Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The G Protein Signal-Biased Compound TRV130; Structures, Its Site of Action and Clinical Studies

Author(s): Kanako Miyano, Sei Manabe, Akane Komatsu, Yuriko Fujii, Yusuke Mizobuchi, Eiko Uezono, Kaori Ohshima, Miki Nonaka, Yui Kuroda, Minoru Narita and Yasuhito Uezono*

Volume 20, Issue 31, 2020

Page: [2822 - 2829] Pages: 8

DOI: 10.2174/1568026620999201027224229

Price: $65

Abstract

Opioid agonists elicit their analgesic action mainly via μ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the β-arrestin-mediated pathway through μ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not β-arrestin-mediated signal, was constructed and developed to reduce adverse events. TRV130 and other G protein-biased compounds tend to elicit desirable analgesic action with less adverse effects. In clinical trials, the intravenous TRV130 (oliceridine) was evaluated in Phase I, II and III clinical studies. Here we review the discovery and synthesis of TRV130, its main action as a novel analgesic having less adverse events, its up-to-date status in clinical trials, and additional concerns about TRV130 as demonstrated in the literature.

Keywords: μ Opioid receptors, TRV130, Oliceridine, Biased ligands, Adverse β-arrestin effects, Agonists.

Graphical Abstract
[1]
Raehal, K.M.; Schmid, C.L.; Groer, C.E.; Bohn, L.M. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol. Rev., 2011, 63(4), 1001-1019.
[http://dx.doi.org/10.1124/pr.111.004598] [PMID: 21873412]
[2]
Machelska, H.; Celik, M.O. Advances in achieving opioid analgesia without side effects. Front. Pharmacol., 2018, 9, 1388.
[http://dx.doi.org/10.3389/fphar.2018.01388] [PMID: 30555325]
[3]
Kelly, E. Efficacy and ligand bias at the μ-opioid receptor. Br. J. Pharmacol., 2013, 169(7), 1430-1446.
[http://dx.doi.org/10.1111/bph.12222] [PMID: 23646826]
[4]
Bohn, L.M.; Lefkowitz, R.J.; Gainetdinov, R.R.; Peppel, K.; Caron, M.G.; Lin, F.T. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science, 1999, 286(5449), 2495-2498.
[http://dx.doi.org/10.1126/science.286.5449.2495] [PMID: 10617462]
[5]
Raehal, K.M.; Walker, J.K.L.; Bohn, L.M. Morphine side effects in β-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther., 2005, 314(3), 1195-1201.
[http://dx.doi.org/10.1124/jpet.105.087254] [PMID: 15917400]
[6]
Bohn, L.M.; Gainetdinov, R.R.; Sotnikova, T.D.; Medvedev, I.O.; Lefkowitz, R.J.; Dykstra, L.A.; Caron, M.G. Enhanced rewarding properties of morphine, but not cocaine, in β(arrestin)-2 knock-out mice. J. Neurosci., 2003, 23(32), 10265-10273.
[http://dx.doi.org/10.1523/JNEUROSCI.23-32-10265.2003] [PMID: 14614085]
[7]
Kingwell, K. Pioneering biased ligand offers efficacy with reduced on-target toxicity. Nat. Rev. Drug Discov., 2015, 14(12), 809-810.
[http://dx.doi.org/10.1038/nrd4784] [PMID: 26620404]
[8]
Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hübner, H.; Huang, X.P.; Sassano, M.F.; Giguère, P.M.; Löber, S. Da Duan; Scherrer, G.; Kobilka, B.K.; Gmeiner, P.; Roth, B.L.; Shoichet, B.K. Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537(7619), 185-190.
[http://dx.doi.org/10.1038/nature19112] [PMID: 27533032]
[9]
Madariaga-Mazón, A.; Marmolejo-Valencia, A.F.; Li, Y.; Toll, L.; Houghten, R.A.; Martinez-Mayorga, K. μ-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov. Today, 2017, 22(11), 1719-1729.
[http://dx.doi.org/10.1016/j.drudis.2017.07.002] [PMID: 28743488]
[10]
Chen, X.T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C.L.; Rominger, D.H.; Koblish, M.; Dewire, S.M.; Crombie, A.L.; Violin, J.D.; Yamashita, D.S. Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl](2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl)amine (TRV130), for the treatment of acute severe pain. J. Med. Chem., 2013, 56(20), 8019-8031.
[http://dx.doi.org/10.1021/jm4010829] [PMID: 24063433]
[11]
Gan, T.J.; Wase, L. Oliceridine, a G protein-selective ligand at the μ-opioid receptor, for the management of moderate to severe acute pain. Drugs Today (Barc), 2020, 56(4), 269-286.
[http://dx.doi.org/10.1358/dot.2020.56.4.3107707] [PMID: 32309822]
[12]
Urits, I.; Viswanath, O.; Orhurhu, V.; Gress, K.; Charipova, K.; Kaye, A.D.; Ngo, A. The utilization of μ-opioid receptor biased agonists: Oliceridine, an opioid analgesic with reduced adverse effects. Curr. Pain Headache Rep., 2019, 23(5), 31.
[http://dx.doi.org/10.1007/s11916-019-0773-1] [PMID: 30880365]
[13]
DeWire, S.M.; Yamashita, D.S.; Rominger, D.H.; Liu, G.; Cowan, C.L.; Graczyk, T.M.; Chen, X-T.; Pitis, P.M.; Gotchev, D.; Yuan, C.; Koblish, M.; Lark, M.W.; Violin, J.D.A.A. G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther., 2013, 344(3), 708-717.
[http://dx.doi.org/10.1124/jpet.112.201616] [PMID: 23300227]
[14]
Mori, T.; Kuzumaki, N.; Arima, T.; Narita, M.; Tateishi, R.; Kondo, T.; Hamada, Y.; Kuwata, H.; Kawata, M.; Yamazaki, M.; Sugita, K.; Matsuzawa, A.; Baba, K.; Yamauchi, T.; Higashiyama, K.; Nonaka, M.; Miyano, K.; Uezono, Y.; Narita, M. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance. Mol. Pain, 2017, 131744806917740030
[http://dx.doi.org/10.1177/1744806917740030] [PMID: 29056067]
[15]
Altarifi, A.A.; David, B.; Muchhala, K.H.; Blough, B.E.; Akbarali, H.; Negus, S.S. Effects of acute and repeated treatment with the biased μ opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J. Psychopharmacol., 2017, 31(6), 730-739.
[http://dx.doi.org/10.1177/0269881116689257] [PMID: 28142305]
[16]
Fossler, M.J.; Sadler, B.M.; Farrell, C.; Burt, D.A.; Pitsiu, M.; Skobieranda, F.; Soergel, D.G. Oliceridine (TRV130), a novel G protein–biased ligand at the μ‐opioid receptor, demonstrates a predictable relationship between plasma concentrations and pain relief. I: Development of a parmacokinetic/pharmacodynamic model. J. Clin. Pharmacol., 2018, 58(6), 750-761.
[http://dx.doi.org/10.1002/jcph.1076] [PMID: 29412458]
[17]
Soergel, D.G.; Subach, R.A.; Burnham, N.; Lark, M.W.; James, I.E.; Sadler, B.M.; Skobieranda, F.; Violin, J.D.; Webster, L.R. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain, 2014, 155(9), 1829-1835.
[http://dx.doi.org/10.1016/j.pain.2014.06.011] [PMID: 24954166]
[18]
Raehal, K.M.; Walker, J.K.; Bohn, L.M. Morphine side effects in beta-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther., 2005, 314(3), 1195-1201.
[http://dx.doi.org/10.1124/jpet.105.087254] [PMID: 15917400]
[19]
Akbarali, H.I.; Inkisar, A.; Dewey, W.L. Site and mechanism of morphine tolerance in the gastrointestinal tract. Neurogastroenterol. Motil., 2014, 26(10), 1361-1367.
[http://dx.doi.org/10.1111/nmo.12443] [PMID: 25257923]
[20]
Kang, M.; Maguma, H.T.; Smith, T.H.; Ross, G.R.; Dewey, W.L.; Akbarali, H.I. The role of β-arrestin2 in the mechanism of morphine tolerance in the mouse and guinea pig gastrointestinal tract. J. Pharmacol. Exp. Ther., 2012, 340(3), 567-576.
[http://dx.doi.org/10.1124/jpet.111.186320] [PMID: 22129596]
[21]
Maguma, H.T.; Dewey, W.L.; Akbarali, H.I. Differences in the characteristics of tolerance to μ-opioid receptor agonists in the colon from wild type and β-arrestin2 knockout mice. Eur. J. Pharmacol., 2012, 685(1-3), 133-140.
[http://dx.doi.org/10.1016/j.ejphar.2012.04.001] [PMID: 22521552]
[22]
Austin Zamarripa, C.; Edwards, S.R.; Qureshi, H.N.; Yi, J.N.; Blough, B.E.; Freeman, K.B. The G-protein biased μ-opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug Alcohol Depend., 2018, 192, 158-162.
[http://dx.doi.org/10.1016/j.drugalcdep.2018.08.002] [PMID: 30261403]
[23]
Bohn, L.M.; Gainetdinov, R.R.; Lin, F.T.; Lefkowitz, R.J.; Caron, M.G. μ-opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature, 2000, 408(6813), 720-723.
[http://dx.doi.org/10.1038/35047086] [PMID: 11130073]
[24]
Oliceridine. Food and Drug Administration (FDA) Advisory Committee Briefing Document, Available at: https://www.fda.gov/media/121230/download
[25]
Viscusi, E.R.; Webster, L.; Kuss, M.; Daniels, S.; Bolognese, J.A.; Zuckerman, S.; Soergel, D.G.; Subach, R.A.; Cook, E.; Skobieranda, F. A randomized, phase 2 study investigating TRV130, a biased ligand of the μ-opioid receptor, for the intravenous treatment of acute pain. Pain, 2016, 157(1), 264-272.
[http://dx.doi.org/10.1097/j.pain.0000000000000363] [PMID: 26683109]
[26]
Soergel, D.G.; Subach, R.A.; Sadler, B.; Connell, J.; Marion, A.S.; Cowan, C.L.; Violin, J.D.; Lark, M.W. First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol., 2014, 54(3), 351-357.
[http://dx.doi.org/10.1002/jcph.207] [PMID: 24122908]
[27]
Singla, N.; Minkowitz, H.S.; Soergel, D.G.; Burt, D.A.; Subach, R.A.; Salamea, M.Y.; Fossler, M.J.; Skobieranda, F. A randomized, Phase IIb study investigating oliceridine (TRV130), a novelµ -receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J. Pain Res., 2017, 10, 2413-2424.
[http://dx.doi.org/10.2147/JPR.S137952] [PMID: 29062240]
[28]
Viscusi, E.R.; Skobieranda, F.; Soergel, D.G.; Cook, E.; Burt, D.A.; Singla, N. APOLLO-1: a randomized placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the µ-opioid receptor, for management of moderate-to-severe acute pain following bunionectomy. J. Pain Res., 2019, 12, 927-943.
[http://dx.doi.org/10.2147/JPR.S171013] [PMID: 30881102]
[29]
Singla, N.K.; Skobieranda, F.; Soergel, D.G.; Salamea, M.; Burt, D.A.; Demitrack, M.A.; Viscusi, E.R. APOLLO-2: A randomized, placebo and active-controlled Phase III study investigating oliceridine (TRV130), a G protein-biased ligand at the μ-opioid receptor, for management of moderate to severe acute pain following abdominoplasty. Pain Pract., 2019, 19(7), 715-731.
[http://dx.doi.org/10.1111/papr.12801] [PMID: 31162798]
[30]
Bergese, S.D.; Brzezinski, M.; Hammer, G.B.; Beard, T.L.; Pan, P.H.; Mace, S.E.; Berkowitz, R.D.; Cochrane, K.; Wase, L.; Minkowitz, H.S.; Habib, A.S. ATHENA: A phase 3, open-label study of the safety and effectiveness of oliceridine (TRV130), a G-protein selective agonist at the µ-opioid receptor, in patients with moderate to severe acute pain requiring parenteral opioid therapy. J. Pain Res., 2019, 12, 3113-3126.
[http://dx.doi.org/10.2147/JPR.S217563] [PMID: 31814753]
[31]
Trevena Trevena Announces Submission of New Drug Application to U.S. FDA for OLINVO™ (oliceridine injection);, 2017.
[32]
Trevena Trevena Announces FDA Acceptance for Review of New Drug Application for OLINVO™ (oliceridine) Injection;, 2018.
[33]
Trevena. Trevena Receives Complete Response Letter for Oliceridine from FDA;, 2018.
[34]
MedPageToday. FDA Panel Votes Against Analgesic Oliceridine - Next-gen opioid not ready for market;, 2018.
[35]
Trevena. Trevena announces publication of apollo-1 results in the journal of pain research highlighting oliceridine’s potential for management of moderate-to-severe acute pain, 2019.
[36]
Trevena. Trevena resubmits new drug application for oliceridine;, 2020.
[37]
FDA. FDA Approves New Opioid for Intravenous Use in Hospitals; Other Controlled Clinical Settings, 2020.
[38]
Ma, M.; Sun, J.; Li, M.; Yu, Z.; Cheng, J.; Zhong, B.; Shi, W. Synthesis and evaluation of novel biased μ-opioid-receptor (μOR) agonists. Molecules, 2019, 24(2), 259.
[http://dx.doi.org/10.3390/molecules24020259] [PMID: 30641969]
[39]
Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell, 2017, 171(5), 1165-1175.e13.
[http://dx.doi.org/10.1016/j.cell.2017.10.035] [PMID: 29149605]
[40]
Kennedy, N.M.; Schmid, C.L.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Chen, Y.T.; Cameron, M.D.; Bohn, L.M.; Bannister, T.D. Optimization of a series of m opioid receptor (MOR) agonists with high G protein signaling bias. J. Med. Chem., 2018, 61(19), 8895-8907.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01136] [PMID: 30199635]
[41]
James, I.E.; Skobieranda, F.; Soergel, D.G.; Ramos, K.A.; Ruff, D.; Fossler, M.J. A first-in-human clinical study with TRV734, an orally bioavailable G-protein-biased ligand at the μ-opioid receptor. Clin. Pharmacol. Drug Dev., 2020, 9(2), 256-266.
[http://dx.doi.org/10.1002/cpdd.721] [PMID: 31286645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy