Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19)

Author(s): Surendra Kumar Nayak*

Volume 21, Issue 6, 2021

Published on: 17 November, 2020

Page: [689 - 703] Pages: 15

DOI: 10.2174/1389557520666201117111259

Price: $65

Abstract

Background: COVID-19 has become a pandemic with higher morbidity and mortality rates after its start from Wuhan city of China. The infection by RNA virus, also known as SARS-CoV-2 or 2019-nCoV, from the beta class of coronaviruses, has been found to be responsible for COVID-19. Structural analysis and evidences have been indicated that interaction between a segment of receptor binding domain (RBD) from S protein of the virus and human angiotensin-converting enzyme 2 (hACE2) is essential for cellular entry of the virus.

Objective: The current review sheds light on structural aspects for the inhibition of RBD-hACE2 interaction mediated cellular entry of SARS-CoV-2.

Methods: The present study provides a critical review of recently published information on RBDhACE2 interaction and its inhibitors to control SARS-CoV-2 infection. The review highlighted the structural aspects of the interaction between RBD-hACE2 and involved amino acid residues.

Results: Recently, several studies are being conducted for the inhibition of the SARS-CoV-2 attachment and entry to the human cellular system. One of the important targets for viral invasion is its binding with cell surface receptor, hACE2, through RBD on S-protein. Mimicking of three residues on ACE2 (Lys31, Glu35 and Lys353 on B chain) provided a hot target directed strategy for the inhibition of early attachment of the virus to the cell. Early screening of peptidic or non-peptidic molecules for the inhibition of RBD-hACE2 interaction has raised the hope for potential therapeutics against COVID-19. The higher affinity of molecules toward RBD than ACE2 is an important factor for selectivity and minimization of ACE2 related adverse events on the cardiovascular system, brain, kidney, and foetus development during pregnancy.

Conclusion: Inhibition of RBD-hACE2 interaction by different molecular scaffolds can be used as a preferred strategy for control of SARS-CoV-2 infection. Recently, published reports pointed out Lys31, Glu35 and Lys353 on the B chain of ACE2 as crucial residues for mimicking and design of novel molecules as inhibitors SARS-CoV-2 attachment to human cells. Moreover, some recently identified RBD-hACE2 interaction inhibitors have also been described with their protein binding pattern and potencies (IC50 values), which will help for further improvement in the selectivity.

Keywords: COVID-19, SARS-CoV-2, S-protein, RBD, hACE2, Inhibitors.

Graphical Abstract
[1]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
Kim, G-U.; Kim, M-J.; Ra, S.H.; Lee, J.; Bae, S.; Jung, J.; Kim, S-H. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect., 2020, 26(7), 948.
[3]
Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med., 2020, 172(9), 577-582.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[4]
Wang, T.; Du, Z.; Zhu, F.; Cao, Z.; An, Y.; Gao, Y.; Jiang, B. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet, 2020, 395(10228)e52
[http://dx.doi.org/10.1016/S0140-6736(20)30558-4] [PMID: 32171074]
[5]
Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; Wang, J.; Hu, Z.; Yi, Y.; Shen, H. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci., 2020, 63(5), 706-711.
[http://dx.doi.org/10.1007/s11427-020-1661-4] [PMID: 32146694]
[6]
U.S. Food and Drug Administration Coronavirus (COVID-19) Update: Daily Roundup. 2020.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-daily-roundup-march-30-2020
[7]
U.S. National Library of Medicine COVID-19 Studies from the World Health Organization Database . clinicaltrials.gov/ct2/who_table
[8]
Chan, J.F-W.; To, K.K-W.; Tse, H.; Jin, D-Y.; Yuen, K-Y. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol., 2013, 21(10), 544-555.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[9]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[10]
Zhao, Q.; Weber, E.; Yang, H. Drug targets for rational design against emerging coronaviruses. Infect. Disord. Drug Targets, 2013, 13(2), 116-127.
[http://dx.doi.org/10.2174/18715265113139990024] [PMID: 23895136]
[11]
Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B-J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun., 2020, 11(1), 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817]
[12]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[13]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[14]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[16]
Sohaila, A.; Nutini, A. Forecasting the timeframe of coronavirus and human cells interaction with reverse engineering. Prog. Biophys. Mol. Biol., 2020, 155, 29-35.
[17]
Okba, N.M.A.; Muller, M.A.; Li, W.; Wang, C. GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; Yazdanpanah, Y.; Hingrat, Q.L.; Descamps, D.; Houhou-Fidouh, N.; Reusken, C.B.E.M.; Bosch, B.-J.; Drosten, C.; Koopmans, M.P.G.; Haagmans, B.L. SARS-CoV-2 specific antibody responses in COVID-19 patients. Emerg. Infect. Dis., 2020, 26(7), 1478-1488.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[18]
Gordon, D.E.A. SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Nature, 2020, 583, 459-468.
[19]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[20]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e00120.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[21]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Napoli, R.D. Features, evaluation and treatment coronavirus (COVID-19) StatPearls Publishing (internet); Treasure Island, 2020.
[22]
Skarstein Kolberg, E. ACE2, COVID19 and serum ACE as a possible biomarker to predict severity of disease. J. Clin. Virol., 2020, 126, 104-350.
[http://dx.doi.org/10.1016/j.jcv.2020.104350] [PMID: 32283335]
[23]
Li, F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol., 2008, 82(14), 6984-6991.
[http://dx.doi.org/10.1128/JVI.00442-08] [PMID: 18448527]
[24]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[25]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[26]
Terstappen, G.C.; Reggiani, A. In silico research in drug discovery. Trends Pharmacol. Sci., 2001, 22(1), 23-26.
[http://dx.doi.org/10.1016/S0165-6147(00)01584-4] [PMID: 11165668]
[27]
Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; Anh, T.T.V.; Quy, P.T.; Tat, P.V.; Hue, N.V.; Quang, D.T.; Trung, N.T.; Tung, V.T.; Huynh, L.K.; Nhung, N.T.A. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 2020, 5(14), 8312-8320.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[28]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[29]
Han, Y.; Král, P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 2020, 14(4), 5143-5147.
[http://dx.doi.org/10.1021/acsnano.0c02857] [PMID: 32286790]
[30]
Chen, H.; Du, Q. Potential natural compounds for preventing 2019-nCoV infection; Preprints, 2020, p. 2020010358.
[31]
Moghaddam, E.; Teoh, B.T.; Sam, S.S.; Lani, R.; Hassandarvish, P.; Chik, Z.; Yueh, A.; Abubakar, S.; Zandi, K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci. Rep., 2014, 4, 5452.
[http://dx.doi.org/10.1038/srep05452] [PMID: 24965553]
[32]
Shen, M-Z.; Shi, Z-H.; Li, N-G.; Tang, H.; Shi, Q-P.; Tang, Y-P.; Yang, J-P.; Duan, J-A. Efficient synthesis of 6-O-methyl-scutellarein from scutellarin via selective methylation. Lett. Org. Chem., 2013, 10(10), 733-737.
[http://dx.doi.org/10.2174/15701786113109990046]
[33]
Ahmadi, A.; Hassandarvish, P.; Lani, R.; Yadollahi, P.; Jokar, A.; Bakar, S.A.; Zandi, K. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Adv, 2016, 6, 69421-69430.
[http://dx.doi.org/10.1039/C6RA16640G]
[34]
Kristensen, I.; Larsen, P.O. Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L. and a revised structure for nicotianamine. Phytochemistry, 1974, 13(12), 2791-2798.
[http://dx.doi.org/10.1016/0031-9422(74)80243-8]
[35]
Polyakov, N.E.; Leshina, T.V. Glycyrrhizic acid as a novel drug delivery vector: Synergy of drug transport and efficacy. Open Conf. Proc. J., 2011, 2, 64-72.
[http://dx.doi.org/10.2174/2210289201102010064]
[36]
Deng, Y.F.; Aluko, R.E.; Jin, Q.; Zhang, Y.; Yuan, L.J. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm. Biol., 2012, 50(4), 401-406.
[http://dx.doi.org/10.3109/13880209.2011.608076] [PMID: 22136493]
[37]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.; Lu, H.T.; Fan, K.W.; Cheng, V.C.; Tsui, W.H.; Hung, I.F.; Lee, T.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[38]
Wang, W.; Ma, X.; Han, J.; Zhou, M.; Ren, H.; Pan, Q.; Zheng, C.; Zheng, Q. Neuroprotective effect of scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PLoS One, 2016, 11(1), e0146-e0197.
[http://dx.doi.org/10.1371/journal.pone.0146197] [PMID: 26730961]
[39]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[40]
Takahashi, S.; Yoshiya, T.; Yoshizawa-Kumagaye, K.; Sugiyama, T. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed. Res., 2015, 36(3), 219-224.
[http://dx.doi.org/10.2220/biomedres.36.219] [PMID: 26106051]
[41]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[42]
Senathilake, K.S.; Samarakoon, S.R.; Tennekoon, K.H. Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A drug repurposing approach. Preprints, 2020, 2020030042
[http://dx.doi.org/10.20944/preprints202003.0042.v1]
[43]
Benaji, B.; Dine, T.; Luyckx, M.; Gressier, B.; Brunet, C.; Goudaliez, F.; Cazin, M.; Cazin, J.C. Stability and compatibility studies of zorubicin in intravenous fluids and PVC infusion bags. J. Pharm. Biomed. Anal., 1996, 14(6), 695-705.
[http://dx.doi.org/10.1016/0731-7085(95)01694-5] [PMID: 8807544]
[44]
Huo, J.; Chen, X. Aclarubicin regulates glioma cell growth and DNA damage through the SIRT1/PI3K/AKT signaling pathway. RSC Adv, 2019, 9(49), 28775-28782.
[http://dx.doi.org/10.1039/C9RA05572J]
[45]
Abbas, J.R.; Al-Hamadawi, H.A. Effect of chocolate brown HT E155 on some hormones in male albino rats. Eurasia. J. Biosci., 2019, 13(1), 485-489.
[46]
Joanitti, G.A.; Freitas, S.M.; Silva, L.P. Proteinaceous protease inhibitors: Structural features and multiple functional faces. Curr. Enzym. Inhib., 2006, 2(3), 199-217.
[http://dx.doi.org/10.2174/157340806777934801]
[47]
Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 2020, 1-3.
[48]
Ling, R.; Dai, Y.; Huang, B.; Huang, W.; Yu, J.; Lu, X.; Jiang, Y. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides, 2020, 130170328
[http://dx.doi.org/10.1016/j.peptides.2020.170328] [PMID: 32380200]
[49]
Jena, A.B.; Kanungo, N.; Nayak, V.; Chainy, G.B.N.; Dandapat, J. Catechin and curcumin interact with corona, 2019.
[50]
Farkhondeh, T.; Yazdi, H.S.; Samarghandian, S. The protective effects of green tea catechins in the management of neurodegenerative diseases: A review. Curr. Drug Discov. Technol., 2019, 16(1), 57-65.
[http://dx.doi.org/10.2174/1570163815666180219115453] [PMID: 29468975]
[51]
Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem., 2014, 21(2), 204-222.
[http://dx.doi.org/10.2174/092986732102131206115810] [PMID: 23590716]
[52]
Choudhary, S.; Malik, Y.S.; Tomar, S. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front. Immunol., 2020, 11, 1664.
[http://dx.doi.org/10.3389/fimmu.2020.01664] [PMID: 32754161]
[53]
Yu, J.W.; Wang, L.; Bao, L.D. Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. J. Funct. Foods, 2020, 71104016
[http://dx.doi.org/10.1016/j.jff.2020.104016] [PMID: 32421102]
[54]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. 2020.
[55]
Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem., 2018, 25(37), 4929-4945.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[56]
Unni, S.; Aouti, S.; Padmanabhan, B. Identification of a potent inhibitor targeting the Spike protein of pandemic human Coronavirus, SARS-CoV-2 by computational methods. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12197934.v1]
[57]
Rider, J.A. Treatment of acute and chronic constipation with bisoxatin acetate and bisacodyl. Double-blind crossover study. Curr. Ther. Res. Clin. Exp., 1971, 13(6), 386-392.
[PMID: 4996225]
[58]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[59]
Izhaki, I. Emodin- a secondary metabolite with multiple ecological functions in higher plants. New Phytol., 2002, 155(2), 205-217.
[http://dx.doi.org/10.1046/j.1469-8137.2002.00459.x]
[60]
Karadurmus, L.; Kır, D.; Kurbanoglu, S.; Ozkan, S.A. Electrochemical analysis of antipsychotics. Curr. Pharm. Anal., 2019, 15(5), 413-428.
[http://dx.doi.org/10.2174/1573412914666180710114458]
[61]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[62]
Malagon, F.; Carrasco, E. , 2016.
[63]
Crumb, W.J., Jr; Vicente, J.; Johannesen, L.; Strauss, D.G. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J. Pharmacol. Toxicol. Methods, 2016, 81, 251-262.
[http://dx.doi.org/10.1016/j.vascn.2016.03.009] [PMID: 27060526]
[64]
Rodríguez-Menchaca, A.A.; Navarro-Polanco, R.A.; Ferrer-Villada, T.; Rupp, J.; Sachse, F.B.; Tristani-Firouzi, M.; Sánchez-Chapula, J.A. The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. USA, 2008, 105(4), 1364-1368.
[http://dx.doi.org/10.1073/pnas.0708153105] [PMID: 18216262]
[65]
Ofori-Adjei, D.; Ericsson, O.; Lindström, B.; Sjöqvist, F. Protein binding of chloroquine enantiomers and desethylchloroquine. Br. J. Clin. Pharmacol., 1986, 22(3), 356-358.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb02900.x] [PMID: 3768249]
[66]
Haberkorn, A.; Kraft, H.P.; Blaschke, G. Antimalarial activity of the optical isomers of chloroquine diphosphate. Tropenmed. Parasitol., 1979, 30(3), 308-312.
[PMID: 396700]
[67]
Lentini, G.; Cavalluzzi, M.M.; Habtemariam, S. COVID-19, chloroquine repurposing, and cardiac safety concern: Chirality might help. Molecules, 2020, 25(8)E1834
[http://dx.doi.org/10.3390/molecules25081834] [PMID: 32316270]
[68]
Fantini, J.; Scala, C.D.; Chahinian, H.; Yahi, N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020.
[69]
Mori, T.; O’Keefe, B.R.; Sowder, R.C., II; Bringans, S.; Gardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.; Buckheit, R.W., Jr; McMahon, J.B.; Boyd, M.R. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem., 2005, 280(10), 9345-9353.
[http://dx.doi.org/10.1074/jbc.M411122200] [PMID: 15613479]
[70]
Ziółkowska, N.E.; O’Keefe, B.R.; Mori, T.; Zhu, C.; Giomarelli, B.; Vojdani, F.; Palmer, K.E.; McMahon, J.B.; Wlodawer, A. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure, 2006, 14(7), 1127-1135.
[http://dx.doi.org/10.1016/j.str.2006.05.017] [PMID: 16843894]
[71]
O’Keefe, B.R.; Giomarelli, B.; Barnard, D.L.; Shenoy, S.R.; Chan, P.K.S.; McMahon, J.B.; Palmer, K.E.; Barnett, B.W.; Meyerholz, D.K.; Wohlford-Lenane, C.L.; McCray, P.B., Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol., 2010, 84(5), 2511-2521.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[72]
Sui, J.; Li, W.; Murakami, A.; Tamin, A.; Matthews, L.J.; Wong, S.K.; Moore, M.J.; Tallarico, A.S.; Olurinde, M.; Choe, H.; Anderson, L.J.; Bellini, W.J.; Farzan, M.; Marasco, W.A. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2536-2541.
[http://dx.doi.org/10.1073/pnas.0307140101] [PMID: 14983044]
[73]
Tai, W.; Zhang, X.; He, Y.; Jiang, S.; Du, L. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Res., 2020, 179104820
[http://dx.doi.org/10.1016/j.antiviral.2020.104820] [PMID: 32405117]
[74]
Zhang, L.; Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[75]
Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X.C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J. Virol., 2008, 82(5), 2515-2527.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[76]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[77]
Raha, S.; Mallick, R.; Basak, S.; Duttaroy, A.K. Is copper beneficial for COVID-19 patients? Med. Hypotheses, 2020, 142109814
[http://dx.doi.org/10.1016/j.mehy.2020.109814] [PMID: 32388476]
[78]
Rahman, M.T.; Idid, S.Z. Can Zn be a critical element in COVID-19 treatment? Biol. Trace Elem. Res., 2020, 1-9.
[PMID: 32458149]
[79]
Roberto, A. Kozak, John J.; Gray, Harry B. Copper(II) inhibition of the SARS-CoV-2 main protease. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12673436.v1]
[80]
te Velthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog., 2010, 6(11)e1001176
[http://dx.doi.org/10.1371/journal.ppat.1001176] [PMID: 21079686]
[81]
Gil-Moles, M.; Basu, U.; Bussing, R.; Hoffmeister, H.; Turck, S.; Varchmin, A.; Ott, I. Gold metallodrugs to fight the corona virus: Inhibitory effects on the spike ACE2 interaction and on PLpro protease activity by auranofin and gold organometallics. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12488390.v1]
[82]
Chaturvedi, U.C.; Shrivastava, R. Interaction of viral proteins with metal ions: Role in maintaining the structure and functions of viruses. FEMS Immunol. Med. Microbiol., 2005, 43(2), 105-114.
[http://dx.doi.org/10.1016/j.femsim.2004.11.004] [PMID: 15681139]
[83]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[84]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[85]
Kabbani, N.; Olds, J.L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol. Pharmacol., 2020, 97(5), 351-353.
[http://dx.doi.org/10.1124/molpharm.120.000014] [PMID: 32238438]
[86]
Bharadwaj, M.S.; Strawn, W.B.; Groban, L.; Yamaleyeva, L.M.; Chappell, M.C.; Horta, C.; Atkins, K.; Firmes, L.; Gurley, S.B.; Brosnihan, K.B. Angiotensin-converting enzyme 2 deficiency is associated with impaired gestational weight gain and fetal growth restriction. Hypertension, 2011, 58(5), 852-858.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.179358] [PMID: 21968754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy