[1]
Adair, T.H.; Montani, J-P. Angiogenesis; Morgan & Claypool Life Sciences: San Rafael, CA, 2010.
[3]
Burri, P.H.; Hlushchuk, R.; Djonov, V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Developmental Dynamics., 2004, 231, 474-488.
[4]
Kir, D.; Schnettler, E.; Modi, S.; Ramakrishnan, S. Regulation of angiogenesis by MicroRNAs in cardiovascular diseases. Angiogenesis, 2018, 21, 699-710.
[5]
Yang, D.; Jin, C.; Ma, H.; Huang, M.; Shi, G. P.; Wang, J.; Xiang, M. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease.angiogenesis, 2016, 19, 297-309.
[7]
Ko, S.H.; Bandyk, D.F. Therapeutic angiogenesis for critical limb ischemia. Seminars in Vascular Surgery, 2014, 27, 23-31.
[8]
Kang, Y.J. Copper and Homocysteine in Cardiovascular Diseases.In: Pharmacology and Therapeutics; Elsevier Inc.: Amsterdam, 2011, pp. 321-331.
[9]
Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 2015, 18, 433-448.
[12]
Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. American Acad. Dermatol., 2015, 73, 144-153.
[14]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease.In: Nature Medicine; Nature Publishing Group, London,, 1995, 1, pp. 27-30.
[17]
Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis, 2017, 20, 409-426.
[18]
Zhu, X.D.; Tang, Z.Y.; Sun, H.C. Targeting angiogenesis for liver cancer: past, present, and future. Genes and Diseases, 2020, 7, 328-335.
[20]
Orlov, A.P.; Orlova, M.A.; Trofimova, T.P.; Kalmykov, S.N.; Kuznetsov, D.A. The role of zinc and its compounds in leukemia. J. Biol. Inorg. Chem., 2018, 23, 347-362.
[21]
Kardos, J.; Héja, L.; Simon, Á.; Jablonkai, I.; Kovács, R.; Jemnitz, K. Copper signalling: causes and consequences biological sciences biochemistry and cell biology. Cell Communication and Signaling,71, 2018.
[22]
Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘copper that cancer. Metallomics, 2015, 7, 1459-1476.
[27]
Lopez, J.; Ramchandani, D.; Vahdat, L. Copper depletion as a therapeutic strategy in cancer.Met. Ions Life Sci., 2019. (ePub ahead of Print),
[28]
Khan, G.; Merajver, S. Copper chelation in cancer therapy using tetrathiomolybdate: an evolving paradigm. ExpertOpinion Investigational Drugs, 2009, 18(4), 541-548.
[31]
Weekley, C.M.; He, C. Developing drugs targeting transition metal homeostasis. Curr. Opin. Chem. Biol., 2017, 37, 26-32.
[35]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chemical Reviews, 2014, 114(1), 815-862.
[36]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: gold, silver and copper complexes targeting human topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2020, 30(3)126905
[38]
Biersack, B.; Schobert, R. Current state of platinum complexes for the treatment of advanced and drug-resistant breast cancers.In: Advances in Experimental Medicine and Biology; Springer: New York LLC,; , 2019, Vol. 1152, pp. 253-270.
[41]
Masoud, G.N.; Li, W. HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 2015, 5(5), 378-389.
[42]
Zuazo-Gaztelu, I.; Casanovas, O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front. Oncol., 2018, 8, 248.
[48]
Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell, 2019, 176(6), 1248-1264.
[49]
Saghiri, M.A.; Asatourian, A.; Orangi, J.; Sorenson, C.M.; Sheibani, N. Functional role of inorganic trace elements in angiogenesis-part I: N, Fe, Se, P, Au, and Ca. Crit. Rev. Oncol. Hematol., 2015, 96(1), 129-142.
[53]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews Drug Discovery., 2016, 48(5), 385-403.
[56]
Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Christopher Ellison, E.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. -. Hear. Circ. Physiol., 2002, 282, 1821-1827.
[57]
Kornblatt, A.P.; Nicoletti, V.G.; Travaglia, A. The Neglected Role of Copper Ions in Wound Healing. J. Inorg. Biochem., 2016, 1-8. ePub ahead of print
[70]
Sheng, J.; Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta Biochimica et Biophysica Sinica, 2016, 48(5), 399-410.
[77]
Chitty, J.L.; Setargew, Y.F.I.; Cox, T.R. Targeting the lysyl oxidases in tumour desmoplasia. Biochemical Society Transactions,, 2019, 47(6), 1661-1678.
[78]
Vallet, S.D.; Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays in Biochemistry,, 2019, 63(3), 349-364.
[82]
Lupo, G.; Caporarello, N.; Olivieri, M.; Cristaldi, M.; Motta, C.; Bramanti, V.; Avola, R.; Salmeri, M.; Nicoletti, F.; Anfuso, C.D. Anti-Angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Frontiers in Pharmacology,, 2017, 519.
[83]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases.In :Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, 2017, Vol. 147, pp. 1-73.
[84]
Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease.In: Advances in Pharmacology; Academic Press Inc.: London, 2018, Vol. 81, pp. 241-330.
[85]
Do Nascimento Holanda, A.O.; De Oliveira, A.R.S.; Cruz, K.J.C.; Severo, J.S.; Morais, J.B.S.; Da Silva, B.B.; Do Nascimento Marreiro, D. Zinc and metalloproteinases 2 and 9: what is their relation with breast cancer? Revista da Associacao Medica Brasileira, 2017, 63(1), 78-84.
[87]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted pt(ii) agents, nanoparticle delivery, and pt(iv) prodrugs. Chemical Reviews, 2016, 116(5), 3436-3486.
[88]
Ghosh, S. Cisplatin: the first metal based anticancer drug. Bioorganic Chemistry,, 2019, 88102925
[91]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: molecular mechanisms of action. Euro. J. Pharma., 2014, 740, 364-378.
[93]
Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem, 2020, 6(1), 41-60.
[104]
Bollati, V.; Fabris, S.; Pegoraro, V.; Ronchetti, D.; Mosca, L.; Deliliers, G.L.; Motta, V.; Bertazzi, P.A.; Baccarelli, A.; Neri, A. Carcinogenesis; Oxford Academic: Oxford , 2017; 30, pp. (8)1330-1335.
[106]
Zhang, X.; Chang, A. Molecular predictors of egfr-tki sensitivity in advanced non-small cell lung cancer. Int. J. Med. Sci., 2008, 5(4), 209-217.
[114]
Howell, S.B.; Safaei, R.; Larson, C.A.; Sailor, M.J. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Molecular Pharmacology,, 2010, 77(6), 887-894.
[118]
Lukanović, D.; Herzog, M.; Kobal, B.; Černe, K. The contribution of copper efflux transporters atp7a and atp7b to chemoresistance and personalized medicine in ovarian cancer.In: Biomedicine and Pharmacotherapy; Elsevier: Amsterdam, 2020.
[119]
Safaei, R.; Howell, S.B. Copper transporters regulate the cellular pharmacology and sensitivity to pt drugs. Crit. Rev. Oncol. Hematol., 2005, 53(1), 13-23.
[125]
Subbarayan, P.R.; Ardalan, B. In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer, 2014, 45(3), 363-371.
[126]
Zhang, J.; Zhang, Y.; Wang, W.; Zhang, Z. Potential Molecular Mechanisms Underlying the Effect of Arsenic on Angiogenesis. Archives of Pharmacal Research, 2019, 962-976.
[129]
Liu, Y.; Ao, X.; Ding, W.; Ponnusamy, M.; Wu, W.; Hao, X.; Yu, W.; Wang, Y.; Li, P.; Wang, J. Critical Role of FOXO3a in Carcinogenesis. Molecular Cancer, 2018.
[146]
Marzo, T.; Messori, L. Role for metal-based drugs in fighting covid-19 infection? the case of auranofin. ACS Medicinal Chemistry Letters, 2020, 11(6), 1067-1068.
[148]
Alessio, E. Thirty years of the drug candidate nami-a and the myths in the field of ruthenium anticancer compounds: a personal perspective. Euro. J. Inorgan Chem., 2017, 2017(2), 1549-1560.