Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Assessment of Phytochemicals and Herbal Formula for the Treatment of Depression through Metabolomics

Author(s): Xu Wang*, Guanyu Lu, Xuan Liu, Jinhui Li, Fei Zhao and Kefeng Li*

Volume 27, Issue 6, 2021

Published on: 01 October, 2020

Page: [840 - 854] Pages: 15

DOI: 10.2174/1381612826666201001125124

Price: $65

Abstract

Depression is a widespread and persistent psychiatric disease. Due to various side effects and no curative treatments of conventional antidepressant drugs, botanical medicines have attracted considerable attention as a complementary and alternative approach. The pathogenesis of depression is quite complicated and unclear. Metabolomics is a promising new technique for the discovery of novel biomarkers for exploring the potential mechanisms of diverse diseases and assessing the therapeutic effects of drugs. In this article, we systematically reviewed the study of botanical medicine for the treatment of depression using metabolomics over a period from 2010 to 2019. Additionally, we summarized the potential biomarkers and metabolic pathways associated with herbal medicine treatment for depression. Through a comprehensive evaluation of herbal medicine as novel antidepressants and understanding of their pharmacomechanisms, a new perspective on expanding the application of botanical medicines for the treatment of depression is provided.

Keywords: Antidepressants, phytochemicals, herbal formula, metabolomics, metabolic biomarkers, assessment.

[1]
Collins PY, Patel V, Joestl SS, et al. Grand challenges in global mental health. Nature 2011; 475(7354): 27-30.
[http://dx.doi.org/10.1038/475027a] [PMID: 21734685]
[2]
Andrade L, Caraveo-Anduaga JJ, Berglund P, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 2003; 12(1): 3-21.
[http://dx.doi.org/10.1002/mpr.138] [PMID: 12830306]
[3]
Shahreza FD. Vascular protection by herbal antioxidants; recent views and new concepts. Journal of Preventive Epidemiology 2016; 1: e05. Available at: https://www.semanticscholar.org/paper/Vascular-protection-by-herbal-antioxidants%3B-recent-Shahreza/e3de6be1313d069c15745c1fd75a600b904795ca
[4]
Ismail H, Amanat MA, Iqbal A, Mirza B. Medicinal Plants: A Complementary and Alternative Antidepressant Therapy. Curr Pharm Des 2018; 24(22): 2609-24.
[http://dx.doi.org/10.2174/1381612824666180727123950] [PMID: 30051783]
[5]
Chen DQ, Chen H, Chen L, Tang DD, Miao H, Zhao YY. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product. Chem Biol Interact 2016; 252: 114-30.
[http://dx.doi.org/10.1016/j.cbi.2016.03.028] [PMID: 27041073]
[6]
Yi L, Liu W, Wang Z, Ren D, Peng W. Characterizing Alzheimer’s disease through metabolomics and investigating anti-Alzheimer’s disease effects of natural products. Ann N Y Acad Sci 2017; 1398(1): 130-41.
[http://dx.doi.org/10.1111/nyas.13385] [PMID: 28632966]
[7]
Cao H, Zhang A, Zhang H, Sun H, Wang X. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine. Phytother Res 2015; 29(2): 159-66.
[http://dx.doi.org/10.1002/ptr.5240] [PMID: 25331169]
[8]
Cacciatore S, Loda M. Innovation in metabolomics to improve personalized healthcare. Ann N Y Acad Sci 2015; 1346(1): 57-62.
[http://dx.doi.org/10.1111/nyas.12775] [PMID: 26014591]
[9]
Yi L, Shi S, Wang Y, et al. Serum Metabolic Profiling Reveals Altered Metabolic Pathways in Patients with Post-traumatic Cognitive Impairments. Sci Rep 2016; 6: 21320.
[http://dx.doi.org/10.1038/srep21320] [PMID: 26883691]
[10]
Stewart F. Metabolic signatures of human Alzheimer’s disease (AD): 1H NMR analysis of the polar metabolome of post-mortem brain tissue. Metabolomics 2014; 10: 744-53.
[http://dx.doi.org/10.1007/s11306-013-0610-1]
[11]
Casanova R, Varma S, Simpson B, et al. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement 2016; 12(7): 815-22.
[http://dx.doi.org/10.1016/j.jalz.2015.12.008] [PMID: 26806385]
[12]
Yang B, Xia ZA, Zhong B, et al. Distinct Hippocampal Expression Profiles of Long Non-coding RNAs in an Alzheimer’s Disease Model. Mol Neurobiol 2017; 54(7): 4833-46.
[http://dx.doi.org/10.1007/s12035-016-0038-5] [PMID: 27501805]
[13]
Han J, Xia Y, Lin L, Zhang Z, Tian H, Li K. Next-generation Metabolomics in the Development of New Antidepressants: Using Albiflorin as an Example. Curr Pharm Des 2018; 24(22): 2530-40.
[http://dx.doi.org/10.2174/1381612824666180727114134] [PMID: 30051781]
[14]
Zheng P, Wang Y, Chen L, et al. Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics 2013; 12(1): 207-14.
[http://dx.doi.org/10.1074/mcp.M112.021816] [PMID: 23111923]
[15]
Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008; 358(1): 55-68.
[http://dx.doi.org/10.1056/NEJMra073096] [PMID: 18172175]
[16]
Zheng S, Yu M, Lu X, et al. Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin Chim Acta 2010; 411(3-4): 204-9.
[http://dx.doi.org/10.1016/j.cca.2009.11.003] [PMID: 19913000]
[17]
Gros DF, Antony MM, McCabe RE, Swinson RP. Frequency and severity of the symptoms of irritable bowel syndrome across the anxiety disorders and depression. J Anxiety Disord 2009; 23(2): 290-6.
[http://dx.doi.org/10.1016/j.janxdis.2008.08.004] [PMID: 18819774]
[18]
Li ZY, Zheng XY, Gao XX, et al. Study of plasma metabolic profiling and biomarkers of chronic unpredictable mild stress rats based on gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2010; 24(24): 3539-46.
[http://dx.doi.org/10.1002/rcm.4809] [PMID: 21080506]
[19]
Hoekstra R, van den Broek WW, Fekkes D, Bruijn JA, Mulder PG, Pepplinkhuizen L. Effect of electroconvulsive therapy on biopterin and large neutral amino acids in severe, medication-resistant depression. Psychiatry Res 2001; 103(2-3): 115-23.
[http://dx.doi.org/10.1016/S0165-1781(01)00282-7] [PMID: 11549400]
[20]
Paolisso G, Tagliamonte MR, Rizzo MR, Giugliano D. Advancing age and insulin resistance: new facts about an ancient history. Eur J Clin Invest 1999; 29(9): 758-69.
[http://dx.doi.org/10.1046/j.1365-2362.1999.00522.x] [PMID: 10469164]
[21]
Gao X, Guo B, Yang L, et al. Selection and dynamic metabolic response of rat biomarkers by metabonomics and multivariate statistical analysis combined with GC-MS. Pharmacol Biochem Behav 2014; 117: 85-91.
[http://dx.doi.org/10.1016/j.pbb.2013.12.013] [PMID: 24355550]
[22]
Pan JX, Xia JJ, Deng FL, et al. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry 2018; 8(1): 130.
[http://dx.doi.org/10.1038/s41398-018-0183-x] [PMID: 29991685]
[23]
Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disord 1995; 34(4): 275-81.
[http://dx.doi.org/10.1016/0165-0327(95)00025-I] [PMID: 8550953]
[24]
Wang W, Guo H, Zhang SX, et al. Targeted Metabolomic Pathway Analysis and Validation Revealed Glutamatergic Disorder in the Prefrontal Cortex among the Chronic Social Defeat Stress Mice Model of Depression. J Proteome Res 2016; 15(10): 3784-92.
[http://dx.doi.org/10.1021/acs.jproteome.6b00577] [PMID: 27599184]
[25]
Kunugi H, Hori H, Ogawa S. Biochemical markers subtyping major depressive disorder. Psychiatry Clin Neurosci 2015; 69(10): 597-608.
[http://dx.doi.org/10.1111/pcn.12299] [PMID: 25825158]
[26]
Lake CR, Pickar D, Ziegler MG, Lipper S, Slater S, Murphy DL. High plasma norepinephrine levels in patients with major affective disorder. Am J Psychiatry 1982; 139(10): 1315-8.
[http://dx.doi.org/10.1176/ajp.139.10.1315] [PMID: 6289682]
[27]
Du H, Wang K, Su L, et al. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression. J Pharm Biomed Anal 2016; 128: 469-79.
[http://dx.doi.org/10.1016/j.jpba.2016.06.019] [PMID: 27371920]
[28]
Park S-H, Sim Y-B, Han P-L, Lee J-K, Suh H-W. Antidepressant-like effect of chlorogenic acid isolated from Artemisia capillaris Thunb. Anim Cells Syst 2010; 14: 253-9.
[http://dx.doi.org/10.1080/19768354.2010.528192]
[29]
Wu J, Chen H, Li H, et al. Antidepressant Potential of Chlorogenic Acid-Enriched Extract from Eucommia ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression. Molecules 2016; 21(3): 260.
[http://dx.doi.org/10.3390/molecules21030260] [PMID: 26927040]
[30]
Ma WN, Zhou MM, Gou XJ, et al. Urinary Metabolomic Study of Chlorogenic Acid in a Rat Model of Chronic Sleep Deprivation Using Gas Chromatography-Mass Spectrometry. Int J Genomics 2018; 2018: 1361402.
[http://dx.doi.org/10.1155/2018/1361402] [PMID: 29607310]
[31]
Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 2015; 126: 57-68.
[http://dx.doi.org/10.1016/j.lfs.2015.01.006] [PMID: 25634110]
[32]
Gong MJ, Han B, Wang SM, Liang SW, Zou ZJ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J Pharm Biomed Anal 2016; 123: 63-73.
[http://dx.doi.org/10.1016/j.jpba.2016.02.001] [PMID: 26874256]
[33]
Chen Z, Bai S, Hu Q, et al. Ginkgo biloba extract and its diterpene ginkgolide constituents ameliorate the metabolic disturbances caused by recombinant tissue plasminogen activator in rat prefrontal cortex. Neuropsychiatr Dis Treat 2018; 14: 1755-72.
[http://dx.doi.org/10.2147/NDT.S167448] [PMID: 30013348]
[34]
Liebgott T, Miollan M, Berchadsky Y, Drieu K, Culcasi M, Pietri S. Complementary cardioprotective effects of flavonoid metabolites and terpenoid constituents of Ginkgo biloba extract (EGb 761) during ischemia and reperfusion. Basic Res Cardiol 2000; 95(5): 368-77.
[http://dx.doi.org/10.1007/s003950070035] [PMID: 11099163]
[35]
Oberpichler H, Sauer D, Rossberg C, Mennel HD, Krieglstein J. PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cereb Blood Flow Metab 1990; 10(1): 133-5.
[http://dx.doi.org/10.1038/jcbfm.1990.17] [PMID: 2298830]
[36]
Ma S, Liu X, Xu Q, Zhang X. Transport of ginkgolides with different lipophilicities based on an hCMEC/D3 cell monolayer as a blood-brain barrier cell model. Life Sci 2014; 114(2): 93-101.
[http://dx.doi.org/10.1016/j.lfs.2014.08.006] [PMID: 25139831]
[37]
Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 2002; 67(3): 235-57.
[http://dx.doi.org/10.1016/S0301-0082(02)00015-1] [PMID: 12169298]
[38]
Bai S, Zhang X, Chen Z, et al. Insight into the metabolic mechanism of Diterpene Ginkgolides on antidepressant effects for attenuating behavioural deficits compared with venlafaxine. Sci Rep 2017; 7(1): 9591.
[http://dx.doi.org/10.1038/s41598-017-10391-1] [PMID: 28852120]
[39]
Hu Q, Shen P, Bai S, et al. Metabolite-related antidepressant action of diterpene ginkgolides in the prefrontal cortex. Neuropsychiatr Dis Treat 2018; 14: 999-1011.
[http://dx.doi.org/10.2147/NDT.S161351] [PMID: 29713170]
[40]
Liang Z, Bai S, Shen P, et al. GC-MS-based metabolomic study on the antidepressant-like effects of diterpene ginkgolides in mouse hippocampus. Behav Brain Res 2016; 314: 116-24.
[http://dx.doi.org/10.1016/j.bbr.2016.08.001] [PMID: 27498146]
[41]
Qiu ZK, He JL, Liu X, Zeng J, Chen JS, Nie H. Anti-PTSD-like effects of albiflorin extracted from Radix paeoniae Alba. J Ethnopharmacol 2017; 198: 324-30.
[http://dx.doi.org/10.1016/j.jep.2016.12.028] [PMID: 27993636]
[42]
Wonnemann M, Singer A, Müller WE. Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John’s Wort: the role of amiloride sensitive sodium conductive pathways. Neuropsychopharmacology 2000; 23(2): 188-97.
[http://dx.doi.org/10.1016/S0893-133X(00)00102-0] [PMID: 10882845]
[43]
Teige M, Scheikl E, Eulgem T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 2004; 15(1): 141-52.
[http://dx.doi.org/10.1016/j.molcel.2004.06.023] [PMID: 15225555]
[44]
Wang X, Zeng C, Lin J, et al. Metabonomics approach to assessing the modulatory effects of St John’s wort, ginsenosides, and clomipramine in experimental depression. J Proteome Res 2012; 11(12): 6223-30.
[http://dx.doi.org/10.1021/pr300891v] [PMID: 23110693]
[45]
Xiao WL, Huang S-X, Wang R-R, et al. Nortriterpenoids and lignans from Schisandra sphenanthera. Phytochemistry 2008; 69(16): 2862-6.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.010] [PMID: 18951592]
[46]
Huang X, Song F, Liu Z, Liu S. Structural characterization and identification of dibenzocyclooctadiene lignans in Fructus Schisandrae using electrospray ionization ion trap multiple-stage tandem mass spectrometry and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry. Anal Chim Acta 2008; 615(2): 124-35.
[http://dx.doi.org/10.1016/j.aca.2008.03.056] [PMID: 18442518]
[47]
Zhang Y, Lv X, Liu R, et al. An integrated strategy for ascertaining quality marker of Schisandra chinensis (Turcz.) Baill based on correlation analysis between depression-related monoaminergic metabolites and chemical components profiling. J Chromatogr A 2019; 1598: 122-31.
[http://dx.doi.org/10.1016/j.chroma.2019.03.056] [PMID: 31047662]
[48]
Li G, Tang Z, Yang J, et al. Simultaneous determination of five components in rat plasma by UPLC-MS/MS and its application to a comparative pharmacokinetic study in Baihe Zhimu Tang and Zhimu extract. Molecules 2015; 20(4): 6700-14.
[http://dx.doi.org/10.3390/molecules20046700] [PMID: 25884551]
[49]
Guo QP, Gao Y, Li WM. Influence of the lilium saponins on HPA axis of the depression model rats. Zhongguo Yaolixue Tongbao 2010; 26: 699-700.
[50]
Ren LX, Luo Y-F, Li X, Zuo D-Y, Wu Y-L. Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides BUNGE (Liliaceae). Biol Pharm Bull 2006; 29(11): 2304-6.
[http://dx.doi.org/10.1248/bpb.29.2304] [PMID: 17077534]
[51]
Du H, Zhao H, Lai X, et al. Metabolic profiles revealed synergistically antidepressant effects of lilies and Rhizoma Anemarrhenae in a rat model of depression. Biomed Chromatogr 2017; 31(7): 31.
[http://dx.doi.org/10.1002/bmc.3923] [PMID: 28009452]
[52]
Upadhyay NK, Kumar R, Mandotra SK, et al. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem Toxicol 2009; 47(6): 1146-53.
[http://dx.doi.org/10.1016/j.fct.2009.02.002] [PMID: 19425187]
[53]
Nguemeni C, Delplanque B, Rovère C, et al. Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 2010; 61(3): 226-33.
[http://dx.doi.org/10.1016/j.phrs.2009.12.007] [PMID: 20036742]
[54]
Tian JS, Liu CC, Xiang H, et al. Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food Funct 2015; 6(11): 3585-92.
[http://dx.doi.org/10.1039/C5FO00695C] [PMID: 26328874]
[55]
Jingyue X, Nan Z, Chongyan Z, Jing Y, Xiaoshuai L. Studies on the anti-depression effect of Xiaoyao Powder(逍遥散) in mice. Pharmacology and Clinics of Chinese Materia Medica 2007.
[56]
Dai Y, Li Z, Xue L, et al. Metabolomics study on the anti-depression effect of xiaoyaosan on rat model of chronic unpredictable mild stress. J Ethnopharmacol 2010; 128(2): 482-9.
[http://dx.doi.org/10.1016/j.jep.2010.01.016] [PMID: 20079416]
[57]
Zhou Y, Lu L, Li Z, et al. Antidepressant-like effects of the fractions of Xiaoyaosan on rat model of chronic unpredictable mild stress. J Ethnopharmacol 2011; 137(1): 236-44.
[http://dx.doi.org/10.1016/j.jep.2011.05.016] [PMID: 21640181]
[58]
Liu XJ, Zhou YZ, Li ZF, et al. Anti-depressant effects of Xiaoyaosan on rat model of chronic unpredictable mild stress: a plasma metabonomics study based on NMR spectroscopy. J Pharm Pharmacol 2012; 64(4): 578-88.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01412.x] [PMID: 22420663]
[59]
Liu X, Zheng X, Du G, Li Z, Qin X. Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by 1H NMR analysis. J Ethnopharmacol 2019; 235: 141-54.
[http://dx.doi.org/10.1016/j.jep.2019.01.018] [PMID: 30708033]
[60]
Gao X, Zheng X, Li Z, et al. Metabonomic study on chronic unpredictable mild stress and intervention effects of Xiaoyaosan in rats using gas chromatography coupled with mass spectrometry. J Ethnopharmacol 2011; 137(1): 690-9.
[http://dx.doi.org/10.1016/j.jep.2011.06.024] [PMID: 21718771]
[61]
Gao XX, Cui J, Zheng XY, et al. An investigation of the antidepressant action of xiaoyaosan in rats using ultra performance liquid chromatography-mass spectrometry combined with metabonomics. Phytother Res 2013; 27(7): 1074-85.
[http://dx.doi.org/10.1002/ptr.4805] [PMID: 22975930]
[62]
Tian JS, Peng GJ, Gao XX, et al. Dynamic analysis of the endogenous metabolites in depressed patients treated with TCM formula Xiaoyaosan using urinary (1)H NMR-based metabolomics. J Ethnopharmacol 2014; 158(Pt. A): 1-10.
[63]
Tian JS, Peng GJ, Wu YF, et al. A GC-MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026: 227-35.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.026] [PMID: 26733091]
[64]
Luo HG, Chen JX, Zhang Q, et al. Comparative study on effects of Xiaoyao Powder and its modified prescription on plasma metabolomics of rats with chronic immobilization stress. Chin J Integr Med 2013; 19(8): 610-5.
[http://dx.doi.org/10.1007/s11655-012-1092-0] [PMID: 22610956]
[65]
Su ZH, Li SQ, Zou GA, et al. Urinary metabonomics study of anti-depressive effect of Chaihu-Shu-Gan-San on an experimental model of depression induced by chronic variable stress in rats. J Pharm Biomed Anal 2011; 55(3): 533-9.
[http://dx.doi.org/10.1016/j.jpba.2011.02.013] [PMID: 21398066]
[66]
Jia HM, Yu M, Ma LY, Zhang HW, Zou ZM. Chaihu-Shu-Gan-San regulates phospholipids and bile acid metabolism against hepatic injury induced by chronic unpredictable stress in rat. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064: 14-21.
[http://dx.doi.org/10.1016/j.jchromb.2017.08.003] [PMID: 28886478]
[67]
Xiong Z, Yang J, Huang Y, et al. Serum metabonomics study of anti-depressive effect of Xiao-Chai-Hu-Tang on rat model of chronic unpredictable mild stress. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030: 28-35.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.044] [PMID: 27398633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy