Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases

Author(s): Yana Lerner, Wessal Hanout, Shulamit Fluss Ben-Uliel, Samar Gani, Michal (Pellach) Leshem and Nir Qvit*

Volume 20, Issue 32, 2020

Page: [2904 - 2921] Pages: 18

DOI: 10.2174/1568026620666201013154326

Price: $65

Abstract

Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.

Keywords: Peptides, Peptidomimetics, Natriuretic peptides, Therapeutic, Cardiovascular diseases, Drug discovery, Cardiovascular system, Circulatory system.

Graphical Abstract
[1]
Heusch, G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet, 2013, 381(9861), 166-175.
[http://dx.doi.org/10.1016/S0140-6736(12)60916-7] [PMID: 23095318]
[2]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation, 2018, 137(12), e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[3]
Bhupathiraju, S.N.; Hu, F.B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res., 2016, 118(11), 1723-1735.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306825] [PMID: 27230638]
[4]
Anderson, J.L.; Morrow, D.A. Acute myocardial infarction. N. Engl. J. Med., 2017, 376(21), 2053-2064.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[5]
Thomas, H.; Diamond, J.; Vieco, A.; Chaudhuri, S.; Shinnar, E.; Cromer, S.; Perel, P.; Mensah, G.A.; Narula, J.; Johnson, C.O.; Roth, G.A.; Moran, A.E. Global atlas of cardiovascular disease 2000-2016: The path to prevention and control. Glob. Heart, 2018, 13(3), 143-163.
[http://dx.doi.org/10.1016/j.gheart.2018.09.511] [PMID: 30301680]
[6]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[7]
Merrifield, R.B. Solid phase peptide synthesis I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85, 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[8]
Anselmo, A.C.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov., 2019, 18(1), 19-40.
[http://dx.doi.org/10.1038/nrd.2018.183] [PMID: 30498202]
[9]
Marzinzik, A.L.; Vorherr, T.E. Towards intracellular delivery of peptides. Chimia (Aarau), 2013, 67(12-13), 899-904.
[http://dx.doi.org/10.2533/chimia.2013.899] [PMID: 24594335]
[10]
Uhlig, T. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[11]
Vorherr, T. Modifying peptides to enhance permeability. Future Med. Chem., 2015, 7(8), 1009-1021.
[http://dx.doi.org/10.4155/fmc.15.43] [PMID: 26062398]
[12]
Ogoshi, M. Calcitonin gene-related peptide.Handbook of hormones; Takei, Y.; Ando, H.; Tsutsui, K., Eds.; Academic Press: San Diego, 2016, pp. 235-233.
[http://dx.doi.org/10.1016/B978-0-12-801028-0.00171-9]
[13]
Kumar, A.; Potts, J.D.; DiPette, D.J. Protective role of alpha-calcitonin gene-related peptide in cardiovascular diseases. Front. Physiol., 2019, 10, 821.
[http://dx.doi.org/10.3389/fphys.2019.00821] [PMID: 31312143]
[14]
King, R.; Brain, S.D. CGRP.Handbook of biologically active peptides, 2nd ed; Kastin, A.J., Ed.; Academic Press: Boston, 2013, pp. 1394-1401.
[http://dx.doi.org/10.1016/B978-0-12-385095-9.00189-5]
[15]
Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[16]
Grieco, P.; Gomez-Monterrey, I. Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch. Biochem. Biophys., 2019, 662, 15-32.
[http://dx.doi.org/10.1016/j.abb.2018.11.021] [PMID: 30481494]
[17]
Sato, K.; Watanabe, R.; Itoh, F.; Shichiri, M.; Watanabe, T. Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. Int. J. Hypertens., 2013, 2013965140
[http://dx.doi.org/10.1155/2013/965140] [PMID: 24251033]
[18]
Suzuki, N.; Shichiri, M.; Tateno, T.; Sato, K.; Hirata, Y. Distinct systemic distribution of salusin-α and salusin-β in the rat. Peptides, 2011, 32(4), 805-810.
[http://dx.doi.org/10.1016/j.peptides.2010.12.012] [PMID: 21193001]
[19]
Shichiri, M.; Ishimaru, S.; Ota, T.; Nishikawa, T.; Isogai, T.; Hirata, Y. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat. Med., 2003, 9(9), 1166-1172.
[http://dx.doi.org/10.1038/nm913] [PMID: 12910263]
[20]
Fujimoto, K.; Hayashi, A.; Kamata, Y.; Ogawa, A.; Watanabe, T.; Ichikawa, R.; Iso, Y.; Koba, S.; Kobayashi, Y.; Koyama, T.; Shichiri, M. Circulating levels of human salusin-β, a potent hemodynamic and atherogenesis regulator. PLoS One, 2013, 8(10)e76714
[http://dx.doi.org/10.1371/journal.pone.0076714] [PMID: 24098553]
[21]
Kołakowska, U.; Kuroczycka-Saniutycz, E.; Wasilewska, A.; Olański, W. Is the serum level of salusin-β associated with hypertension and atherosclerosis in the pediatric population? Pediatr. Nephrol., 2015, 30(3), 523-531.
[http://dx.doi.org/10.1007/s00467-014-2960-y] [PMID: 25245503]
[22]
Watanabe, T.; Sato, K.; Itoh, F.; Iso, Y.; Nagashima, M.; Hirano, T.; Shichiri, M. The roles of salusins in atherosclerosis and related cardiovascular diseases. J. Am. Soc. Hypertens., 2011, 5(5), 359-365.
[http://dx.doi.org/10.1016/j.jash.2011.06.003] [PMID: 21925457]
[23]
Stirrat, C.G.; Venkatasubramanian, S.; Pawade, T.; Mitchell, A.J.; Shah, A.S.; Lang, N.N.; Newby, D.E. Cardiovascular effects of urocortin 2 and urocortin 3 in patients with chronic heart failure. Br. J. Clin. Pharmacol., 2016, 82(4), 974-982.
[http://dx.doi.org/10.1111/bcp.13033] [PMID: 27275843]
[24]
Cong, W.N.; Golden, E.; Pantaleo, N.; White, C.M.; Maudsley, S.; Martin, B. Ghrelin receptor signaling: a promising therapeutic target for metabolic syndrome and cognitive dysfunction. CNS Neurol. Disord. Drug Targets, 2010, 9(5), 557-563.
[http://dx.doi.org/10.2174/187152710793361513] [PMID: 20632971]
[25]
Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin: much more than a hunger hormone. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 619-624.
[http://dx.doi.org/10.1097/MCO.0b013e328365b9be] [PMID: 24100676]
[26]
Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev., 2007, 87(4), 1409-1439.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[27]
Hausenloy, D.J.; Yellon, D.M. GLP-1 therapy: beyond glucose control. Circ Heart Fail, 2008, 1(3), 147-149.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.810887] [PMID: 19808284]
[28]
Lønborg, J.; Vejlstrup, N.; Kelbæk, H.; Bøtker, H.E.; Kim, W.Y.; Mathiasen, A.B.; Jørgensen, E.; Helqvist, S.; Saunamäki, K.; Clemmensen, P.; Holmvang, L.; Thuesen, L.; Krusell, L.R.; Jensen, J.S.; Køber, L.; Treiman, M.; Holst, J.J.; Engstrøm, T. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J., 2012, 33(12), 1491-1499.
[http://dx.doi.org/10.1093/eurheartj/ehr309] [PMID: 21920963]
[29]
Woo, J.S.; Kim, W.; Ha, S.J.; Kim, J.B.; Kim, S.J.; Kim, W.S.; Seon, H.J.; Kim, K.S. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler. Thromb. Vasc. Biol., 2013, 33(9), 2252-2260.
[http://dx.doi.org/10.1161/ATVBAHA.113.301586] [PMID: 23868944]
[30]
Timmers, L.; Henriques, J.P.; de Kleijn, D.P.; Devries, J.H.; Kemperman, H.; Steendijk, P.; Verlaan, C.W.; Kerver, M.; Piek, J.J.; Doevendans, P.A.; Pasterkamp, G.; Hoefer, I.E. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol., 2009, 53(6), 501-510.
[http://dx.doi.org/10.1016/j.jacc.2008.10.033] [PMID: 19195607]
[31]
Inserte, J.; Garcia-Dorado, D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br. J. Pharmacol., 2015, 172(8), 1996-2009.
[http://dx.doi.org/10.1111/bph.12959] [PMID: 25297462]
[32]
Roos, S.T.; Timmers, L.; Biesbroek, P.S.; Nijveldt, R.; Kamp, O.; van Rossum, A.C.; van Hout, G.P.; Stella, P.R.; Doevendans, P.A.; Knaapen, P.; Velthuis, B.K.; van Royen, N.; Voskuil, M.; Nap, A.; Appelman, Y. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int. J. Cardiol., 2016, 220, 809-814.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.283] [PMID: 27394978]
[33]
Zheng, A.; Cao, L.; Qin, S.; Chen, Y.; Li, Y.; Zhang, D. Exenatide regulates substrate preferences through the p38γ MAPK pathway after ischaemia/reperfusion injury in a rat heart. Heart Lung Circ., 2017, 26(4), 404-412.
[http://dx.doi.org/10.1016/j.hlc.2016.07.006] [PMID: 27574735]
[34]
Lee, K.H.; Ha, S.J.; Woo, J.S.; Lee, G.J.; Lee, S.R.; Kim, J.W.; Park, H.K.; Kim, W. Exenatide prevents morphological and structural changes of mitochondria following ischaemia-reperfusion injury. Heart Lung Circ., 2017, 26(5), 519-523.
[http://dx.doi.org/10.1016/j.hlc.2016.08.007] [PMID: 27743854]
[35]
Chang, G.; Liu, J.; Qin, S.; Jiang, Y.; Zhang, P.; Yu, H.; Lu, K.; Zhang, N.; Cao, L.; Wang, Y.; Li, Y.; Zhang, D. Cardioprotection by exenatide: A novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int. J. Mol. Med., 2018, 41(3), 1693-1703.
[PMID: 29286061]
[36]
Du, J.; Zhang, L.; Wang, Z.; Yano, N.; Zhao, Y.T.; Wei, L.; Dubielecka-Szczerba, P.; Liu, P.Y.; Zhuang, S.; Qin, G.; Zhao, T.C. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. Am. J. Physiol. Cell Physiol., 2016, 310(4), C270-C283.
[http://dx.doi.org/10.1152/ajpcell.00194.2015] [PMID: 26739490]
[37]
Chen, J.; Wang, D.; Wang, F.; Shi, S.; Chen, Y.; Yang, B.; Tang, Y.; Huang, C. Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides, 2017, 90, 69-77.
[http://dx.doi.org/10.1016/j.peptides.2017.02.008] [PMID: 28242257]
[38]
Siraj, M.A. GLP-1(28-36) prevents progression of ischemic heart failure in mice. Eur. Heart J. 2019, 40(Supplement_1)
[39]
Arturi, F.; Succurro, E.; Miceli, S.; Cloro, C.; Ruffo, M.; Maio, R.; Perticone, M.; Sesti, G.; Perticone, F. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure. Endocrine, 2017, 57(3), 464-473.
[http://dx.doi.org/10.1007/s12020-016-1166-4] [PMID: 27830456]
[40]
Zheng, R-H.; Bai, X.J.; Zhang, W.W.; Wang, J.; Bai, F.; Yan, C.P.; James, E.A.; Bose, H.S.; Wang, N.P.; Zhao, Z.Q. Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats. Drug Des. Devel. Ther., 2019, 13, 2745-2757.
[http://dx.doi.org/10.2147/DDDT.S213910] [PMID: 31496651]
[41]
Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; Steinberg, W.M.; Stockner, M.; Zinman, B.; Bergenstal, R.M.; Buse, J.B. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 311-322.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[42]
Steven, S. Cardiovascular benefits of GLP-1 (liraglutide) treatment in experimental arterial hypertension are mediated by the endothelial GLP-1 receptor. Eur. Heart J. 2019, 40(Supplement. 1)
[43]
Helmstädter, J.; Frenis, K.; Filippou, K.; Grill, A.; Dib, M.; Kalinovic, S.; Pawelke, F.; Kus, K.; Kröller-Schön, S.; Oelze, M.; Chlopicki, S.; Schuppan, D.; Wenzel, P.; Ruf, W.; Drucker, D.J.; Münzel, T.; Daiber, A.; Steven, S. Endothelial GLP-1 (Glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler. Thromb. Vasc. Biol., 2020, 40(1), 145-158.
[http://dx.doi.org/10.1161/atv.0000615456.97862.30] [PMID: 31747801]
[44]
Henning, R.J.; Sawmiller, D.R. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc. Res., 2001, 49(1), 27-37.
[http://dx.doi.org/10.1016/S0008-6363(00)00229-7] [PMID: 11121793]
[45]
Petkov, V.; Mosgoeller, W.; Ziesche, R.; Raderer, M.; Stiebellehner, L.; Vonbank, K.; Funk, G.C.; Hamilton, G.; Novotny, C.; Burian, B.; Block, L.H. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J. Clin. Invest., 2003, 111(9), 1339-1346.
[http://dx.doi.org/10.1172/JCI17500] [PMID: 12727925]
[46]
Lozić, M.; Šarenac, O.; Murphy, D.; Japundžić-Žigon, N. Vasopressin, central autonomic control and blood pressure regulation. Curr. Hypertens. Rep., 2018, 20(2), 11.
[http://dx.doi.org/10.1007/s11906-018-0811-0] [PMID: 29480411]
[47]
Costa, A.; Rossi, E.; Scicchitano, B.M.; Coletti, D.; Moresi, V.; Adamo, S. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. Eur. J. Transl. Myol., 2014, 24(3), 3790.
[http://dx.doi.org/10.4081/bam.2014.3.217] [PMID: 26913138]
[48]
Stoop, R.; Hegoburu, C.; van den Burg, E. New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. Annu. Rev. Neurosci., 2015, 38, 369-388.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033904] [PMID: 26154981]
[49]
Magon, N.; Kalra, S. The orgasmic history of oxytocin: Love, lust, and labor. Indian J. Endocrinol. Metab., 2011, 15(Suppl. 3), S156-S161.
[http://dx.doi.org/10.4103/2230-8210.84851] [PMID: 22029018]
[50]
Wang, P.; Wang, S.C.; Yang, H.; Lv, C.; Jia, S.; Liu, X.; Wang, X.; Meng, D.; Qin, D.; Zhu, H.; Wang, Y.F. Therapeutic potential of oxytocin in atheroscleroticc Cardiovascular disease: mechanisms and signaling pathways. Front. Neurosci., 2019, 13, 454.
[http://dx.doi.org/10.3389/fnins.2019.00454] [PMID: 31178679]
[51]
Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. Pharmacol. Rev., 2016, 68(2), 357-418.
[http://dx.doi.org/10.1124/pr.115.011833] [PMID: 26956245]
[52]
Firth, J.D.; Ratcliffe, P.J. Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression. J. Clin. Invest., 1992, 90(3), 1023-1031.
[http://dx.doi.org/10.1172/JCI115915] [PMID: 1522210]
[53]
Hynynen, M.M.; Khalil, R.A. The vascular endothelin system in hypertension--recent patents and discoveries. Recent Pat. Cardiovasc. Drug Discov., 2006, 1(1), 95-108.
[http://dx.doi.org/10.2174/157489006775244263] [PMID: 17200683]
[54]
Zhang, Z.Y.; Chen, L.L.; Xu, W.; Sigdel, K.; Jiang, X.T. Effects of silencing endothelin-1 on invasion and vascular formation in lung cancer. Oncol. Lett., 2017, 13(6), 4390-4396.
[http://dx.doi.org/10.3892/ol.2017.6027] [PMID: 28599441]
[55]
Zhang, W-M.; Zhou, J.; Ye, Q.J. Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci., 2008, 82(13-14), 764-771.
[http://dx.doi.org/10.1016/j.lfs.2008.01.008] [PMID: 18294657]
[56]
Wong, M.K.S. Bradykinin.Handbook of Hormones; Takei, Y.; Ando, H.; Tsutsui, K., Eds.; Academic Press: San Diego, 2016, pp. 274-274.
[57]
Golias, Ch.; Charalabopoulos, A.; Stagikas, D.; Charalabopoulos, K.; Batistatou, A. The kinin system--bradykinin: biological effects and clinical implications. Multiple role of the kinin system--bradykinin. Hippokratia, 2007, 11(3), 124-128.
[PMID: 19582206]
[58]
Regoli, D.; Gobeil, F. Kinins and peptide receptors. Biol. Chem., 2016, 397(4), 297-304.
[http://dx.doi.org/10.1515/hsz-2015-0240] [PMID: 26408609]
[59]
Chandrasekaran, B.; Dar, O.; McDonagh, T. The role of apelin in cardiovascular function and heart failure. Eur. J. Heart Fail., 2008, 10(8), 725-732.
[http://dx.doi.org/10.1016/j.ejheart.2008.06.002] [PMID: 18583184]
[60]
Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharmacol. Ther., 2005, 107(2), 198-211.
[http://dx.doi.org/10.1016/j.pharmthera.2005.04.001] [PMID: 15907343]
[61]
Franco, V. Pathophysiology of hypertension.Hypertension (Dallas, Tex.: 1979); Black, H.R.; Elliott, W.J., Eds.; W.B. Saunders: Philadelphia, 2007, pp. 25-46.
[http://dx.doi.org/10.1016/B978-1-4160-3053-9.50009-3]
[62]
Slavin, L. The use of biomarkers in the evaluation of heart failure.Heart Failure: A Companion to Braunwald’s Heart Disease, 2nd ed; Mann, D.L., Ed.; W.B. Saunders: Philadelphia, 2011, pp. 545-559.
[http://dx.doi.org/10.1016/B978-1-4160-5895-3.10037-3]
[63]
Kato, J.; Kitamura, K. Bench-to-bedside pharmacology of adrenomedullin. Eur. J. Pharmacol., 2015, 764, 140-148.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.061] [PMID: 26144371]
[64]
Vink, S.; Jin, A.H.; Poth, K.J.; Head, G.A.; Alewood, P.F. Natriuretic peptide drug leads from snake venom. Toxicon, 2012, 59(4), 434-445.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.001] [PMID: 21147145]
[65]
Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2003, 2(10), 790-802.
[http://dx.doi.org/10.1038/nrd1197] [PMID: 14526382]
[66]
Camargo, A.C.M.; Ianzer, D.; Guerreiro, J.R.; Serrano, S.M. Bradykinin-potentiating peptides: beyond captopril. Toxicon, 2012, 59(4), 516-523.
[http://dx.doi.org/10.1016/j.toxicon.2011.07.013] [PMID: 21835190]
[67]
Scarborough, R.M.; Naughton, M.A.; Teng, W.; Rose, J.W.; Phillips, D.R.; Nannizzi, L.; Arfsten, A.; Campbell, A.M.; Charo, I.F. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J. Biol. Chem., 1993, 268(2), 1066-1073.
[PMID: 8419315]
[68]
Koh, C.Y.; Kini, R.M. Biochemists’ bliss: harnessing the power of snake toxins to treat cardiovascular diseases. Biochemist (Lond.), 2019, 41, 10-14.
[http://dx.doi.org/10.1042/BIO04106010]
[69]
Nielsen, V.G. Ancrod revisited: viscoelastic analyses of the effects of Calloselasma rhodostoma venom on plasma coagulation and fibrinolysis. J. Thromb. Thrombolysis, 2016, 42(2), 288-293.
[http://dx.doi.org/10.1007/s11239-016-1343-6] [PMID: 26905070]
[70]
Yao, Y-T.; Yuan, X.; Fang, N.X. Hemocoagulase reduces postoperative bleeding and blood transfusion in cardiac surgical patients: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(52)e18534
[http://dx.doi.org/10.1097/MD.0000000000018534] [PMID: 31876750]
[71]
De Bold, A.J. Heart atria granularity effects of changes in water-electrolyte balance. Proc. Soc. Exp. Biol. Med., 1979, 161(4), 508-511.
[http://dx.doi.org/10.3181/00379727-161-40584] [PMID: 482282]
[72]
de Bold, A.J.; Borenstein, H.B.; Veress, A.T.; Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci., 1981, 28(1), 89-94.
[http://dx.doi.org/10.1016/0024-3205(81)90370-2] [PMID: 7219045]
[73]
Kangawa, K.; Matsuo, H. Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP). Biochem. Biophys. Res. Commun., 1984, 118(1), 131-139.
[http://dx.doi.org/10.1016/0006-291X(84)91077-5] [PMID: 6230082]
[74]
van Kimmenade, R.R.J.; Januzzi, J.L., Jr The evolution of the natriuretic peptides - Current applications in human and animal medicine. J. Vet. Cardiol., 2009, 11(Suppl. 1), S9-S21.
[http://dx.doi.org/10.1016/j.jvc.2009.01.001] [PMID: 19285934]
[75]
Willeit, P.; Kaptoge, S.; Welsh, P.; Butterworth, A.S.; Chowdhury, R.; Spackman, S.A.; Pennells, L.; Gao, P.; Burgess, S.; Freitag, D.F.; Sweeting, M.; Wood, A.M.; Cook, N.R.; Judd, S.; Trompet, S.; Nambi, V.; Olsen, M.H.; Everett, B.M.; Kee, F.; Ärnlöv, J.; Salomaa, V.; Levy, D.; Kauhanen, J.; Laukkanen, J.A.; Kavousi, M.; Ninomiya, T.; Casas, J.P.; Daniels, L.B.; Lind, L.; Kistorp, C.N.; Rosenberg, J.; Mueller, T.; Rubattu, S.; Panagiotakos, D.B.; Franco, O.H.; de Lemos, J.A.; Luchner, A.; Kizer, J.R.; Kiechl, S.; Salonen, J.T.; Goya Wannamethee, S.; de Boer, R.A.; Nordestgaard, B.G.; Andersson, J.; Jørgensen, T.; Melander, O. Ballantyne, ChM.; DeFilippi, Ch.; Ridker, P.M.; Cushman, M.; Rosamond, W.D.; Thompson, S.G.; Gudnason, V.; Sattar, N.; Danesh, J.; Di Angelantonio, E. Natriuretic Peptides Studies Collaboration. Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. Lancet Diabetes Endocrinol., 2016, 4(10), 840-849.
[http://dx.doi.org/10.1016/S2213-8587(16)30196-6] [PMID: 27599814]
[76]
Wang, T.J. The natriuretic peptides and fat metabolism. N. Engl. J. Med., 2012, 367(4), 377-378.
[http://dx.doi.org/10.1056/NEJMcibr1204796] [PMID: 22830469]
[77]
Levin, E.R.; Gardner, D.G.; Samson, W.K. Natriuretic peptides. N. Engl. J. Med., 1998, 339(5), 321-328.
[http://dx.doi.org/10.1056/NEJM199807303390507] [PMID: 9682046]
[78]
Volpe, M.; Rubattu, S.; Burnett, J., Jr Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur. Heart J., 2014, 35(7), 419-425.
[http://dx.doi.org/10.1093/eurheartj/eht466] [PMID: 24227810]
[79]
Lee, C.Y.; Burnett, J.C., Jr Natriuretic peptides and therapeutic applications. Heart Fail. Rev., 2007, 12(2), 131-142.
[http://dx.doi.org/10.1007/s10741-007-9016-3] [PMID: 17440808]
[80]
Tsukada, T. Ventricular natriuretic peptide.Handbook of hormones; Takei, Y.; Ando, H.; Tsutsui, K., Eds.; Academic Press: San Diego, 2016, pp. 289-281.
[http://dx.doi.org/10.1016/B978-0-12-801028-0.00186-0]
[81]
Takei, Y.; Ogoshi, M.; Inoue, K.A. ‘reverse’ phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front. Neuroendocrinol., 2007, 28(4), 143-160.
[http://dx.doi.org/10.1016/j.yfrne.2007.05.001] [PMID: 17659326]
[82]
Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2009, 191, 341-366.
[http://dx.doi.org/10.1007/978-3-540-68964-5_15] [PMID: 19089336]
[83]
Potter, L.R.; Abbey-Hosch, S.; Dickey, D.M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev., 2006, 27(1), 47-72.
[http://dx.doi.org/10.1210/er.2005-0014] [PMID: 16291870]
[84]
Lopez, M.J.; Wong, S.K.; Kishimoto, I.; Dubois, S.; Mach, V.; Friesen, J.; Garbers, D.L.; Beuve, A. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature, 1995, 378(6552), 65-68.
[http://dx.doi.org/10.1038/378065a0] [PMID: 7477288]
[85]
Singh, G.; Kuc, R.E.; Maguire, J.J.; Fidock, M.; Davenport, A.P. Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart: downregulation of natriuretic peptide receptor-A in heart failure. Circ. Res., 2006, 99(2), 183-190.
[http://dx.doi.org/10.1161/01.RES.0000232322.06633.d3] [PMID: 16778132]
[86]
Inoue, K.; Takei, Y. Molecular evolution of the natriuretic peptide system as revealed by comparative genomics. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2006, 1(1), 69-76.
[http://dx.doi.org/10.1016/j.cbd.2005.10.002] [PMID: 20483236]
[87]
Takei, Y.; Hirose, S. The natriuretic peptide system in eels: a key endocrine system for euryhalinity? Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(4), R940-R951.
[http://dx.doi.org/10.1152/ajpregu.00389.2001] [PMID: 11893596]
[88]
Wennberg, P.W.; Miller, V.M.; Rabelink, T.; Burnett, J.C., Jr Further attenuation of endothelium-dependent relaxation imparted by natriuretic peptide receptor antagonism. Am. J. Physiol., 1999, 277(4), H1618-H1621.
[PMID: 10516202]
[89]
Piao, F.L.; Park, S.H.; Han, J.H.; Cao, C.; Kim, S.Z.; Kim, S.H. Dendroaspis natriuretic peptide and its functions in pig ovarian granulosa cells. Regul. Pept., 2004, 118(3), 193-198.
[http://dx.doi.org/10.1016/j.regpep.2003.12.011] [PMID: 15003836]
[90]
Jaubert, J.; Jaubert, F.; Martin, N.; Washburn, L.L.; Lee, B.K.; Eicher, E.M.; Guénet, J.L. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10278-10283.
[http://dx.doi.org/10.1073/pnas.96.18.10278] [PMID: 10468599]
[91]
Matsukawa, N.; Grzesik, W.J.; Takahashi, N.; Pandey, K.N.; Pang, S.; Yamauchi, M.; Smithies, O. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl. Acad. Sci. USA, 1999, 96(13), 7403-7408.
[http://dx.doi.org/10.1073/pnas.96.13.7403] [PMID: 10377427]
[92]
Rose, R.A.; Giles, W.R. Natriuretic peptide C receptor signalling in the heart and vasculature. J. Physiol., 2008, 586(2), 353-366.
[http://dx.doi.org/10.1113/jphysiol.2007.144253] [PMID: 18006579]
[93]
Johns, D.G.; Ao, Z.; Heidrich, B.J.; Hunsberger, G.E.; Graham, T.; Payne, L.; Elshourbagy, N.; Lu, Q.; Aiyar, N.; Douglas, S.A. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor. Biochem. Biophys. Res. Commun., 2007, 358(1), 145-149.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.079] [PMID: 17475216]
[94]
Kashiwagi, M.; Katafuchi, T.; Kato, A.; Inuyama, H.; Ito, T.; Hagiwara, H.; Takei, Y.; Hirose, S. Cloning and properties of a novel natriuretic peptide receptor, NPR-D. Eur. J. Biochem., 1995, 233(1), 102-109.
[http://dx.doi.org/10.1111/j.1432-1033.1995.102_1.x] [PMID: 7588732]
[95]
Tota, B.; Cerra, M.C.; Gattuso, A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a ‘whip-brake’ system of the endocrine heart. J. Exp. Biol., 2010, 213(Pt 18), 3081-3103.
[http://dx.doi.org/10.1242/jeb.027391] [PMID: 20802109]
[96]
Garbers, D.L.; Chrisman, T.D.; Wiegn, P.; Katafuchi, T.; Albanesi, J.P.; Bielinski, V.; Barylko, B.; Redfield, M.M.; Burnett, J.C., Jr Membrane guanylyl cyclase receptors: an update. Trends Endocrinol. Metab., 2006, 17(6), 251-258.
[http://dx.doi.org/10.1016/j.tem.2006.06.006] [PMID: 16815030]
[97]
Klaiber, M.; Dankworth, B.; Kruse, M.; Hartmann, M.; Nikolaev, V.O.; Yang, R.B.; Völker, K.; Gassner, B.; Oberwinkler, H.; Feil, R.; Freichel, M.; Groschner, K.; Skryabin, B.V.; Frantz, S.; Birnbaumer, L.; Pongs, O.; Kuhn, M. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18500-18505.
[http://dx.doi.org/10.1073/pnas.1103300108] [PMID: 22027011]
[98]
Burnett, J.C., Jr; Kao, P.C.; Hu, D.C.; Heser, D.W.; Heublein, D.; Granger, J.P.; Opgenorth, T.J.; Reeder, G.S. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science, 1986, 231(4742), 1145-1147.
[http://dx.doi.org/10.1126/science.2935937] [PMID: 2935937]
[99]
Cody, R.J.; Atlas, S.A.; Laragh, J.H.; Kubo, S.H.; Covit, A.B.; Ryman, K.S.; Shaknovich, A.; Pondolfino, K.; Clark, M.; Camargo, M.J. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J. Clin. Invest., 1986, 78(5), 1362-1374.
[http://dx.doi.org/10.1172/JCI112723] [PMID: 2945832]
[100]
Yandle, T.G.; Brennan, S.O.; Espiner, E.A.; Nicholls, M.G.; Richards, A.M. Endopeptidase-24.11 in human plasma degrades atrial natriuretic factor (ANF) to ANF(99-105/106-126). Peptides, 1989, 10(4), 891-894.
[http://dx.doi.org/10.1016/0196-9781(89)90131-9] [PMID: 2531377]
[101]
Suwa, M. Multicenter prospective investigation on efficacy and safety of carperitide for acute heart failure in the ‘real world’ of therapy. Circ. J., 2005, 69, 283-290.
[102]
Nomura, F. Multicenter prospective investigation on efficacy and safety of carperitide as a first-line drug for acute heart failure syndrome with preserved blood pressure: COMPASS: Carperitide effects observed through monitoring dyspnea in acute decompensated heart failure study. Circ. J., 2008, 72, 1777-1786.
[103]
Sudoh, T.; Kangawa, K.; Minamino, N.; Matsuo, H. A new natriuretic peptide in porcine brain. Nature, 1988, 332(6159), 78-81.
[http://dx.doi.org/10.1038/332078a0] [PMID: 2964562]
[104]
Yoshimura, M.; Yasue, H.; Okumura, K.; Ogawa, H.; Jougasaki, M.; Mukoyama, M.; Nakao, K.; Imura, H. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation, 1993, 87(2), 464-469.
[http://dx.doi.org/10.1161/01.CIR.87.2.464] [PMID: 8425293]
[105]
O’Donoghue, M.; Braunwald, E. Natriuretic peptides in heart failure: should therapy be guided by BNP levels? Nat. Rev. Cardiol., 2010, 7(1), 13-20.
[http://dx.doi.org/10.1038/nrcardio.2009.197] [PMID: 19935742]
[106]
Tang, W.H.; Francis, G.S.; Morrow, D.A.; Newby, L.K.; Cannon, C.P.; Jesse, R.L.; Storrow, A.B.; Christenson, R.H.; Apple, F.S.; Ravkilde, J.; Wu, A.H. National academy of clinical biochemistry laboratory medicine. National academy of clinical biochemistry laboratory medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation, 2007, 116(5), e99-e109.
[PMID: 17630410]
[107]
Noveanu, M.; Breidthardt, T.; Potocki, M.; Reichlin, T.; Twerenbold, R.; Uthoff, H.; Socrates, T.; Arenja, N.; Reiter, M.; Meissner, J.; Heinisch, C.; Stalder, S.; Mueller, C. Direct comparison of serial B-type natriuretic peptide and NT-proBNP levels for prediction of short- and long-term outcome in acute decompensated heart failure. Crit. Care, 2011, 15(1), R1.
[http://dx.doi.org/10.1186/cc9398] [PMID: 21208408]
[108]
Pemberton, C.J. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload. Hypertension (Dallas, Tex. :1979),, 2000, 36, 355-359.
[http://dx.doi.org/10.1161/01.HYP.36.3.355]
[109]
Kroll, M.H. Using the single-compartment ratio model to calculate half-life, NT-proBNP as an example. Clin. Chim. Acta, 2007, 380, 197-202.
[110]
Colucci, W.S.; Elkayam, U.; Horton, D.P.; Abraham, W.T.; Bourge, R.C.; Johnson, A.D.; Wagoner, L.E.; Givertz, M.M.; Liang, C.S.; Neibaur, M.; Haught, W.H.; LeJemtel, T.H. Nesiritide Study Group. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. N. Engl. J. Med., 2000, 343(4), 246-253.
[http://dx.doi.org/10.1056/NEJM200007273430403] [PMID: 10911006]
[111]
Khazanie, P.; Heizer, G.M.; Hasselblad, V.; Armstrong, P.W.; Califf, R.M.; Ezekowitz, J.; Dickstein, K.; Levy, W.C.; McMurray, J.J.; Metra, M.; Tang, W.H.; Teerlink, J.R.; Voors, A.A.; O’Connor, C.M.; Hernandez, A.F.; Starling, R. Predictors of clinical outcomes in acute decompensated heart failure: Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure outcome models. Am. Heart J., 2015, 170(2), 290-297.
[http://dx.doi.org/10.1016/j.ahj.2015.04.006] [PMID: 26299226]
[112]
Tong, A.T.; Rozner, M.A. The role of nesiritide in heart failure. Expert Opin. Drug Metab. Toxicol., 2009, 5(7), 823-834.
[http://dx.doi.org/10.1517/17425250903042300] [PMID: 19538002]
[113]
Hua, P.; Liu, J.; Tao, J.; Lin, X.; Zou, R.; Zhang, D.; Yang, S. Safety and efficacy of the perioperative administration of recombinant human brain natriuretic peptide (rhBNP): a systematic review and meta-analysis. Ther. Clin. Risk Manag., 2018, 14, 313-321.
[http://dx.doi.org/10.2147/TCRM.S143247] [PMID: 29503550]
[114]
Maj, G. Nesiritide and clinically relevant outcomes in cardiac surgery: a meta-analysis of randomized studies. Signa Vitae, 2011, 6, 17-23.
[115]
Sudoh, T.; Minamino, N.; Kangawa, K.; Matsuo, H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun., 1990, 168(2), 863-870.
[http://dx.doi.org/10.1016/0006-291X(90)92401-K] [PMID: 2139780]
[116]
Chauhan, S.D.; Nilsson, H.; Ahluwalia, A.; Hobbs, A.J. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1426-1431.
[http://dx.doi.org/10.1073/pnas.0336365100] [PMID: 12552127]
[117]
Wu, C.; Wu, F.; Pan, J.; Morser, J.; Wu, Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J. Biol. Chem., 2003, 278(28), 25847-25852.
[http://dx.doi.org/10.1074/jbc.M301223200] [PMID: 12736257]
[118]
Suga, S.; Nakao, K.; Hosoda, K.; Mukoyama, M.; Ogawa, Y.; Shirakami, G.; Arai, H.; Saito, Y.; Kambayashi, Y.; Inouye, K. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology, 1992, 130(1), 229-239.
[http://dx.doi.org/10.1210/endo.130.1.1309330] [PMID: 1309330]
[119]
Kanai, Y.; Yasoda, A.; Mori, K.P.; Watanabe-Takano, H.; Nagai-Okatani, C.; Yamashita, Y.; Hirota, K.; Ueda, Y.; Yamauchi, I.; Kondo, E.; Yamanaka, S.; Sakane, Y.; Nakao, K.; Fujii, T.; Yokoi, H.; Minamino, N.; Mukoyama, M.; Mochizuki, N.; Inagaki, N. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J. Clin. Invest., 2017, 127(11), 4136-4147.
[http://dx.doi.org/10.1172/JCI94912] [PMID: 28990933]
[120]
Moyes, A.J. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur. Heart J., 2020, 41(9), 1006-1020.
[121]
Del Ry, S.; Passino, C.; Maltinti, M.; Emdin, M.; Giannessi, D. C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. Eur. J. Heart Fail., 2005, 7(7), 1145-1148.
[http://dx.doi.org/10.1016/j.ejheart.2004.12.009] [PMID: 15922659]
[122]
Moyes, A.J.; Hobbs, A.J. C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int. J. Mol. Sci., 2019, 20(9), 2281.
[http://dx.doi.org/10.3390/ijms20092281] [PMID: 31072047]
[123]
Bubb, K.J.; Aubdool, A.A.; Moyes, A.J.; Lewis, S.; Drayton, J.P.; Tang, O.; Mehta, V.; Zachary, I.C.; Abraham, D.J.; Tsui, J.; Hobbs, A.J. Endothelial C-type natriuretic peptide Is a critical regulator of angiogenesis and vascular remodeling. Circulation, 2019, 139(13), 1612-1628.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036344] [PMID: 30586761]
[124]
Peltonen, T.O.; Taskinen, P.; Soini, Y.; Rysä, J.; Ronkainen, J.; Ohtonen, P.; Satta, J.; Juvonen, T.; Ruskoaho, H.; Leskinen, H. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. Circulation, 2007, 116(11), 1283-1289.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.685743] [PMID: 17709640]
[125]
Casco, V.H.; Veinot, J.P.; Kuroski de Bold, M.L.; Masters, R.G.; Stevenson, M.M.; de Bold, A.J. Natriuretic peptide system gene expression in human coronary arteries. J. Histochem. Cytochem., 2002, 50(6), 799-809.
[http://dx.doi.org/10.1177/002215540205000606] [PMID: 12019296]
[126]
Kuehnl, A.; Pelisek, J.; Pongratz, J.; Eckstein, H.H. C-type natriuretic peptide and its receptors in atherosclerotic plaques of the carotid artery of clinically asymptomatic patients. Eur. J. Vasc. Endovasc. Surg., 2012, 43(6), 649-654.
[http://dx.doi.org/10.1016/j.ejvs.2012.02.010] [PMID: 22421372]
[127]
Seymour, A.A.; Mathers, P.D.; Abboa-Offei, B.E.; Asaad, M.M.; Weber, H. Renal and depressor activity of C-natriuretic peptide in conscious monkeys: effects of enzyme inhibitors. J. Cardiovasc. Pharmacol., 1996, 28(3), 397-401.
[http://dx.doi.org/10.1097/00005344-199609000-00008] [PMID: 8877586]
[128]
Špiranec, K.; Chen, W.; Werner, F.; Nikolaev, V.O.; Naruke, T.; Koch, F.; Werner, A.; Eder-Negrin, P.; Diéguez-Hurtado, R.; Adams, R.H.; Baba, H.A.; Schmidt, H.; Schuh, K.; Skryabin, B.V.; Movahedi, K.; Schweda, F.; Kuhn, M. Endothelial C-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation, 2018, 138(5), 494-508.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033383] [PMID: 29626067]
[129]
Lumsden, N.G.; Khambata, R.S.; Hobbs, A.J. C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr. Pharm. Des., 2010, 16(37), 4080-4088.
[http://dx.doi.org/10.2174/138161210794519237] [PMID: 21247399]
[130]
Hobbs, A.; Foster, P.; Prescott, C.; Scotland, R.; Ahluwalia, A. Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. Circulation, 2004, 110(10), 1231-1235.
[http://dx.doi.org/10.1161/01.CIR.0000141802.29945.34] [PMID: 15337698]
[131]
Wang, Y.; de Waard, M.C.; Sterner-Kock, A.; Stepan, H.; Schultheiss, H.P.; Duncker, D.J.; Walther, T. Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur. J. Heart Fail., 2007, 9(6-7), 548-557.
[http://dx.doi.org/10.1016/j.ejheart.2007.02.006] [PMID: 17407830]
[132]
Schweitz, H.; Vigne, P.; Moinier, D.; Frelin, C.; Lazdunski, M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J. Biol. Chem., 1992, 267(20), 13928-13932.
[PMID: 1352773]
[133]
Lisy, O.; Jougasaki, M.; Heublein, D.M.; Schirger, J.A.; Chen, H.H.; Wennberg, P.W.; Burnett, J.C. Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int., 1999, 56(2), 502-508.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00573.x] [PMID: 10432389]
[134]
Lisy, O. Therapeutic actions of a new synthetic vasoactive and natriuretic peptide, dendroaspis natriuretic peptide, in experimental severe congestive heart failure. Hypertension (Dallas, Tex. : 1979),, 2001, 37, 1089-1094.
[http://dx.doi.org/10.1161/01.HYP.37.4.1089]
[135]
Park, S-A.; Kim, T.G.; Han, M.K.; Ha, K.C.; Kim, S.Z.; Kwak, Y.G. Dendroaspis natriuretic peptide regulates the cardiac L-type Ca2+ channel activity by the phosphorylation of α1c proteins. Exp. Mol. Med., 2012, 44(6), 363-368.
[http://dx.doi.org/10.3858/emm.2012.44.6.041] [PMID: 22366884]
[136]
Chen, H.H.; Lainchbury, J.G.; Burnett, J.C., Jr Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide dendroaspis natriuretic peptide. J. Am. Coll. Cardiol., 2002, 40(6), 1186-1191.
[http://dx.doi.org/10.1016/S0735-1097(02)02127-7] [PMID: 12354448]
[137]
Jennings, B.L.; Broughton, B.R.; Donald, J.A. Nitric oxide control of the dorsal aorta and the intestinal vein of the Australian short-finned eel Anguilla australis. J. Exp. Biol., 2004, 207(Pt 8), 1295-1303.
[http://dx.doi.org/10.1242/jeb.00883] [PMID: 15010480]
[138]
Nobata, S.; Ventura, A.; Kaiya, H.; Takei, Y. Diversified cardiovascular actions of six homologous natriuretic peptides (ANP, BNP, VNP, CNP1, CNP3, and CNP4) in conscious eels. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298(6), R1549-R1559.
[http://dx.doi.org/10.1152/ajpregu.00789.2009] [PMID: 20357024]
[139]
Loretz, C.A.; Pollina, C. Natriuretic peptides in fish physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2000, 125(2), 169-187.
[http://dx.doi.org/10.1016/S1095-6433(99)00178-6] [PMID: 10825690]
[140]
Kaiya, H.; Takei, Y. Osmotic and volaemic regulation of atrial and ventricular natriuretic peptide secretion in conscious eels. J. Endocrinol., 1996, 149(3), 441-447.
[http://dx.doi.org/10.1677/joe.0.1490441] [PMID: 8691102]
[141]
Tsukada, T.; Takei, Y. Relative potency of three homologous natriuretic peptides (ANP, CNP and VNP) in Eel Osmoregulation. Zool. Sci., 2001, 18, 1253-1258.
[142]
Forssmann, W.; Meyer, M.; Forssmann, K. The renal urodilatin system: clinical implications. Cardiovasc. Res., 2001, 51(3), 450-462.
[http://dx.doi.org/10.1016/S0008-6363(01)00331-5] [PMID: 11476735]
[143]
Inserte, J.; Garcia-Dorado, D.; Agulló, L.; Paniagua, A.; Soler-Soler, J. Urodilatin limits acute reperfusion injury in the isolated rat heart. Cardiovasc. Res., 2000, 45(2), 351-359.
[http://dx.doi.org/10.1016/S0008-6363(99)00371-5] [PMID: 10728355]
[144]
Padilla, F.; Garcia-Dorado, D.; Agulló, L.; Barrabés, J.A.; Inserte, J.; Escalona, N.; Meyer, M.; Mirabet, M.; Pina, P.; Soler-Soler, J. Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc. Res., 2001, 51(3), 592-600.
[http://dx.doi.org/10.1016/S0008-6363(01)00242-5] [PMID: 11476750]
[145]
Hausenloy, D.J.; Botker, H.E.; Engstrom, T.; Erlinge, D.; Heusch, G.; Ibanez, B.; Kloner, R.A.; Ovize, M.; Yellon, D.M.; Garcia-Dorado, D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J., 2017, 38(13), 935-941.
[PMID: 27118196]
[146]
Dobrivojević, M.; Sinđić, A.; Edemir, B.; Kalweit, S.; Forssmann, W.G.; Hirsch, J.R. Interaction between bradykinin and natriuretic peptides via RGS protein activation in HEK-293 cells. Am. J. Physiol. Cell Physiol., 2012, 303(12), C1260-C1268.
[http://dx.doi.org/10.1152/ajpcell.00033.2012] [PMID: 23054060]
[147]
Dobrivojević, M.; Špiranec, K.; Gorup, D.; Erjavec, I.; Habek, N.; Radmilović, M.; Unfirer, S.; Ćosić, A.; Drenjančević, I.; Gajović, S.; Sinđić, A. Urodilatin reverses the detrimental influence of bradykinin in acute ischemic stroke. Exp. Neurol., 2016, 284(Pt A), 1-10.
[http://dx.doi.org/10.1016/j.expneurol.2016.07.007] [PMID: 27432758]
[148]
Bestle, M.H.; Olsen, N.V.; Christensen, P.; Jensen, B.V.; Bie, P. Cardiovascular, endocrine, and renal effects of urodilatin in normal humans. Am. J. Physiol., 1999, 276(3), R684-R695.
[PMID: 10070128]
[149]
Machaj, F.; Dembowska, E.; Rosik, J.; Szostak, B.; Mazurek-Mochol, M.; Pawlik, A. New therapies for the treatment of heart failure: a summary of recent accomplishments. Ther. Clin. Risk Manag., 2019, 15, 147-155.
[http://dx.doi.org/10.2147/TCRM.S179302] [PMID: 30774351]
[150]
Shah, T. Ularitide in acute heart failure. Curr. Emerg. Hosp. Med. Rep., 2018, 6, 17-23.
[http://dx.doi.org/10.1007/s40138-018-0150-0]
[151]
Packer, M.; O’Connor, C.; McMurray, J.J.V.; Wittes, J.; Abraham, W.T.; Anker, S.D.; Dickstein, K.; Filippatos, G.; Holcomb, R.; Krum, H.; Maggioni, A.P.; Mebazaa, A.; Peacock, W.F.; Petrie, M.C.; Ponikowski, P.; Ruschitzka, F.; van Veldhuisen, D.J.; Kowarski, L.S.; Schactman, M.; Holzmeister, J. TRUE-AHF Investigators Effect of ularitide on cardiovascular mortality in acute heart failure. N. Engl. J. Med., 2017, 376(20), 1956-1964.
[http://dx.doi.org/10.1056/NEJMoa1601895] [PMID: 28402745]
[152]
Barbouche, R.; Marrakchi, N.; Mansuelle, P.; Krifi, M.; Fenouillet, E.; Rochat, H.; el Ayeb, M. Novel anti-platelet aggregation polypeptides from Vipera lebetina venom: isolation and characterization. FEBS Lett., 1996, 392(1), 6-10.
[http://dx.doi.org/10.1016/0014-5793(96)00774-0] [PMID: 8769304]
[153]
Barbouche, R.; Marrakchi, N.; Mabrouk, K.; Krifi, M.N.; Van Rietschoten, J.; Fenouillet, E.; El Ayeb, M.; Rochat, H. Anti-platelet activity of the peptides composing the lebetin 1 family, a new class of inhibitors of platelet aggregation. Toxicon, 1998, 36(12), 1939-1947.
[http://dx.doi.org/10.1016/S0041-0101(98)00118-4] [PMID: 9839678]
[154]
Marrakchi, N.; Mabrouk, K.; Regaya, I.; Sarray, S.; Fathallah, M.; Rochat, H.; El Ayeb, M. Lebetin peptides: potent platelet aggregation inhibitors. Haemostasis, 2001, 31(3-6), 207-210.
[PMID: 11910186]
[155]
Tourki, B.; Matéo, P.; Morand, J.; Elayeb, M.; Godin-Ribuot, D.; Marrakchi, N.; Belaidi, E.; Messadi, E. Lebetin 2, a snake venom-derived natriuretic peptide, attenuates acute myocardial ischemic injury through the modulation of mitochondrial permeability transition pore at the time of reperfusion. PLoS One, 2016, 11(9)e0162632
[http://dx.doi.org/10.1371/journal.pone.0162632] [PMID: 27618302]
[156]
Amininasab, M.; Elmi, M.M.; Endlich, N.; Endlich, K.; Parekh, N.; Naderi-Manesh, H.; Schaller, J.; Mostafavi, H.; Sattler, M.; Sarbolouki, M.N.; Muhle-Goll, C. Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. FEBS Lett., 2004, 557(1-3), 104-108.
[http://dx.doi.org/10.1016/S0014-5793(03)01455-8] [PMID: 14741349]
[157]
Burnett, J.C. Nesiritide: new hope for acute heart failure syndromes? Eur. Heart J. Suppl., 2005, 7, B25-B30.
[http://dx.doi.org/10.1093/eurheartj/sui010]
[158]
Meems, L.M.G.; Burnett, J.C. Jr Innovative therapeutics: designer natriuretic peptides. JACC Basic Transl. Sci., 2016, 1(7), 557-567.
[http://dx.doi.org/10.1016/j.jacbts.2016.10.001] [PMID: 28497128]
[159]
Tanase, D.M.; Radu, S.; Al Shurbaji, S.; Baroi, G.L.; Florida Costea, C.; Turliuc, M.D.; Ouatu, A.; Floria, M. Natriuretic peptides in heart failure with preserved left ventricular ejection fraction: from molecular evidences to clinical implications. Int. J. Mol. Sci., 2019, 20(11), 2629.
[http://dx.doi.org/10.3390/ijms20112629] [PMID: 31142058]
[160]
Volpe, M.; Carnovali, M.; Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin. Sci. (Lond.), 2016, 130(2), 57-77.
[http://dx.doi.org/10.1042/CS20150469] [PMID: 26637405]
[161]
Jiang, Y.S.; Lei, J.Y.; Chen, Y.; Jin, J. Vasonatrin peptide stimulates both of the natriuretic peptide receptors, NPRA and NPRB. Biochem. Biophys. Res. Commun., 2014, 446(4), 1276-1280.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.110] [PMID: 24699414]
[162]
Wei, C.M.; Aarhus, L.L.; Miller, V.M.; Burnett, J.C. Jr Action of C-type natriuretic peptide in isolated canine arteries and veins. Am. J. Physiol., 1993, 264(1 Pt 2), H71-H73.
[PMID: 8430863]
[163]
Wei, C.M.; Kim, C.H.; Miller, V.M.; Burnett, J.C. Jr Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide. J. Clin. Invest., 1993, 92(4), 2048-2052.
[http://dx.doi.org/10.1172/JCI116800] [PMID: 8408658]
[164]
Shi, Z.; Fu, F.; Yu, L.; Xing, W.; Su, F.; Liang, X.; Tie, R.; Ji, L.; Zhu, M.; Yu, J.; Zhang, H. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. Am. J. Physiol. Heart Circ. Physiol., 2015, 308(4), H281-H290.
[http://dx.doi.org/10.1152/ajpheart.00666.2014] [PMID: 25485902]
[165]
Lisy, O.; Huntley, B.K.; McCormick, D.J.; Kurlansky, P.A.; Burnett, J.C., Jr Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J. Am. Coll. Cardiol., 2008, 52(1), 60-68.
[http://dx.doi.org/10.1016/j.jacc.2008.02.077] [PMID: 18582636]
[166]
Martin, F.L.; Sangaralingham, S.J.; Huntley, B.K.; McKie, P.M.; Ichiki, T.; Chen, H.H.; Korinek, J.; Harders, G.E.; Burnett, J.C.; Jr, CD-NP a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. PLoS One, 2012, 7(12)e52422
[http://dx.doi.org/10.1371/journal.pone.0052422] [PMID: 23272242]
[167]
Lee, C.Y.W.; Burnett, J.C. Discovery of a novel synthetic natriuretic peptide, CU-NP. J. Card. Fail., 2007, 13, S74.
[http://dx.doi.org/10.1016/j.cardfail.2007.06.307]
[168]
Volpe, M. Natriuretic peptides and cardio-renal disease. Int. J. Cardiol., 2014, 176(3), 630-639.
[http://dx.doi.org/10.1016/j.ijcard.2014.08.032] [PMID: 25213572]
[169]
Kilić, A.; Rajapurohitam, V.; Sandberg, S.M.; Zeidan, A.; Hunter, J.C.; Said Faruq, N.; Lee, C.Y.; Burnett, J.C., Jr; Karmazyn, M. A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc. Res., 2010, 88(3), 434-442.
[http://dx.doi.org/10.1093/cvr/cvq254] [PMID: 20679416]
[170]
Dickey, D.M.; Yoder, A.R.; Potter, L.R. A familial mutation renders atrial natriuretic Peptide resistant to proteolytic degradation. J. Biol. Chem., 2009, 284(29), 19196-19202.
[http://dx.doi.org/10.1074/jbc.M109.010777] [PMID: 19458086]
[171]
Kamp, F.; Astumian, R.D.; Westerhoff, H.V. Coupling of vectorial proton flow to a biochemical reaction by local electric interactions. Proc. Natl. Acad. Sci. USA, 1988, 85(11), 3792-3796.
[http://dx.doi.org/10.1073/pnas.85.11.3792] [PMID: 2836858]
[172]
McKie, P.M.; Cataliotti, A.; Ichiki, T.; Sangaralingham, S.J.; Chen, H.H.; Burnett, J.C., Jr M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J. Am. Heart Assoc., 2014, 3(1)e000206
[http://dx.doi.org/10.1161/JAHA.113.000206] [PMID: 24385449]
[173]
Chen, H.H. A first-in-human trial of a novel designer natriuretic peptide ZD100 in human hypertension. J. Am. Soc. Hypertens., 2016, 10e23
[http://dx.doi.org/10.1016/j.jash.2016.03.051]
[174]
Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng., 2018, 12, 2.
[http://dx.doi.org/10.1186/s13036-017-0093-0] [PMID: 29344085]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy