivo activities of contezolid (mrx-i) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2018, 62(8), e00493-e18.
[PMID: 29784848] [http://dx.doi.org/10.1128/AAC.00493-18]]
[166]
Williams, K.N.; Stover, C.K.; Zhu, T.; Tasneen, R.; Tyagi, S.; Grosset, J.H.; Nuermberger, E. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob. Agents Chemother., 2009, 53(4), 1314-1319.
[http://dx.doi.org/10.1128/AAC.01182-08] [PMID: 19075058]
[167]
de Jager, V.R.; Dawson, R.; van Niekerk, C.; Hutchings, J.; Kim, J.; Vanker, N.; van der Merwe, L.; Choi, J.; Nam, K.; Diacon, A.H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med., 2020, 382(13), 1280-1281.
[http://dx.doi.org/10.1056/NEJMc1913327] [PMID: 32212527]
[169]
Tetali, S.R.; Kunapaeddi, E.; Mailavaram, R.P.; Singh, V.; Borah, P.; Deb, P.K.; Venugopala, K.N.; Hourani, W.; Tekade, R.K. Current advances in the clinical development of anti-tubercular agents. Tuberculosis (Edinb.), 2020, 125101989
[http://dx.doi.org/10.1016/j.tube.2020.101989] [PMID: 32957054]
[170]
Xu, J.; Wang, B.; Fu, L.; Zhu, H.; Guo, S.; Huang, H.; Yin, D.; Zhang, Y.; Lu, Y. In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2019, 63(5), e02155-e18.
[http://dx.doi.org/10.1128/AAC.02155-18] [PMID: 30782992]
[171]
Hariguchi, N.; Chen, X.; Hayashi, Y.; Kawano, Y.; Fujiwara, M.; Matsuba, M.; Shimizu, H.; Ohba, Y.; Nakamura, I.; Kitamoto, R.; Shinohara, T.; Uematsu, Y.; Ishikawa, S.; Itotani, M.; Haraguchi, Y.; Takemura, I.; Matsumoto, M. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a dpre1 inhibitor. Antimicrob. Agents Chemother., 2020, 64(6), e02020-e19.
[http://dx.doi.org/10.1128/AAC.02020-19] [PMID: 32229496]
[172]
Sacksteder, K.A.; Protopopova, M.; Barry, C.E., III; Andries, K.; Nacy, C.A. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol., 2012, 7(7), 823-837.
[http://dx.doi.org/10.2217/fmb.12.56] [PMID: 22827305]
[173]
Boeree, M.J.; Heinrich, N.; Aarnoutse, R.; Diacon, A.H.; Dawson, R.; Rehal, S.; Kibiki, G.S.; Churchyard, G.; Sanne, I.; Ntinginya, N.E.; Minja, L.T.; Hunt, R.D.; Charalambous, S.; Hanekom, M.; Semvua, H.H.; Mpagama, S.G.; Manyama, C.; Mtafya, B.; Reither, K.; Wallis, R.S.; Venter, A.; Narunsky, K.; Mekota, A.; Henne, S.; Colbers, A.; van Balen, G.P.; Gillespie, S.H.; Phillips, P.P.J.; Hoelscher, M. PanACEA consortium. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect. Dis., 2017, 17(1), 39-49.
[http://dx.doi.org/10.1016/S1473-3099(16)30274-2 PMID: 28100438]
[174]
Hwang, T.J.; Dotsenko, S.; Jafarov, A.; Weyer, K.; Falzon, D.; Lunte, K.; Nunn, P.; Jaramillo, E.; Keshavjee, S.; Wares, D.F. Safety and availability of clofazimine in the treatment of multidrug and extensively drug-resistant tuberculosis: analysis of published guidance and meta-analysis of cohort studies. BMJ Open, 2014, 4(1)e004143
[http://dx.doi.org/10.1136/bmjopen-2013-004143] [PMID: 24384902]
[175]
Dalcolmo, M.; Gayoso, R.; Sotgiu, G.; D’Ambrosio, L.; Rocha, J.L.; Borga, L.; Fandinho, F.; Braga, J.U.; Galesi, V.M.N.; Barreira, D.; Sanchez, D.A.; Dockhorn, F.; Centis, R.; Caminero, J.A.; Migliori, G.B. Effectiveness and safety of clofazimine in multidrug-resistant tuberculosis: a nationwide report from Brazil. Eur. Respir. J., 2017, 49(3)1602445
[http://dx.doi.org/10.1183/13993003.02445-2016] [PMID: 28331044]
[176]
Wang, Q.; Pang, Y.; Jing, W.; Liu, Y.; Wang, N.; Yin, H.; Zhang, Q.; Ye, Z.; Zhu, M.; Li, F. Clofazimine for treatment of extensively drug-resistant pulmonary tuberculosis in China. Antimicrob. Agents Chemother., 2018, 62(4)
[http://dx.doi.org/10.1128/AAC.02149-17]
[177]
Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents, 2004, 23(2), 113-119.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.003 PMID: 15013035]
[178]
Moellering, R.C. Jr Linezolid: the first oxazolidinone antimicrobial. Ann. Intern. Med., 2003, 138(2), 135-142.
[http://dx.doi.org/10.7326/0003-4819-138-2-200301210-00015] [PMID: 12529096]
[179]
Balasubramanian, V.; Solapure, S.; Iyer, H.; Ghosh, A.; Sharma, S.; Kaur, P.; Deepthi, R.; Subbulakshmi, V.; Ramya, V.; Ramachandran, V.; Balganesh, M.; Wright, L.; Melnick, D.; Butler, S.L.; Sambandamurthy, V.K. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob. Agents Chemother., 2014, 58(1), 495-502.
[http://dx.doi.org/10.1128/AAC.01903-13] [PMID: 24189255]
[180]
Maartens, G. CROI Conference, Seattle, Washington2019.
[181]
Salgado-Moran, G.; Ramirez-Tagle, R.; Glossman-Mitnik, D.; Ruiz-Nieto, S.; Kishore-Deb, P.; Bunster, M.; Lobos-Gonzalez, F. Docking Studies of Binding of Ethambutol to the C-Terminal Domain of the Arabinosyltransferase from Mycobacterium tuberculosis. E-J. Chem., 2013, 2013(601270), 1-5.
[182]
Singh, A.; Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nwaeze, K.U.; Coovadia, Y.; Shode, F.; Odhav, B. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. J. Biomol. Struct. Dyn., 2017, 35(12), 2654-2664.
[http://dx.doi.org/10.1080/07391102.2016.1227725 PMID: 28278765]
[183]
Venugopala, K.N.; Tratrat, C.; Pillay, M.; Chandrashekharappa, S.; Al-Attraqchi, O.H.A.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; Morsy, M.A.; Haroun, M.; Kumalo, H.M.; Odhav, B.; Mlisana, K. In silico design and synthesis of tetrahydropyrimidinones and tetrahydropyrimidinethiones as potential thymidylate kinase inhibitors exerting anti-tb activity against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2020, 14, 1027-1039.
[http://dx.doi.org/10.2147/DDDT.S228381] [PMID: 32214795]
[184]
Venugopala, K.N.; Chandrashekharappa, S.; Pillay, M.; Bhandary, S.; Kandeel, M.; Mahomoodally, F.M.; Morsy, M.A.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Harsha, S.; Mlisana, K.; Odhav, B. Synthesis and Structural Elucidation of Novel Benzothiazole Derivatives as Anti-tubercular Agents: In-silico Screening for Possible Target Identification. Med. Chem., 2019, 15(3), 311-326.
[http://dx.doi.org/10.2174/1573406414666180703121815] [PMID: 29968540]
[185]
Venugopala, K.N.; Khedr, M.A.; Pillay, M.; Nayak, S.K.; Chandrashekharappa, S.; Aldhubiab, B.E.; Harsha, S.; Attimard, M.; Odhav, B. Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(7), 1830-1842.
[http://dx.doi.org/10.1080/07391102.2018.1470035 PMID: 29697293]
[186]
Venugopala, K.N.; Tratrat, C.; Pillay, M.; Mahomoodally, F.M.; Bhandary, S.; Chopra, D.; Morsy, M.A.; Haroun, M.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; Chandrashekharappa, S.; Alwassil, O.I.; Odhav, B. Anti-tubercular activity of substituted 7-methyl and 7-formylindolizines and in silico study for prospective molecular target identification. Antibiotics (Basel), 2019, 8(4), 247.
[http://dx.doi.org/10.3390/antibiotics8040247] [PMID: 31816928]
[187]
Chandrashekharappa, S.; Venugopala, K.N.; Venugopala, R.; Padmashali, B. Qualitative anti-tubercular activity of synthetic ethyl 7-acetyl2-substituted-3-(4-substituted benzoyl) indolizine-1-carboxylate analogues. J. Appl. Pharm. Sci., 2019, 9, 124-128.
[http://dx.doi.org/10.7324/JAPS.2019.90217]
[188]
Khedr, M.A.; Pillay, M.; Chandrashekharappa, S.; Chopra, D.; Aldhubiab, B.E.; Attimarad, M.; Alwassil, O.I.; Mlisana, K.; Odhav, B.; Venugopala, K.N. Molecular modeling studies and anti-TB activity of trisubstituted indolizine analogues; molecular docking and dynamic inputs. J. Biomol. Struct. Dyn., 2018, 36(8), 2163-2178.
[http://dx.doi.org/10.1080/07391102.2017.1345325 PMID: 28657441]
[189]
Akester, J.N.; Njaria, P.; Nchinda, A.; Le Manach, C.; Myrick, A.; Singh, V.; Lawrence, N.; Njoroge, M.; Taylor, D.; Moosa, A.; Smith, A.J.; Brooks, E.J.; Lenaerts, A.J.; Robertson, G.T.; Ioerger, T.R.; Mueller, R.; Chibale, K. Synthesis, structure-activity relationship, and mechanistic studies of aminoquinazolinones displaying antimycobacterial activity. ACS Infect. Dis., 2020, 6(7), 1951-1964.
[http://dx.doi.org/10.1021/acsinfecdis.0c00252] [PMID: 32470286]
[190]
Singh, V.; Pacitto, A.; Donini, S.; Ferraris, D.M.; Boros, S.; Illyés, E.; Szokol, B.; Rizzi, M.; Blundell, T.L.; Ascher, D.B.; Pato, J.; Mizrahi, V. Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur. J. Med. Chem., 2019, 174, 309-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.027] [PMID: 31055147]
[191]
Alling, D.W.; Bosworth, E.B. The after-history of pulmonary tuberculosis. VI. The first fifteen years following diagnosis. Am. Rev. Respir. Dis., 1960, 81(6), 839-849.
[192]
Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[http://dx.doi.org/10.1016/S1473-3099(18)30110-5 PMID: 29580819]
[193]
Dallenga, T.; Linnemann, L.; Paudyal, B.; Repnik, U.; Griffiths, G.; Schaible, U.E. Targeting neutrophils for host-directed therapy to treat tuberculosis. Int. J. Med. Microbiol., 2018, 308(1), 142-147.
[http://dx.doi.org/10.1016/j.ijmm.2017.10.001] [PMID: 29055689]
[194]
Baindara, P. Host-directed therapies to combat tuberculosis and associated non-communicable diseases. Microb. Pathog., 2019, 130, 156-168.
[http://dx.doi.org/10.1016/j.micpath.2019.03.003] [PMID: 30876870]
[195]
Palucci, I.; Delogu, G. Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy, 2018, 63(3), 172-180.
[http://dx.doi.org/10.1159/000490478] [PMID: 30032143]
[196]
Paik, S.; Kim, J.K.; Chung, C.; Jo, E-K. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence, 2019, 10(1), 448-459.
[http://dx.doi.org/10.1080/21505594.2018.1536598 PMID: 30322337]
[197]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[198]
Kolloli, A.; Subbian, S. Host-directed therapeutic strategies for tuberculosis. Front. Med. (Lausanne), 2017, 4, 171.
[http://dx.doi.org/10.3389/fmed.2017.00171] [PMID: 29094039]
[199]
Prasad, K.; Singh, M.B.; Ryan, H. Corticosteroids for Managing Tuberculous Meningitis. Cochrane Sys. Rev., 2016, 2016(4)CD002244
[http://dx.doi.org/10.1002/14651858.CD002244.pub4]
[200]
Donald, P.R.; Van Toorn, R. Use of corticosteroids in tuberculous meningitis. Lancet, 2016, 387(10038), 2585-2587.
[http://dx.doi.org/10.1016/S0140-6736(16)30770-X PMID: 27353808]
[201]
Schoeman, J.F.; Van Zyl, L.E.; Laubscher, J.A.; Donald, P.R. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics, 1997, 99(2), 226-231.
[http://dx.doi.org/10.1542/peds.99.2.226] [PMID: 9024451]
[202]
Critchley, J.A.; Young, F.; Orton, L.; Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis., 2013, 13(3), 223-237.
[http://dx.doi.org/10.1016/S1473-3099(12)70321-3 PMID: 23369413]
[203]
Meintjes, G.; Stek, C.; Blumenthal, L.; Thienemann, F.; Schutz, C.; Buyze, J.; Ravinetto, R.; van Loen, H.; Nair, A.; Jackson, A.; Colebunders, R.; Maartens, G.; Wilkinson, R.J.; Lynen, L. PredART trial team. prednisone for the prevention of paradoxical tuberculosis-associated iris. N. Engl. J. Med., 2018, 379(20), 1915-1925.
[http://dx.doi.org/10.1056/NEJMoa1800762] [PMID: 30428290]
[204]
Xie, S.; Lu, L.; Li, M.; Xiong, M.; Zhou, S.; Zhang, G.; Peng, A.; Wang, C. The efficacy and safety of adjunctive corticosteroids in the treatment of tuberculous pleurisy: a systematic review and meta-analysis. Oncotarget, 2017, 8(47), 83315-83322.
[http://dx.doi.org/10.18632/oncotarget.18160] [PMID: 29137345]
[205]
Page, C.P.; Spina, D. Phosphodiesterase inhibitors in the treatment of inflammatory diseases.Phosphodiesterases as Drug Targets; Springer: Berlin, 2011, pp. 391-414.
[http://dx.doi.org/10.1007/978-3-642-17969-3_17]
[206]
Maiga, M.; Agarwal, N.; Ammerman, N.C.; Gupta, R.; Guo, H.; Maiga, M.C.; Lun, S.; Bishai, W.R. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One, 2012, 7(2)e30749
[http://dx.doi.org/10.1371/journal.pone.0030749] [PMID: 22319585]
[207]
Maiga, M.C.; Ahidjo, B.A.; Maiga, M.; Bishai, W.R. Roflumilast, a type 4 phosphodiesterase inhibitor, shows promising adjunctive, host-directed therapeutic activity in a mouse model of tuberculosis. Antimicrob. Agents Chemother., 2015, 59(12), 7888-7890.
[http://dx.doi.org/10.1128/AAC.02145-15] [PMID: 26438491]
[208]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Koo, M-S.; Peixoto, B.; Fallows, D.; Zeldis, J.B.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am. J. Pathol., 2011, 179(1), 289-301.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.039] [PMID: 21703411]
[209]
Tobin, D.M.; Roca, F.J.; Oh, S.F.; McFarland, R.; Vickery, T.W.; Ray, J.P.; Ko, D.C.; Zou, Y.; Bang, N.D.; Chau, T.T.H.; Vary, J.C.; Hawn, T.R.; Dunstan, S.J.; Farrar, J.J.; Thwaites, G.E.; King, M.C.; Serhan, C.N.; Ramakrishnan, L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012, 148(3), 434-446.
[http://dx.doi.org/10.1016/j.cell.2011.12.023] [PMID: 22304914]
[210]
Morris, T.; Stables, M.; Hobbs, A.; de Souza, P.; Colville-Nash, P.; Warner, T.; Newson, J.; Bellingan, G.; Gilroy, D.W. Effects of low-dose aspirin on acute inflammatory responses in humans. J. Immunol., 2009, 183(3), 2089-2096.
[http://dx.doi.org/10.4049/jimmunol.0900477] [PMID: 19597002]
[211]
Byrne, S.T.; Denkin, S.M.; Zhang, Y. Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J. Antimicrob. Chemother., 2007, 59(2), 313-316.
[http://dx.doi.org/10.1093/jac/dkl486] [PMID: 17185297]
[212]
Vilaplana, C.; Marzo, E.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P-J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis., 2013, 208(2), 199-202.
[http://dx.doi.org/10.1093/infdis/jit152] [PMID: 23564636]
[213]
Young, C.; Walzl, G.; Du Plessis, N. Therapeutic Host-Directed Strategies to Improve Outcome in Tuberculosis. Mucosal Immunol., 2020, 13(2), 190-204.
[214]
Mahakalkar, S.M.; Nagrale, D.; Gaur, S.; Urade, C.; Murhar, B.; Turankar, A. N-acetylcysteine as an add-on to Directly Observed Therapy Short-I therapy in fresh pulmonary tuberculosis patients: A randomized, placebo-controlled, double-blinded study. Perspect. Clin. Res., 2017, 8(3), 132-136.
[http://dx.doi.org/10.4103/2229-3485.210450] [PMID: 28828308]
[215]
Napier, R.J.; Norris, B.A.; Swimm, A.; Giver, C.R.; Harris, W.A.; Laval, J.; Napier, B.A.; Patel, G.; Crump, R.; Peng, Z.; Bornmann, W.; Pulendran, B.; Buller, R.M.; Weiss, D.S.; Tirouvanziam, R.; Waller, E.K.; Kalman, D. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog., 2015, 11(3)e1004770
[http://dx.doi.org/10.1371/journal.ppat.1004770] [PMID: 25822986]
[216]
Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe, 2011, 10(5), 475-485.
[http://dx.doi.org/10.1016/j.chom.2011.09.010] [PMID: 22100163]
[217]
Nandi, B.; Behar, S.M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med., 2011, 208(11), 2251-2262.
[http://dx.doi.org/10.1084/jem.20110919] [PMID: 21967766]
[218]
Lachmandas, E.; Eckold, C.; Böhme, J.; Koeken, V.A.C.M.; Marzuki, M.B.; Blok, B.; Arts, R.J.W.; Chen, J.; Teng, K.W.W.; Ratter, J.; Smolders, E.J.; Van den Heuvel, C.; Stienstra, R.; Dockrell, H.M.; Newell, E.; Netea, M.G.; Singhal, A.; Cliff, J.M.; Van Crevel, R. Metformin alters human host responses to Mycobacterium tuberculosis in healthy subjects. J. Infect. Dis., 2019, 220(1), 139-150.
[http://dx.doi.org/10.1093/infdis/jiz064] [PMID: 30753544]
[219]
Marupuru, S.; Senapati, P.; Pathadka, S.; Miraj, S.S.; Unnikrishnan, M.K.; Manu, M.K. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz. J. Infect. Dis., 2017, 21(3), 312-316.
[http://dx.doi.org/10.1016/j.bjid.2017.01.001] [PMID: 28199824]
[220]
Lee, M-C.; Chiang, C-Y.; Lee, C-H.; Ho, C-M.; Chang, C-H.; Wang, J-Y.; Chen, S-M. Metformin use is associated with a low risk of tuberculosis among newly diagnosed diabetes mellitus patients with normal renal function: A nationwide cohort study with validated diagnostic criteria. PLoS One, 2018, 13(10)e0205807
[http://dx.doi.org/10.1371/journal.pone.0205807] [PMID: 30335800]
[221]
Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis., 2014, 209(5), 754-763.
[http://dx.doi.org/10.1093/infdis/jit550] [PMID: 24133190]
[222]
Kyrklund, C.; Backman, J.T.; Kivistö, K.T.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther., 2000, 68(6), 592-597.
[http://dx.doi.org/10.1067/mcp.2000.111414] [PMID: 11180018]
[223]
Yuk, J-M.; Shin, D-M.; Lee, H-M.; Yang, C-S.; Jin, H.S.; Kim, K-K.; Lee, Z-W.; Lee, S-H.; Kim, J-M.; Jo, E-K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243.
[http://dx.doi.org/10.1016/j.chom.2009.08.004] [PMID: 19748465]
[224]
Rook, G.A.; Steele, J.; Fraher, L.; Barker, S.; Karmali, R.; O’Riordan, J.; Stanford, J. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology, 1986, 57(1), 159-163.
[225]
Blackmore, T.K.; Manning, L.; Taylor, W.J.; Wallis, R.S. Therapeutic use of infliximab in tuberculosis to control severe paradoxical reaction of the brain and lymph nodes. Clin. Infect. Dis., 2008, 47(10), e83-e85.
[http://dx.doi.org/10.1086/592695] [PMID: 18840076]
[226]
Wallis, R.S.; van Vuuren, C.; Potgieter, S. Adalimumab treatment of life-threatening tuberculosis. Clin. Infect. Dis., 2009, 48(10), 1429-1432.
[http://dx.doi.org/10.1086/598504] [PMID: 19364287]
[227]
Mayer-Barber, K.D.; Andrade, B.B.; Oland, S.D.; Amaral, E.P.; Barber, D.L.; Gonzales, J.; Derrick, S.C.; Shi, R.; Kumar, N.P.; Wei, W.; Yuan, X.; Zhang, G.; Cai, Y.; Babu, S.; Catalfamo, M.; Salazar, A.M.; Via, L.E.; Barry, C.E., III; Sher, A. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511(7507), 99-103.
[http://dx.doi.org/10.1038/nature13489] [PMID: 24990750]
[228]
Rekha, R.S.; Rao Muvva, S.S.; Wan, M.; Raqib, R.; Bergman, P.; Brighenti, S.; Gudmundsson, G.H.; Agerberth, B. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy, 2015, 11(9), 1688-1699.
[http://dx.doi.org/10.1080/15548627.2015.1075110 PMID: 26218841]
[229]
Reljic, R.; Paul, M.J.; Arias, M.A. Cytokine therapy of tuberculosis at the crossroads. Expert Rev. Respir. Med., 2009, 3(1), 53-66.
[http://dx.doi.org/10.1586/17476348.3.1.53] [PMID: 20477282]
[230]
Walker, N.F.; Clark, S.O.; Oni, T.; Andreu, N.; Tezera, L.; Singh, S.; Saraiva, L.; Pedersen, B.; Kelly, D.L.; Tree, J.A.; D’Armiento, J.M.; Meintjes, G.; Mauri, F.A.; Williams, A.; Wilkinson, R.J.; Friedland, J.S.; Elkington, P.T. Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am. J. Respir. Crit. Care Med., 2012, 185(9), 989-997.
[http://dx.doi.org/10.1164/rccm.201110-1769OC] [PMID: 22345579]
[231]
Zhang, Q.; Sun, J.; Wang, Y.; He, W.; Wang, L.; Zheng, Y.; Wu, J.; Zhang, Y.; Jiang, X. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Front. Microbiol., 2017, 8, 2142.
[http://dx.doi.org/10.3389/fmicb.2017.02142] [PMID: 29163427]
[232]
Borah, P.; Hazarika, S.; Deka, S.; Venugopala, K.N.; Nair, A.B.; Attimarad, M.; Sreeharsha, N.; Mailavaram, R.P. Application of Advanced Technologies in Natural Product Research: A re-view with special emphasis on ADMET profiling. Curr. Drug Metab., 2020, 21(10), 751-767.
[http://dx.doi.org/10.2174/1389200221666200714144911] [PMID: 32664837]
[233]
Olayanju, O.; Limberis, J.; Esmail, A.; Oelofse, S.; Gina, P.; Pietersen, E.; Fadul, M.; Warren, R.; Dheda, K. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur. Respir. J., 2018, 51(5)1800544
[http://dx.doi.org/10.1183/13993003.00544-2018] [PMID: 29700106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy