[13]
Oferkin, I.V.; Zheltkov, D.A.; Tyrtyshnikov, E.E.; Sulimov, A.V.; Kutov, D.C.; Sulimov, V.B. Evaluation of the docking algorithm based on tensor train global optimization. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw., 2015, 8, 83-99.
[15]
Word, J.M.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol., 1999, 285, 1735-1747.
[18]
Stewart, J.J.P. MOPAC. Stewart Computational Chemistry, 2016.
[23]
Case, D.A.; Pearlman, D.A.; Caldwell, J.C.; Cheatham, T.E., III; Wang, J.; Ross, W.S.; Simmerling, C.L.; Darden, T.A.; Merz, K.M.; Stanton, R.V.; Cheng, A.; Vincent, J.J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R.J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G.L.; Singh, U.C.; Weiner, P.; Kollman, P.A. AMBER 7, 2002.
[26]
Molecular Operating Environment (MOE). Chemical Computing Group ULC 2017.
[27]
FlexX Version 4.3. BioSolveIT GmbH 2007.
[30]
The Scripps Research Institute. AutoDock Suite., 2019.
[74]
Surflex, BioPharmics LLC 2020.
[84]
Kubinyi, H. Success stories of computer-aided design. InComputer Applications in Pharmaceutical Research and Development; Wiley: Hoboken, 2006, pp. 377-424.
[90]
Romanov, A.N.; Kondakova, O.A.; Grigoriev, F.V.; Sulimov, A.V.; Luschekina, S.V.; Martynov, Y.B.; Sulimov, V.B. The SOL docking package for computer-aided drug design. Numerical methods and programming,, 2008, 9, 213-233.
[92]
Sulimov, V.B.; Ilin, I.S.; Kutov, D.C.; Sulimov, A.V. Development of docking programs for lomonosov supercomputer. J. Turkish Chem. Soc. Sect. Chem, 2020, 7, 259-276.
[93]
Oferkin, I.V.; Sulimov, A.V.; Kondakova, O.A.; Sulimov, V.B. Implementation of parallel computing for docking programs SOLGRID and SOL. Numerical methods and programming, 2011, 12, 9-23.
[99]
Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next generation 3D pharmacophore modeling. WIREs Comput. Mol. Sci., 2020.10e1468
[111]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Docking with SwissDock BT. InDocking Screens for Drug Discovery; Springer: New York, 2019, pp. 189-202.
[134]
Bitencourt-Ferreira, G.; de Azevedo, W.F. SAnDReS: A computational tool for docking bt. InDocking Screens for Drug Discovery; Springer New York, 2019, pp. 51-65.
[136]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Molegro virtual docker for docking bt. InDocking Screens for Drug Discovery; Springer: New York, NY, 2019, pp. 149-167.
[140]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Molecular docking simulations with arguslab bt. InDocking Screens for Drug Discovery; Springer: New York, NY, 2019, pp. 203-220.
[152]
da Silveira, N.J.F.; Pereira, F.S.S.; Elias, T.C.; Henrique, T. Web Services for Molecular Docking Simulations BT. InDocking Screens for Drug Discovery; Springer: New York, NY, 2019, pp. 221-229.
[187]
Clackson, T.; Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science, 1995, 383-386.
[192]
Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A.A.; Aflalo, C.; Vakser, I.A. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci., 1992, 89, 2195-2199.
[199]
Yan, Y.; He, J.; Feng, Y.; Lin, P.; Tao, H.; Huang, S-Y. Challenges and opportunities of automated protein-protein docking: hdock server vs human predictions in capri rounds 38-46. Proteins Struct. Funct. Bioinforma., 2020, 88(8), 1055-1069.
[200]
HDOCK, Server Lab of Bioinformatics and Molecular Modeling. 2020.
[202]
Lensink, M.F.; Velankar, S.; Kryshtafovych, A.; Huang, S-Y.; Schneidman-Duhovny, D.; Sali, A.; Segura, J.; Fernandez-Fuentes, N.; Viswanath, S.; Elber, R.; Grudinin, S.; Popov, P.; Neveu, E.; Lee, H.; Baek, M.; Park, S.; Heo, L.; Rie Lee, G.; Seok, C.; Qin, S.; Zhou, H-X.; Ritchie, D.W.; Maigret, B.; Devignes, M-D.; Ghoorah, A.; Torchala, M.; Chaleil, R.A.G.; Bates, P.A.; Ben-Zeev, E.; Eisenstein, M.; Negi, S.S.; Weng, Z.; Vreven, T.; Pierce, B.G.; Borrman, T.M.; Yu, J.; Ochsenbein, F.; Guerois, R.; Vangone, A.; Rodrigues, J.P.G.L.M.; van Zundert, G.; Nellen, M.; Xue, L.; Karaca, E.; Melquiond, A.S.J.; Visscher, K.; Kastritis, P.L.; Bonvin, A.M.J.J.; Xu, X.; Qiu, L.; Yan, C.; Li, J.; Ma, Z.; Cheng, J.; Zou, X.; Shen, Y.; Peterson, L.X.; Kim, H-R.; Roy, A.; Han, X.; Esquivel-Rodriguez, J.; Kihara, D.; Yu, X.; Bruce, N.J.; Fuller, J.C.; Wade, R.C.; Anishchenko, I.; Kundrotas, P.J.; Vakser, I.A.; Imai, K.; Yamada, K.; Oda, T.; Nakamura, T.; Tomii, K.; Pallara, C.; Romero-Durana, M.; Jiménez-García, B.; Moal, I.H.; Férnandez-Recio, J.; Joung, J.Y.; Kim, J.Y.; Joo, K.; Lee, J.; Kozakov, D.; Vajda, S.; Mottarella, S.; Hall, D.R.; Beglov, D.; Mamonov, A.; Xia, B.; Bohnuud, T.; Del Carpio, C.A.; Ichiishi, E.; Marze, N.; Kuroda, D.; Roy Burman, S.S.; Gray, J.J.; Chermak, E.; Cavallo, L.; Oliva, R.; Tovchigrechko, A.; Wodak, S.J. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment.
Proteins, 2016,
84(Suppl. 1), 323-348.
[
http://dx.doi.org/10.1002/prot.25007] [PMID:
27122118]
[203]
Lensink, M.F.; Velankar, S.; Wodak, S.J. Modeling protein– protein and protein–peptide complexes: CAPRI 6th Edition. In Proteins, 2017, 85(3), 359-377.
[204]
Lensink, M.F.; Nadzirin, N.; Velankar, S.; Wodak, S.J. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th Edition Proteins, 2020, 88(8), 916-938.
[214]
Chakravarty, D.; McElfresh, G.W.; Kundrotas, P.J.; Vakser, I.A. How to choose templates for modeling of protein complexes: insights from benchmarking template-based docking. Proteins Struct. Funct. Bioinforma, 2020, 88(8), 1070-1081.
[216]
Joint European Disruptive Initiative GrandChallenge.. 2020.
[217]
Sulimov, A.; Kutov, D.; Zheltkov, D.; Sulimov, V. Supercomputer docking. Supercomput. Front. Innov., 2019, 6, 26-50.
[223]
Slurm; Sched MD: Utah, USA. 2020.
[224]
Open Grid Scheduler. Sun Microsystems; California, USA, 2009.
[231]
Oferkin, I.V.; Katkova, E.V.; Sulimov, A.V.; Kutov, D.C.; Sobolev, S.I.; Voevodin, V.V.; Sulimov, V.B. Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Adv. Bioinforma., 2015, 2015126858
[232]
Sulimov, A.V.; Kutov, D.C.; Sulimov, V.B. In: Parallel supercomputer
docking program of the new generation: finding low energy
minima spectrum. Proceedings of the 4th Russian Supercomputing
Days, Russia Voevodin, V.; Sobolev, S., Eds.; Communications
in Computer and Information Science, RuSCDays 2018;
Moscow: Russian Federation 2019, 965, pp. 314-330.
[233]
Kutov, D.C.; Sulimov, A.V.; Sulimov, V.B. Supercomputer docking: Investigation of low energy minima of protein-ligand complexes. Supercomput. Front. Innov., 2018, 5, 134-137.
[237]
Sulimov, A.V.; Kutov, D.C.; Katkova, E.V.; Sulimov, V.B. Combined docking with classical force field and quantum chemical semiempirical method pm7. Adv. Bioinformatics., 2017, 20177167691
[239]
Sulimov, A.V.; Zheltkov, D.A.; Oferkin, I.V.; Kutov, D.C.; Katkova, E.V.; Tyrtyshnikov, E.E.; Sulimov, V.B. In: Tensor Train
Global Optimization: Application to Docking in the Configuration
Space with a Large Number of Dimensions. Proceedings of the 3rd
Russian Supercomputing Days, RuSCDays 2017; Voevodin, V.V.;
Sobolev, S.I., Eds.; Communications in Computer and Information Science; Springer: Cham, 2017, 793, pp. 151-167
[262]
Fedorov, D. Kitaura, K. The Fragment Molecular Orbital Method Practical Applications to Large Molecular Systems; CRC Press: Boca Raton, 2019.
[284]
Sulimov, A.V.; Kutov, D.C.; Sulimov, V.B. In: Quasi-Docking:
Comparison of Different Energy Functions in Docking. Proceedings
of the 22nd European Symposium on Quantitative Structure-
Activity Relationships, 22nd EuroQSAR, Thessaloniki, Greece -
September 16-20, 2018, p. 124
[303]
TURBOMOLE. Turbomole GmbH; Karlsruhe, Germany, 2007.
[304]
Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci., 2018, 8e1327
[319]
Quantum Mechanics in Drug Discovery; Springer: Berlin, 2020.
[343]
Myint, S.H. Human Coronavirus Infections BT.- InThe Coronaviridae; Springer US: Boston, MA, 1995, pp. 389-401.
[348]
Anand, K.; Yang, H.; Bartlam, M.; Rao, Z.; Hilgenfeld, R. Coronavirus main proteinase: Target for antiviral drug therapy BT - coronaviruses with special emphasis on first insights concerning SARS. Birkhäuser Basel; Schmidt, A.; Weber, O; Wolff, M.H., Ed.; Basel, 2005, pp. 173-199.
[353]
Brunger, A.T. A System for X-Ray Crystallography and NMR; Yale University Press: New Haven, 1992.
[373]
Gentile, F.; Agrawal, V.; Hsing, M.; Ban, F.; Norinder, U.; Gleave, M.E.; Cherkasov, A. Deep docking - a deep learning approach for virtual screening of big chemical datasets. bioRxiv, 2019.
[390]
Voevodin, V.V.; Antonov, A.S.; Nikitenko, D.A.; Shvets, P.A.; Sobolev, S.I.; Sidorov, I.Y.; Stefanov, K.S.; Voevodin, V.V.; Zhumatiy, S.A. Supercomputer lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov., 2019, 6, 4-11.