Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Pathways Related to the Anti-Cancer Effects of Metabolites Derived from Cerrado Biome Native Plants: An Update and Bioinformatics Analysis on Oral Squamous Cell Carcinoma

Author(s): Guilherme Machado Xavier, André Luiz Sena Guimarães*, Carlos Alberto de Carvalho Fraga*, Talita Antunes Guimarães, Marcela Gonçalves de Souza, Kimberly Marie Jones and Lucyana Conceição Farias

Volume 28, Issue 7, 2021

Published on: 09 December, 2020

Page: [735 - 749] Pages: 15

DOI: 10.2174/0929866527999201209221012

Price: $65

Abstract

Background: Oral cancer is a significant health problem worldwide. Oral squamous cell carcinoma (OSCC) is a malignant neoplasm of epithelial cells that mostly affects different anatomical sites in the head and neck and derives from the squamous epithelium or displays similar morphological characteristics. Generally, OSCC is often the end stage of several changes in the stratified squamous epithelium, which begin as epithelial dysplasia and progress by breaking the basement membrane and invading adjacent tissues. Several plant-based drugs with potent anti-cancer effects are considered inexpensive treatments with limited side effects for cancer and other diseases.

Objective: The aim of this review is to explore whether some Brazilian plant extracts or constituents exhibit anti-tumorigenic activity or have a cytotoxic effect on human oral carcinoma cells.

Methods: Briefly, OSCC and several metabolites derived from Brazilian plants (i.e., flavonoids, vinblastine, irinotecan, etoposide and paclitaxel) were used as keywords to search the literature on PubMed, GenBank and GeneCards.

Results: The results showed that these five chemical compounds found in Cerrado Biome plants exhibit anti-neoplastic effects. Evaluating the compounds revealed that they play a main role in the regulation of cell proliferation.

Conclusion: Preserving and utilising the biodiversity of our planet, especially in unique ecosystems, such as the Cerrado Biome, may prove essential to preserving and promoting human health in modern contexts.

Keywords: OSCC, HNSCC, Brazilian plants, TP53, cytotoxic effect, anti-cancer effects.

Graphical Abstract
[1]
Lachenmeier, D.W. Alcohol-containing mouthwash and oral cancer-can epidemiology prove the absence of risk? Ann. Agric. Environ. Med., 2012, 19(3), 609-610.
[PMID: 23020065]
[2]
Döbrossy, L. Epidemiology of oral cancer. Fogorv. Sz., 2007, 100(2), 47-52.
[PMID: 17546894]
[3]
Wünsch-Filho, V. The epidemiology of oral and pharynx cancer in Brazil. Oral Oncol., 2002, 38(8), 737-746.
[http://dx.doi.org/10.1016/S1368-8375(02)00066-0] [PMID: 12570051]
[4]
van der Meij, E.H. Epidemiology, aetiology, and clinical aspects of oral cancer and premalignant lesions. Ned. Tijdschr. Tandheelkd., 2008, 115(4), 186-191.
[PMID: 18512516]
[5]
de Mesquita, M.L.; de Paula, J.E.; Pessoa, C.; de Moraes, M.O.; Costa-Lotufo, L.V.; Grougnet, R.; Michel, S.; Tillequin, F.; Espindola, L.S. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J. Ethnopharmacol., 2009, 123(3), 439-445.
[http://dx.doi.org/10.1016/j.jep.2009.03.018] [PMID: 19501276]
[6]
Blanchaert, R.H., Jr Oral and oral pharyngeal cancer: an update on incidence and epidemiology, identification, advances in treatment, and outcomes. Compend. Contin. Educ. Dent., 2002, 23(Suppl.12), 25-29.
[PMID: 12789999]
[7]
Saedi, B.; Razmpa, E.; Ghalandarabadi, M.; Ghadimi, H.; Saghafi, F.; Naseri, M. Epidemiology of oral cavity cancers in a country located in the esophageal cancer belt: a case control study. Iran. J. Otorhinolaryngol., 2012, 24(68), 113-118.
[PMID: 24303395]
[8]
dos Santos, O.J.; de Carvalho, F.F., Jr; Sauaia-Filho, E.N.; Santos, R.H.; Santos, R.A.; Barbalho, W.G. Gastric healing process with raw extract of Euphorbia tirucalli L.: study in rats. Arq. Bras. Cir. Dig., 2013, 26(4), 256-259.
[PMID: 24510031]
[9]
Sauaia Filho, E.N.; Santos, O.J.; Barros Filho, A.K.; Rocha, Ade.A.; Silva, R.C.; Santos, R.H.; Santos, R.A. Evaluation of the use of raw extract of Euphorbia tirucalli L. in the healing process of skin wounds in mice. Acta Cir. Bras., 2013, 28(10), 716-720.
[http://dx.doi.org/10.1590/S0102-86502013001000005] [PMID: 24114300]
[10]
Chauhan, S.; Singh, A. Impact of Taraxerol in combination with extract of Euphorbia tirucalli plant on biological parameters of Lymnaea acuminata. Rev. Inst. Med. Trop. São Paulo, 2011, 53(5), 265-270.
[http://dx.doi.org/10.1590/S0036-46652011000500005] [PMID: 22012452]
[11]
Lin, M.W.; Lin, A.S.; Wu, D.C.; Wang, S.S.; Chang, F.R.; Wu, Y.C. Euphol from Euphorbia tirucalli selectively inhibits human gastric cancer cell growth through the induction of ERK1/2-mediated apoptosis. Food Chem. Toxicol., 2012, 50(12), 4333-9.
[12]
Leme, Tdos.S.; Prando, T.B.; Gasparotto, F.M.; de Souza, P.; Crestani, S.; de Souza, L.M.; Cipriani, T.R.; Lourenço, E.L.; Gasparotto, A.Jr. Role of prostaglandin/cAMP pathway in the diuretic and hypotensive effects of purified fraction of Maytenus ilicifolia Mart ex Reissek (Celastraceae). J. Ethnopharmacol., 2013, 150(1), 154-161.
[http://dx.doi.org/10.1016/j.jep.2013.08.032] [PMID: 23993909]
[13]
Baggio, C.H.; Freitas, C.S.; Twardowschy, A.; dos Santosa, A.C.; Mayer, B.; Potrich, F.B.; Cipriani, T.R.; Sassaki, G.L.; Iacomini, M.; Marques, M.C.; Mesia-Velaa, S. In vivo/in vitro studies of the effects of the type II arabinogalactan isolated from Maytenus ilicifolia Mart. ex Reissek on the gastrointestinal tract of rats. Z. Natforsch. C J. Biosci., 2012, 67(7-8), 405-410.
[http://dx.doi.org/10.1515/znc-2012-7-808] [PMID: 23016280]
[14]
Mossi, A.J.; Cansian, R.L.; Leontiev-Orlov, O.; Cechet, J.L.; Carvalho, A.Z.; Toniazzo, G. Genetic diversity and conservation of native populations of Maytenus ilicifolia Mart. ex Reiss. Braz. J. Biol., 2009, 69(2), 447-53.
[15]
Mossi, A.J.; Mazutti, M.; Paroul, N.; Corazza, M.L.; Dariva, C.; Cansian, R.L. Chemical variation of tannins and triterpenes in Brazilian populations of Maytenus ilicifolia Mart. Ex Reiss. Braz. J. Biol., 2009, 69(2), 339-45.
[http://dx.doi.org/10.1590/S1519-69842009000200015]
[16]
Baggio, C.H.; Freitas, C.S.; Mayer, B.; Dos Santos, A.C.; Twardowschy, A.; Potrich, F.B.; Cipriani, T.R.; de Souza, L.M.; Sassaki, G.L.; Iacomini, M.; Marques, M.C.; Mesia-Vela, S. Muscarinic-dependent inhibition of gastric emptying and intestinal motility by fractions of Maytenus ilicifolia Mart ex. Reissek. J. Ethnopharmacol., 2009, 123(3), 385-391.
[http://dx.doi.org/10.1016/j.jep.2009.03.037] [PMID: 19501270]
[17]
Baggio, C.H.; Freitas, C.S.; Otofuji, Gde.M.; Cipriani, T.R.; Souza, L.M.; Sassaki, G.L.; Iacomini, M.; Marques, M.C.; Mesia-Vela, S. Flavonoid-rich fraction of Maytenus ilicifolia Mart. ex. Reiss protects the gastric mucosa of rodents through inhibition of both H+,K+ -ATPase activity and formation of nitric oxide. J. Ethnopharmacol., 2007, 113(3), 433-440.
[http://dx.doi.org/10.1016/j.jep.2007.06.015] [PMID: 17706386]
[18]
Mossi, A.J.; Cansian, R.L.; Leontiev-Orlov, O.; Zanin, E.M.; Oliveira, C.H.; Cechet, M.L. Intra and inter populational genetic variability in Maytenus ilicifolia Mart. ex Reiss. 1861, through RAPD markers. Brazilian journal of biology = Revista brasleira de biologia., 2007, 67(4), 957-61.
[19]
Montanari, T.; Bevilacqua, E. Effect of Maytenus ilicifolia Mart. on pregnant mice. Contraception, 2002, 65(2), 171-175.
[http://dx.doi.org/10.1016/S0010-7824(01)00301-8] [PMID: 11927121]
[20]
Montanari, T.; de Carvalho, J.E.; Dolder, H. Effect of Maytenus ilicifolia Mart.ex. Reiss on spermatogenesis. Contraception, 1998, 57(5), 335-339.
[http://dx.doi.org/10.1016/S0010-7824(98)00038-9] [PMID: 9673841]
[21]
Niero, R.; Moser, R.; Busato, A.C.; Yunes, R.A.; Reis, A.; Filho, V.C. A comparative chemical study of Maytenus ilicifolia mart. reiss and Maytenus robusta reiss (Celastraceae). Z. Natforsch. C J. Biosci., 2001, 56(1-2), 158-161.
[http://dx.doi.org/10.1515/znc-2001-1-224] [PMID: 11302207]
[22]
Araújo Júnior, R.F.; Oliveira, A.L.; Pessoa, J.B.; Garcia, V.B.; Guerra, G.C.; Soares, L.A.; Souza, T.P.; Petrovick, P.R.; Araújo, A.A. Maytenus ilicifolia dry extract protects normal cells, induces apoptosis and regulates Bcl-2 in human cancer cells. Exp. Biol. Med. (Maywood), 2013, 238(11), 1251-1258.
[http://dx.doi.org/10.1177/1535370213494563] [PMID: 23828591]
[23]
de Souza, L.M.; Cipriani, T.R.; Serrato, R.V.; da Costa, D.E.; Iacomini, M.; Gorin, P.A.; Sassaki, G.L. Analysis of flavonol glycoside isomers from leaves of Maytenus ilicifolia by offline and online high performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A, 2008, 1207(1-2), 101-109.
[http://dx.doi.org/10.1016/j.chroma.2008.08.032] [PMID: 18768182]
[24]
Costa, P.M.; Ferreira, P.M.; Bolzani Vda, S.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol. In Vitro, 2008, 22(4), 854-63.
[25]
Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H. Cytotoxic aromatic triterpenes from Maytenus ilicifolia and Maytenus chuchuhuasca. J. Nat. Prod., 1994, 57(12), 1675-1681.
[http://dx.doi.org/10.1021/np50114a009] [PMID: 7714534]
[26]
Sousa, J.N.; Pedroso, N.B.; Borges, L.L.; Oliveira, G.A.; Paula, J.R.; Conceição, E.C. Optimization of Ultrasound-assisted extraction of polyphenols, tannins and epigallocatechin gallate from barks of Stryphnodendron adstringens (Mart.) Coville bark extracts. Pharmacogn. Mag., 2014, 10(Suppl. 2), S318-S323.
[http://dx.doi.org/10.4103/0973-1296.133287] [PMID: 24991110]
[27]
Costa, M.A.; Ishida, K.; Kaplum, V.; Koslyk, E.D.; de Mello, J.C.; Ueda-Nakamura, T.; Dias Filho, B.P.; Nakamura, C.V. Safety evaluation of proanthocyanidin polymer-rich fraction obtained from stem bark of Stryphnodendron adstringens (BARBATIMAO) for use as a pharmacological agent. Regul. Toxicol. Pharmacol., 2010, 58(2), 330-335.
[http://dx.doi.org/10.1016/j.yrtph.2010.07.006] [PMID: 20655967]
[28]
Felipe, A.M.; Rincão, V.P.; Benati, F.J.; Linhares, R.E.; Galina, K.J.; de Toledo, C.E.; Lopes, G.C.; de Mello, J.C.; Nozawa, C. Antiviral effect of Guazuma ulmifolia and Stryphnodendron adstringens on poliovirus and bovine herpesvirus. Biol. Pharm. Bull., 2006, 29(6), 1092-1095.
[http://dx.doi.org/10.1248/bpb.29.1092] [PMID: 16754999]
[29]
Holetz, F.B.; Ueda-Nakamura, T.; Dias Filho, B.P.; Mello, J.C.; Morgado-Díaz, J.A.; Toledo, C.E.; Nakamura, C.V. Biological effects of extracts obtained from Stryphnodendron adstringens on Herpetomonas samuelpessoai. Mem. Inst. Oswaldo Cruz, 2005, 100(4), 397-401.
[http://dx.doi.org/10.1590/S0074-02762005000400010] [PMID: 16113888]
[30]
Rebecca, M.A.; Ishii-Iwamoto, E.L.; Grespan, R.; Cuman, R.K.; Caparroz-Assef, S.M.; Mello, J.C.; Bersani-Amado, C.A. Toxicological studies on Stryphnodendron adstringens. J. Ethnopharmacol., 2002, 83(1-2), 101-104.
[http://dx.doi.org/10.1016/S0378-8741(02)00219-2] [PMID: 12413713]
[31]
Rebecca, M.A.; Ishii-Iwamoto, E.L.; Kelmer-Bracht, A.M.; Caparroz-Assef, S.M.; Cuman, R.K.; Pagadigorria, C.L.; de Mello, J.C.; Bracht, A.; Bersani-Amado, C.A. Effect of Stryphnodendron adstringens (barbatimão) on energy metabolism in the rat liver. Toxicol. Lett., 2003, 143(1), 55-63.
[http://dx.doi.org/10.1016/S0378-4274(03)00065-1] [PMID: 12697381]
[32]
de Sousa, N.C.; de Carvalho, S.; Spanó, M.A.; Graf, U. Absence of genotoxicity of a phytotherapeutic extract from Stryphnodendron adstringens (Mart.) Coville in somatic and germ cells of Drosophila melanogaster. Environ. Mol. Mutagen., 2003, 41(4), 293-299.
[http://dx.doi.org/10.1002/em.10151] [PMID: 12717784]
[33]
Ishida, K.; Rozental, S.; de Mello, J.C.; Nakamura, C.V. Activity of tannins from Stryphnodendron adstringens on Cryptococcus neoformans: effects on growth, capsule size and pigmentation. Ann. Clin. Microbiol. Antimicrob., 2009, 8, 29.
[http://dx.doi.org/10.1186/1476-0711-8-29] [PMID: 19891776]
[34]
Audi, E.A.; Toledo, D.P.; Peres, P.G.; Kimura, E.; Pereira, W.K.; de Mello, J.C.; Nakamura, C.; Alves-do-Prado, W.; Cuman, R.K.; Bersani-Amado, C.A. Gastric antiulcerogenic effects of Stryphnodendron adstringens in rats. Phytother. Res., 1999, 13(3), 264-266.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199905)13:3<264::AID-PTR443>3.0.CO;2-R] [PMID: 10353177]
[35]
Coelho, J.M.; Antoniolli, A.B.; Nunes e Silva, D.; Carvalho, T.M.; Pontes, E.R.; Odashiro, A.N. Effects of silver sulfadiazine, ipê roxo (Tabebuia avellanedae) extract and barbatimão (Stryphnodendron adstringens) extract on cutaneous wound healing in rats. Rev. Col. Bras. Cir., 2010, 37(1), 45-51.
[http://dx.doi.org/10.1590/S0100-69912010000100010] [PMID: 20414576]
[36]
Costa, M.A.; Palazzo de Mello, J.C.; Kaneshima, E.N.; Ueda-Nakamura, T.; Dias Filho, B.P.; Audi, E.A. Acute and chronic toxicity of an aqueous fraction of the stem bark of Stryphnodendron adstringens (Barbatimao) in rodents. Evid. Based Complement. Alternat. Med., 2013, 2013, 841580.
[http://dx.doi.org/10.1155%2F2013%2F841580] [PMID: 23970938]
[37]
Ishida, K.; de Mello, J.C.; Cortez, D.A.; Filho, B.P.; Ueda-Nakamura, T.; Nakamura, C.V. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J. Antimicrob. Chemother., 2006, 58(5), 942-949.
[http://dx.doi.org/10.1093/jac/dkl377] [PMID: 16973655]
[38]
Martins, D.T.; Lima, J.C.; Rao, V.S. The acetone soluble fraction from bark extract of Stryphnodendron adstringens (Mart.) coville inhibits gastric acid secretion and experimental gastric ulceration in rats. Phytother. Res., 2002, 16(5), 427-431.
[http://dx.doi.org/10.1002/ptr.928] [PMID: 12203261]
[39]
Silva, L.A.; de Moura, M.I.; Dambros, C.E.; Freitas, S.L.; Souza, L.A.; Abreu, M.P. Stryphnodendron adstringens extract associated with the hooves trimming surgical procedure for the treatment of bovine digital dermatitis. Trop. Anim. Health Prod., 2013, 45(5), 1177-1181.
[http://dx.doi.org/10.1007/s11250-012-0343-6] [PMID: 23443825]
[40]
de Oliveira, M.L.; Nunes-Pinheiro, D.C.; Tomé, A.R.; Mota, E.F.; Lima-Verde, I.A.; Pinheiro, F.G.; Campello, C.C.; de Morais, S.M. In vivo topical anti-inflammatory and wound healing activities of the fixed oil of Caryocar coriaceum Wittm. seeds. J. Ethnopharmacol., 2010, 129(2), 214-219.
[http://dx.doi.org/10.1016/j.jep.2010.03.014] [PMID: 20332017]
[41]
Saraiva, R.A.; Araruna, M.K.; Oliveira, R.C.; Menezes, K.D.; Leite, G.O.; Kerntopf, M.R.; Costa, J.G.; Rocha, J.B.; Tomé, A.R.; Campos, A.R.; Menezes, I.R. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. J. Ethnopharmacol., 2011, 136(3), 504-510.
[http://dx.doi.org/10.1016/j.jep.2010.07.002] [PMID: 20621180]
[42]
Matsushige, A.; Kotake, Y.; Matsunami, K.; Otsuka, H.; Ohta, S.; Takeda, Y. Annonamine, a new aporphine alkaloid from the leaves of Annona muricata. Chem. Pharm. Bull. (Tokyo), 2012, 60(2), 257-259.
[http://dx.doi.org/10.1248/cpb.60.257] [PMID: 22293487]
[43]
Moreno-Hernández, C.L.; Sáyago-Ayerdi, S.G.; García-Galindo, H.S.; Mata-Montes De Oca, M.; Montalvo-González, E. Effect of the application of 1-methylcyclopropene and wax emulsions on proximate analysis and some antioxidants of soursop (Annona muricata L.). ScientificWorldJournal, 2014, 2014, 896853.
[http://dx.doi.org/10.1155/2014/896853] [PMID: 24892105]
[44]
Moghadamtousi, S.Z.; Kadir, H.A.; Paydar, M.; Rouhollahi, E.; Karimian, H. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB. BMC Complement. Altern. Med., 2014, 14, 299.
[http://dx.doi.org/10.1186/1472-6882-14-299] [PMID: 25127718]
[45]
von Breymann, J.; Chaves, C.; Arias, M.L. Analysis of the microbiological quality and potential presence of Listeria monocytogenes in custard apple (Annona muricata), mango (Mangifera indica) and passion fruit (Passiflora edulis) pulps from Costa Rica. Arch. Latinoam. Nutr., 2013, 63(1), 53-57.
[PMID: 24167958]
[46]
Nawwar, M.; Ayoub, N.; Hussein, S.; Hashim, A.; El-Sharawy, R.; Wende, K.; Harms, M.; Lindequist, U. A flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona muricata Linn. Arch. Pharm. Res., 2012, 35(5), 761-767.
[http://dx.doi.org/10.1007/s12272-012-0501-4] [PMID: 22644843]
[47]
Matsushige, A.; Matsunami, K.; Kotake, Y.; Otsuka, H.; Ohta, S. Three new megastigmanes from the leaves of Annona muricata . J. Nat. Med., 2012, 66(2), 284-291.
[http://dx.doi.org/10.1007/s11418-011-0583-1] [PMID: 21892756]
[48]
Nwokocha, C.R.; Owu, D.U.; Gordon, A.; Thaxter, K.; McCalla, G.; Ozolua, R.I.; Young, L. Possible mechanisms of action of the hypotensive effect of Annona muricata (soursop) in normotensive Sprague-Dawley rats. Pharm. Biol., 2012, 50(11), 1436-1441.
[http://dx.doi.org/10.3109/13880209.2012.684690] [PMID: 22950673]
[49]
Ge, H.; Dai, J. Chemical constituents of an endophytic fungus from Annona muricata. Zhongguo Zhongyao Zazhi, 2010, 35(23), 3151-3155.
[PMID: 21355237]
[50]
Boriollo, M.F.; Resende, M.R.; da Silva, T.A.; Públio, J.Y.; Souza, L.S.; Dias, C.T.; de Mello Silva Oliveira, N.; Fiorini, J.E. Evaluation of the mutagenicity and antimutagenicity of Ziziphus joazeiro Mart. bark in the micronucleus assay. Genet. Mol. Biol., 2014, 37(2), 428-438.
[http://dx.doi.org/10.1590/S1415-47572014000300016] [PMID: 25071409]
[51]
Vergara, C.; Saavedra, J.; Sáenz, C.; García, P.; Robert, P. Microencapsulation of pulp and ultrafiltered cactus pear (Opuntia ficus-indica) extracts and betanin stability during storage. Food Chem., 2014, 157, 246-251.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.037] [PMID: 24679777]
[52]
Wright, C.R.; Setzer, W.N. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California. Nat. Prod. Res., 2014, 28(3), 208-211.
[http://dx.doi.org/10.1080/14786419.2013.867345] [PMID: 24354326]
[53]
Wright, C.R.; Waddell, E.A.; Setzer, W.N. Accumulation of silicon in cacti native to the United States: characterization of silica bodies and cyclic oligosiloxanes in Stenocereus thurberi, Opuntia littoralis, Opuntia ficus-indica, and Opuntia stricta. Nat. Prod. Commun., 2014, 9(6), 873-878.
[http://dx.doi.org/10.1177/1934578X1400900639] [PMID: 25115104]
[54]
Allegra, M.; D’Acquisto, F.; Tesoriere, L.; Attanzio, A.; Livrea, M.A. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages. Redox Biol., 2014, 2, 892-900.
[http://dx.doi.org/10.1016/j.redox.2014.07.004] [PMID: 25180166]
[55]
Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem., 2013, 139(1-4), 796-803.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.054] [PMID: 23561175]
[56]
de Souza, M.T.; Ambrosio, E.; de Almeida, C.A.; de Souza Freitas, T.K.; Santos, L.B.; de Cinque Almeida, V.; Garcia, J.C. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environ. Monit. Assess., 2014, 186(8), 5261-5271.
[http://dx.doi.org/10.1007/s10661-014-3775-9] [PMID: 24788840]
[57]
Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Hespel, P. Opuntia ficus-indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men. Int. J. Sport Nutr. Exerc. Metab., 2012, 22(4), 284-291.
[http://dx.doi.org/10.1123/ijsnem.22.4.284] [PMID: 22805855]
[58]
Ferreira, H.C.; Serra, C.P.; Endringer, D.C.; Lemos, V.S.; Braga, F.C.; Cortes, S.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery. Phytomedicine, 2007, 14(7-8), 473-8.
[http://dx.doi.org/10.1016/j.phymed.2006.11.008]
[59]
Almeida, L.M.; Floriano, J.F.; Ribeiro, T.P.; Magno, L.N.; da Mota, L.S.; Peixoto, N.; Mrué, F.; Melo-Reis, P.; Lino Junior, Rde.S.; Graeff, C.F.; Gonçalves, P.J. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity. J. Mater. Sci. Mater. Med., 2014, 25(9), 2153-2162.
[http://dx.doi.org/10.1007/s10856-014-5255-8] [PMID: 24973907]
[60]
Marinho, D.G.; Alviano, D.S.; Matheus, M.E.; Alviano, C.S.; Fernandes, P.D. The latex obtained from Hancornia speciosa Gomes possesses anti-inflammatory activity. J. Ethnopharmacol., 2011, 135(2), 530-537.
[http://dx.doi.org/10.1016/j.jep.2011.03.059] [PMID: 21463669]
[61]
Pereira, A.B.; Veríssimo, T.M.; Oliveira, M.A.; Araujo, I.A.; Alves, R.J.; Braga, F.C. Development and validation of an HPLC-DAD method for quantification of bornesitol in extracts from Hancornia speciosa leaves after derivatization with p-toluenesulfonyl chloride. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 887-888, 133-137.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.009] [PMID: 22333437]
[62]
Silva, G.C.; Braga, F.C.; Lima, M.P.; Pesquero, J.L.; Lemos, V.S.; Cortes, S.F. Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO. J. Ethnopharmacol., 2011, 137(1), 709-713.
[http://dx.doi.org/10.1016/j.jep.2011.06.031] [PMID: 21756990]
[63]
Endringer, D.C.; Pezzuto, J.M.; Braga, F.C. NF-kappaB inhibitory activity of cyclitols isolated from Hancornia speciosa. Phytomedicine, 2009, 16(11), 1064-9.
[64]
Ferreira, H.C.; Serra, C.P.; Lemos, V.S.; Braga, F.C.; Cortes, S.F. Nitric oxide-dependent vasodilatation by ethanolic extract of Hancornia speciosa via phosphatidyl-inositol 3-kinase. J. Ethnopharmacol., 2007, 109(1), 161-164.
[http://dx.doi.org/10.1016/j.jep.2006.06.009] [PMID: 16890389]
[65]
Pinto, C.E.; Oliveira, R.; Schlindwein, C. Do consecutive flower visits within a crown diminish fruit set in mass-flowering Hancornia speciosa (Apocynaceae)? Plant Biol (Stuttg), 2008, 10(3), 408-412.
[http://dx.doi.org/10.1111/j.1438-8677.2008.00045.x] [PMID: 18426489]
[66]
Fuentes, E.; Rodriguez-Perez, W.; Guzman, L.; Alarcon, M.; Navarrete, S.; Forero-Doria, O. Mauritia flexuosa presents in vitro and in vivo antiplatelet and antithrombotic activities. Evid. Based Complement. Alternat. Med., 2013, 2013, 653257.
[67]
Gilmore, M.P.; Endress, B.A.; Horn, C.M. The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J. Ethnobiol. Ethnomed., 2013, 9, 29.
[http://dx.doi.org/10.1186/1746-4269-9-29] [PMID: 23607601]
[68]
Khorsand Rosa, R.; Koptur, S. New findings on the pollination biology of Mauritia flexuosa (Arecaceae) in Roraima, Brazil: linking dioecy, wind, and habitat. Am. J. Bot., 2013, 100(3), 613-621.
[http://dx.doi.org/10.3732/ajb.1200446] [PMID: 23455480]
[69]
Koolen, H.H.; Soares, E.R.; da Silva, F.M.; de Oliveira, A.A.; de Souza, A.Q.; de Medeiros, L.S.; Rodrigues-Filho, E.; Cavalcanti, B.C.; Pessoa, C.O.; Moraes, M.O.; Salvador, M.J.; de Souza, A.D. Mauritic acid: a new dammarane triterpene from the roots of Mauritia flexuosa L.f. (Arecaceae). Nat. Prod. Res., 2013, 27(22), 2118-2125.
[http://dx.doi.org/10.1080/14786419.2013.793685] [PMID: 23656282]
[70]
Renninger, H.J.; Phillips, N. Intrinsic and extrinsic hydraulic factors in varying sizes of two Amazonian palm species (Iriartea deltoidea and Mauritia flexuosa) differing in development and growing environment. Am. J. Bot., 2010, 97(12), 1926-1936.
[http://dx.doi.org/10.3732/ajb.1000015] [PMID: 21616841]
[71]
Zanatta, C.F.; de Faria Sato, A.M.; de Camargo, F.B., Jr; Campos, P.M.; Rocha-Filho, P.A. Rheological behavior, zeta potential, and accelerated stability tests of Buriti oil (Mauritia flexuosa) emulsions containing lyotropic liquid crystals. Drug Dev. Ind. Pharm., 2010, 36(1), 93-101.
[http://dx.doi.org/10.3109/03639040903099728] [PMID: 19656003]
[72]
Zanatta, C.F.; Mitjans, M.; Urgatondo, V.; Rocha-Filho, P.A.; Vinardell, M.P. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food Chem. Toxicol, 2010, 48(1), 70-5.
[73]
Gurgel-Gonçalves, R.; Cura, C.; Schijman, A.G.; Cuba, C.A. Infestation of Mauritia flexuosa palms by triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi and Trypanosoma rangeli in the Brazilian savanna. Acta Trop., 2012, 121(2), 105-111.
[http://dx.doi.org/10.1016/j.actatropica.2011.10.010] [PMID: 22037200]
[74]
Menezes, E.V.; Souto, W.F.; Ciampi, A.Y.; Azevedo, V.C.; Valério, H.M.; Pimenta, M.A. Development and characterization of DNA microsatellite primers for buriti (Mauritia flexuosa L.f.). Genet. Mol. Res., 2012, 11(4), 4058-4062.
[http://dx.doi.org/10.4238/2012.September.17.6] [PMID: 23079977]
[75]
Cota, L.G.; Vieira, F.A.; Melo Júnior, A.F.; Brandão, M.M.; Santana, K.N.; Guedes, M.L.; Oliveira, D.A. Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State. Genet. Mol. Res., 2011, 10(3), 2172-2180.
[http://dx.doi.org/10.4238/vol10-3gmr1188] [PMID: 21968724]
[76]
Silva, J.J.; Cerdeira, C.D.; Chavasco, J.M.; Cintra, A.B.; Silva, C.B.; Mendonça, A.N.; Ishikawa, T.; Boriollo, M.F.; Chavasco, J.K. In vitro screening antibacterial activity of Bidens pilosa Linné and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Rev. Inst. Med. Trop. São Paulo, 2014, 56(4), 333-340.
[http://dx.doi.org/10.1590/S0036-46652014000400011] [PMID: 25076435]
[77]
Pimenta, L.P.; Garcia, G.M.; Gonçalves, S.G.; Dionísio, B.L.; Braga, E.M.; Mosqueira, V.C. In vivo antimalarial efficacy of acetogenins, alkaloids and flavonoids enriched fractions from Annona crassiflora. Nat. Prod. Res., 2014, 28(16), 1254-1259.
[http://dx.doi.org/10.1080/14786419.2014.900496] [PMID: 24678811]
[78]
Lage, G.A.; Medeiros, Fda.S.; Furtado, Wde.L.; Takahashi, J.A.; de Souza Filho, J.D.; Pimenta, L.P. The first report on flavonoid isolation from Annona crassiflora Mart. Nat. Prod. Res., 2014, 28(11), 808-811.
[http://dx.doi.org/10.1080/14786419.2014.885518] [PMID: 24571732]
[79]
Pereira, M.F.; Bandeira, L.F.; Blanco, A.J.; Ciampi, A.Y.; Coelho, A.S. Development of microsatellite markers in Annona crassiflora Mart., a Brazilian Cerrado fruit tree species. Mol. Ecol. Resour., 2008, 8(6), 1329-1331.
[http://dx.doi.org/10.1111/j.1755-0998.2008.02275.x] [PMID: 21586036]
[80]
Dragano, N.R.; de Venancio, V.P.; Paula, F.B.; Della Lucia, F.; Fonseca, M.J.; Azevedo, L. Influence of Marolo (Annona crassiflora Mart.) pulp intake on the modulation of mutagenic/antimutagenic processes and its action on oxidative stress in vivo. Plant Foods Hum. Nutr., 2010, 65(4), 319-325.
[http://dx.doi.org/10.1007/s11130-010-0191-3] [PMID: 20878359]
[81]
Vilar, J.B.; Ferreira, F.L.; Ferri, P.H.; Guillo, L.A.; Chen Chen, L. Assessment of the mutagenic, antimutagenic and cytotoxic activities of ethanolic extract of araticum (Annona crassiflora Mart. 1841) by micronucleus test in mice. Braz. J. Biol., 2008, 68(1), 141-7.
[82]
Vilar, J.B.; Ferri, P.H.; Chen-Chen, L. Genotoxicity investigation of araticum(Annona crassiflora Mart., 1841, Annonaceae) using SOS-Inductest and Ames test. Braz. J. Biol, 2011, 71(1), 197-202.
[83]
Martinez-Perez, C.; Ward, C.; Cook, G.; Mullen, P.; McPhail, D.; Harrison, D.J.; Langdon, S.P. Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer. Biochem. Soc. Trans., 2014, 42(4), 1017-1023.
[http://dx.doi.org/10.1042/BST20140073] [PMID: 25109996]
[84]
Li, J.; Wang, Y.; Lei, J.C.; Hao, Y.; Yang, Y.; Yang, C.X.; Yu, J.Q. Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria barbata. Nat. Prod. Res., 2014, 28(10), 683-689.
[http://dx.doi.org/10.1080/14786419.2013.871547] [PMID: 24359131]
[85]
Rossi, M.; La Vecchia, C. Flavonoids and the risk of ovarian cancer. Am. J. Clin. Nutr., 2014, 100(5), 1217-1219.
[http://dx.doi.org/10.3945/ajcn.114.098285] [PMID: 25332318]
[86]
Orlikova, B.; Menezes, J.C.; Ji, S.; Kamat, S.P.; Cavaleiro, J.A.; Diederich, M. Methylenedioxy flavonoids: assessment of cytotoxic and anti-cancer potential in human leukemia cells. Eur. J. Med. Chem., 2014, 84, 173-180.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.003] [PMID: 25016375]
[87]
Sak, K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev., 2014, 8(16), 122-146.
[http://dx.doi.org/10.4103/0973-7847.134247] [PMID: 25125885]
[88]
Ibrahim, A.; Sobeh, M.; Ismail, A.; Alaa, A.; Sheashaa, H.; Sobh, M.; Badria, F. Free-B-Ring flavonoids as potential lead compounds for colon cancer therapy. Mol. Clin. Oncol., 2014, 2(4), 581-585.
[http://dx.doi.org/10.3892/mco.2014.278] [PMID: 24940499]
[89]
Kuete, V.; Sandjo, L.P.; Djeussi, D.E.; Zeino, M.; Kwamou, G.M.; Ngadjui, B.; Efferth, T. Cytotoxic flavonoids and isoflavonoids from Erythrina sigmoidea towards multi-factorial drug resistant cancer cells. Invest. New Drugs, 2014, 32(6), 1053-1062.
[http://dx.doi.org/10.1007/s10637-014-0137-y] [PMID: 25034000]
[90]
Takemura, H.; Sakakibara, H.; Yamazaki, S.; Shimoi, K. Breast cancer and flavonoids - a role in prevention. Curr. Pharm. Des., 2013, 19(34), 6125-6132.
[http://dx.doi.org/10.2174/1381612811319340006] [PMID: 23448447]
[91]
Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 2013, 45(12), 2821-2831.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[92]
Andrews, L. Dietary flavonoids for the prevention of colorectal cancer. Clin. J. Oncol. Nurs., 2013, 17(6), 671-672.
[http://dx.doi.org/10.1188/13.CJON.671-672] [PMID: 24305491]
[93]
Plimack, E.R.; Hoffman-Censits, J.H.; Viterbo, R.; Trabulsi, E.J.; Ross, E.A.; Greenberg, R.E.; Chen, D.Y.; Lallas, C.D.; Wong, Y.N.; Lin, J.; Kutikov, A.; Dotan, E.; Brennan, T.A.; Palma, N.; Dulaimi, E.; Mehrazin, R.; Boorjian, S.A.; Kelly, W.K.; Uzzo, R.G.; Hudes, G.R. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol., 2014, 32(18), 1895-1901.
[http://dx.doi.org/10.1200/JCO.2013.53.2465] [PMID: 24821881]
[94]
Samadi, N.; Ghanbari, P.; Mohseni, M.; Tabasinezhad, M.; Sharifi, S.; Nazemieh, H.; Rashidi, M.R. Combination therapy increases the efficacy of docetaxel, vinblastine and tamoxifen in cancer cells. J. Cancer Res. Ther., 2014, 10(3), 715-721.
[PMID: 25313766]
[95]
Ghanbari, P.; Mohseni, M.; Tabasinezhad, M.; Yousefi, B.; Saei, A.A.; Sharifi, S.; Rashidi, M.R.; Samadi, N. Inhibition of survivin restores the sensitivity of breast cancer cells to docetaxel and vinblastine. Appl. Biochem. Biotechnol., 2014, 174(2), 667-681.
[http://dx.doi.org/10.1007/s12010-014-1125-6] [PMID: 25086926]
[96]
Kitamura, H.; Tsukamoto, T.; Shibata, T.; Masumori, N.; Fujimoto, H.; Hirao, Y.; Fujimoto, K.; Kitamura, Y.; Tomita, Y.; Tobisu, K.; Niwakawa, M.; Naito, S.; Eto, M.; Kakehi, Y. Urologic Oncology Study Group of the Japan Clinical Oncology Group. Randomised phase III study of neoadjuvant chemotherapy with methotrexate, doxorubicin, vinblastine and cisplatin followed by radical cystectomy compared with radical cystectomy alone for muscle-invasive bladder cancer: Japan Clinical Oncology Group Study JCOG0209. Ann. Oncol., 2014, 25(6), 1192-1198.
[http://dx.doi.org/10.1093/annonc/mdu126] [PMID: 24669010]
[97]
Choueiri, T.K.; Jacobus, S.; Bellmunt, J.; Qu, A.; Appleman, L.J.; Tretter, C.; Bubley, G.J.; Stack, E.C.; Signoretti, S.; Walsh, M.; Steele, G.; Hirsch, M.; Sweeney, C.J.; Taplin, M.E.; Kibel, A.S.; Krajewski, K.M.; Kantoff, P.W.; Ross, R.W.; Rosenberg, J.E. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J. Clin. Oncol., 2014, 32(18), 1889-1894.
[http://dx.doi.org/10.1200/JCO.2013.52.4785] [PMID: 24821883]
[98]
Flaherty, L.E.; Othus, M.; Atkins, M.B.; Tuthill, R.J.; Thompson, J.A.; Vetto, J.T.; Haluska, F.G.; Pappo, A.S.; Sosman, J.A.; Redman, B.G.; Moon, J.; Ribas, A.; Kirkwood, J.M.; Sondak, V.K. Southwest Oncology Group S0008: a phase III trial of high-dose interferon Alfa-2b versus cisplatin, vinblastine, and dacarbazine, plus interleukin-2 and interferon in patients with high-risk melanoma--an intergroup study of cancer and leukemia Group B, Children’s Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. J. Clin. Oncol., 2014, 32(33), 3771-3778.
[http://dx.doi.org/10.1200/JCO.2013.53.1590] [PMID: 25332243]
[99]
Lee, F.C.; Harris, W.; Cheng, H.H.; Shenoi, J.; Zhao, S.; Wang, J.; Champion, T.; Izard, J.; Gore, J.L.; Porter, M.; Yu, E.Y.; Wright, J.L. Pathologic response rates of Gemcitabine/Cisplatin versus Methotrexate/Vinblastine/Adriamycin/Cisplatin neoadjuvant chemotherapy for muscle invasive urothelial bladder cancer. Adv. Urol., 2013, 2013, 317190.
[http://dx.doi.org/10.1155/2013/317190] [PMID: 24382958]
[100]
Passer, B.J.; Cheema, T.; Wu, S.; Wu, C.L.; Rabkin, S.D.; Martuza, R.L. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther., 2013, 20(1), 17-24.
[http://dx.doi.org/10.1038/cgt.2012.75] [PMID: 23138870]
[101]
Élez, E.; Kocáková, I.; Höhler, T.; Martens, U.M.; Bokemeyer, C.; Van Cutsem, E.; Melichar, B.; Smakal, M.; Csőszi, T.; Topuzov, E.; Orlova, R.; Tjulandin, S.; Rivera, F.; Straub, J.; Bruns, R.; Quaratino, S.; Tabernero, J. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial. Ann. Oncol., 2015, 26(1), 132-140.
[http://dx.doi.org/10.1093/annonc/mdu474] [PMID: 25319061]
[102]
Li, L.; Yue, G.G.; Fung, K.P.; Leung, P.C.; Lau, C.B.; Leung, P.S. Establishment of an orthotopic model of pancreatic cancer to evaluate the antitumor effects of irinotecan through the biomarker carbohydrate antigen 19-9 in mice. Pancreas, 2014, 43(7), 1126-1128.
[http://dx.doi.org/10.1097/MPA.0000000000000183] [PMID: 25207664]
[103]
Yasui, H.; Muro, K.; Shimada, Y.; Tsuji, A.; Sameshima, S.; Baba, H.; Satoh, T.; Denda, T.; Ina, K.; Nishina, T.; Yamaguchi, K.; Esaki, T.; Tokunaga, S.; Kuwano, H.; Boku, N.; Komatsu, Y.; Watanabe, M.; Hyodo, I.; Morita, S.; Sugihara, K. A phase 3 non-inferiority study of 5-FU/l-leucovorin/irinotecan (FOLFIRI) versus irinotecan/S-1 (IRIS) as second-line chemotherapy for metastatic colorectal cancer: updated results of the FIRIS study. J. Cancer Res. Clin. Oncol., 2015, 141(1), 153-160.
[http://dx.doi.org/10.1007/s00432-014-1783-3] [PMID: 25106731]
[104]
Wang, J.; Zhu, R.; Sun, X.; Zhu, Y.; Liu, H.; Wang, S.L. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int. J. Nanomedicine, 2014, 9, 3987-3998.
[http://dx.doi.org/10.2147/IJN.S64103] [PMID: 25187702]
[105]
Kim, T.M.; Kim, D.W.; Kang, Y.K.; Chung, J.; Song, H.S.; Kim, H.J.; Kim, B.S.; Lee, J.S.; Kim, H.; Yang, S.H.; Yuh, Y.J.; Bae, S.H.; Hyun, M.S.; Jeon, Y.K.; Kim, C.W.; Heo, D.S. A phase II study of ifosfamide, methotrexate, etoposide, and prednisolone for previously untreated stage I/II extranodal natural killer/T-cell lymphoma, nasal type: a multicenter trial of the Korean Cancer Study Group. Oncologist, 2014, 19(11), 1129-1130.
[http://dx.doi.org/10.1634/theoncologist.2014-0305] [PMID: 25280488]
[106]
Yan, J.; Tang, D. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response. Exp. Cell Res., 2014, 328(1), 132-142.
[http://dx.doi.org/10.1016/j.yexcr.2014.08.016] [PMID: 25149681]
[107]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[108]
Li, D.; Zhao, L.N.; Zheng, X.L.; Lin, P.; Lin, F.; Li, Y.; Zou, H.F.; Cui, R.J.; Chen, H.; Yu, X.G. Sox2 is involved in paclitaxel resistance of the prostate cancer cell line PC-3 via the PI3K/Akt pathway. Mol. Med. Rep., 2014, 10(6), 3169-3176.
[http://dx.doi.org/10.3892/mmr.2014.2630] [PMID: 25310235]
[109]
Liu, R.; Liu, X.; Zheng, Y.; Gu, J.; Xiong, S.; Jiang, P.; Jiang, X.; Huang, E.; Yang, Y.; Ge, D.; Chu, Y. MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel. Oncol. Lett., 2014, 8(5), 2193-2200.
[http://dx.doi.org/10.3892/ol.2014.2500] [PMID: 25289099]
[110]
Cardoso, C.M.; de Jesus, S.F.; de Souza, M.G.; Queiroz, L.; Santos, E.M.; Dos Santos, E.P. High levels of ANXA2 are characteristic of malignant salivary gland tumors. J. Oral Pathol. Med., 2019, 48(10), 929-34.
[http://dx.doi.org/10.1111/jop.12932]
[111]
de Carvalho Fraga, C.A.; Farias, L.C.; Jones, K.M.; Batista de Paula, A.M.; Guimaraes, A.L.S. Angiotensin-Converting Enzymes (ACE and ACE2) as potential targets for malignant epithelial neoplasia: review and bioinformatics analyses focused in oral squamous cell carcinoma. Protein Pept. Lett., 2017, 24(9), 784-792.
[http://dx.doi.org/10.2174/0929866524666170815161621] [PMID: 28814250]
[112]
Pereira, T.; Brito, J.A.R.; Guimaraes, A.L.S.; Gomes, C.C.; de Lacerda, J.C.T.; de Castro, W.H. MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma. J. Oral Pathol. Med., 2018, 47(1), 78-85.
[http://dx.doi.org/10.1111/jop.12650]
[113]
Santos, E.M.; Farias, L.C.; Santos, S.H.S.; de Paula, A.M.B.; Oliveira E Silva, C.S.; Guimarães, A.L.S. Molecular finds of pressure ulcer: a bioinformatics approach in pressure ulcer. J. Tissue Viability, 2017, 26(2), 119-124.
[http://dx.doi.org/10.1016/j.jtv.2017.01.002] [PMID: 28188042]
[114]
Poswar, Fde.O.; Farias, L.C.; Fraga, C.A.; Bambirra, W., Jr; Brito-Júnior, M.; Sousa-Neto, M.D.; Santos, S.H.; de Paula, A.M.; D’Angelo, M.F.; Guimarães, A.L. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J. Endod., 2015, 41(6), 877-883.
[http://dx.doi.org/10.1016/j.joen.2015.02.004] [PMID: 25873079]
[115]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[116]
Maere, S.; Heymans, K.; Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21(16), 3448-3449.
[http://dx.doi.org/10.1093/bioinformatics/bti551] [PMID: 15972284]
[117]
Masica, D.L.; Li, S.; Douville, C.; Manola, J.; Ferris, R.L.; Burtness, B.; Forastiere, A.A.; Koch, W.M.; Chung, C.H.; Karchin, R. Predicting survival in head and neck squamous cell carcinoma from TP53 mutation. Hum. Genet., 2015, 134(5), 497-507.
[http://dx.doi.org/10.1007/s00439-014-1470-0] [PMID: 25108461]
[118]
Ganci, F.; Sacconi, A.; Bossel Ben-Moshe, N.; Manciocco, V.; Sperduti, I.; Strigari, L.; Covello, R.; Benevolo, M.; Pescarmona, E.; Domany, E.; Muti, P.; Strano, S.; Spriano, G.; Fontemaggi, G.; Blandino, G. Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients. Ann. Oncol., 2013, 24(12), 3082-3088.
[http://dx.doi.org/10.1093/annonc/mdt380] [PMID: 24107801]
[119]
Alsner, J.; Høyer, M.; Sørensen, S.B.; Overgaard, J. Interaction between potential doubling time and TP53 mutation: predicting radiotherapy outcome in squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys., 2001, 49(2), 519-525.
[http://dx.doi.org/10.1016/S0360-3016(00)01489-9] [PMID: 11173149]
[120]
Xu, L.; Davidson, B.J.; Murty, V.V.; Li, R.G.; Sacks, P.G.; Garin-Chesa, P.; Schantz, S.P.; Chaganti, R.S. TP53 gene mutations and CCND1 gene amplification in head and neck squamous cell carcinoma cell lines. Int. J. Cancer, 1994, 59(3), 383-387.
[http://dx.doi.org/10.1002/ijc.2910590316] [PMID: 7927946]
[121]
Kim, J.; Bae, S.; An, S.; Park, J.K.; Kim, E.M.; Hwang, S.G.; Kim, W.J.; Um, H.D. Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep., 2014, 15(10), 1062-1068.
[http://dx.doi.org/10.15252/embr.201438587] [PMID: 25141863]
[122]
Zhang, B.; Mehrotra, S.; Ng, W.L.; Calvi, B.R. Low levels of p53 protein and chromatin silencing of p53 target genes repress apoptosis in Drosophila endocycling cells. PLoS Genet., 2014, 10(9), e1004581.
[http://dx.doi.org/10.1371/journal.pgen.1004581] [PMID: 25211335]
[123]
Wang, X.; Pei, L.; Yan, H.; Wang, Z.; Wei, N.; Wang, S.; Yang, X.; Tian, Q.; Lu, Y. Intervention of death-associated protein kinase 1-p53 interaction exerts the therapeutic effects against stroke. Stroke, 2014, 45(10), 3089-3091.
[http://dx.doi.org/10.1161/STROKEAHA.114.006348] [PMID: 25139875]
[124]
Yao, D.C.; de Lima, M. Utility of the p53 mutant protein in patients with low-risk myelodysplastic syndrome. Rev. Bras. Hematol. Hemoter., 2014, 36(3), 173-174.
[http://dx.doi.org/10.1016/j.bjhh.2014.03.014] [PMID: 25031053]
[125]
Voropaeva, O.F.; Shokin, Y.I.; Nepomnyashchikh, L.M.; Senchukova, S.R. Mathematical modeling of functioning of the p53-Mdm2 protein system. Bull. Exp. Biol. Med., 2014, 157(2), 291-294.
[http://dx.doi.org/10.1007/s10517-014-2548-3] [PMID: 24952502]
[126]
Ara, N.; Atique, M.; Ahmed, S.; Ali Bukhari, S.G. Frequency of p53 gene mutation and protein expression in oral squamous cell carcinoma. J. Coll. Physicians Surg. Pak., 2014, 24(10), 749-753.
[PMID: 25327920]
[127]
Yeudall, W.A. p53 mutation in the genesis of metastasis. Subcell. Biochem., 2014, 85, 105-117.
[http://dx.doi.org/10.1007/978-94-017-9211-0_6] [PMID: 25201191]
[128]
Saleem, S.; Abbasi, Z.A.; Hameed, A.; Qureshi, N.R.; Khan, M.A.; Azhar, A. Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol., 2014, 35(8), 7945-7950.
[http://dx.doi.org/10.1007/s13277-014-2062-2] [PMID: 24833091]
[129]
Monteiro, LS; Diniz-Freitas, M; Garcia-Caballero, T; Warnakulasuriya, S; Forteza, J; Fraga, M Combined cytoplasmic and membranous EGFR and p53 overexpression is a poor prognostic marker in early stage oral squamous cell carcinoma. J. Oral. Pathol. Med., 2012, 41(7), 559-67.
[http://dx.doi.org/10.1111/j.1600-0714.2012.01142.x]
[130]
De Paula, A.M.; Souza, L.R.; Farias, L.C.; Corrêa, G.T.; Fraga, C.A.; Eleutério, N.B.; Silveira, A.C.; Santos, F.B.; Haikal, D.S.; Guimarães, A.L.; Gomez, R.S. Analysis of 724 cases of primary head and neck squamous cell carcinoma (HNSCC) with a focus on young patients and p53 immunolocalization. Oral Oncol., 2009, 45(9), 777-782.
[http://dx.doi.org/10.1016/j.oraloncology.2008.11.015] [PMID: 19359212]
[131]
Ruano-Ravina, A.; Pérez-Becerra, R.; Fraga, M.; Kelsey, K.T.; Barros-Dios, J.M. Analysis of the relationship between p53 immunohistochemical expression and risk factors for lung cancer, with special emphasis on residential radon exposure. Ann. Oncol., 2008, 19(1), 109-114.
[http://dx.doi.org/10.1093/annonc/mdm395] [PMID: 17897960]
[132]
Tai, M.C.; Tsang, S.Y.; Chang, L.Y.; Xue, H. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev., 2005, 11(2), 141-150.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00266.x] [PMID: 16007236]
[133]
Zhao, Y.; Zhang, L.; Wu, Y.; Dai, Q.; Zhou, Y.; Li, Z.; Yang, L.; Guo, Q.; Lu, N. Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol. Res., 2018, 135, 49-59.
[http://dx.doi.org/10.1016/j.phrs.2018.07.011] [PMID: 30031170]
[134]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy