Review Article

An Agathokakological Tale of Δ9-THC: Exploration of Possible Biological Targets

Author(s): Bijo Mathew*, Seetha Harilal, Arafa Musa, Rajesh Kumar, Della Grace Thomas Parambi, Jobin Jose, Md. Sahab Uddin, Muhammad Ajmal Shah, Tapan Behl and Mazhuvancherry Kesavan Unnikrishnan

Volume 22, Issue 7, 2021

Published on: 01 October, 2020

Page: [823 - 834] Pages: 12

DOI: 10.2174/1389450121666201001123515

Price: $65

Open Access Journals Promotions 2
Abstract

Δ9-Tetrahydrocannabinol (Δ9-THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system. By interacting with G-proteincoupled receptors CB1 and CB2, Δ9-THC affects peripheral and central circulation by lowering sympathetic activity, altering gene expression, cell proliferation, and differentiation, decreasing leukocyte migration, modulating neurotransmitter release, thereby modulating cardiovascular functioning, tumorigenesis, immune responses, behavioral and locomotory activities. Δ9-THC effectively suppresses chemotherapy-induced vomiting, retards malignant tumor growth, inhibits metastasis, and promotes apoptosis. Other mechanisms involved are targeting cell cycle at the G2-M phase in human breast cancer, downregulation of E2F transcription factor 1 (E2F1) in human glioblastoma multiforme, and stimulation of ER stress-induced autophagy. Δ9-THC also plays a role in ameliorating neuroinflammation, excitotoxicity, neuroplasticity, trauma, and stroke and is associated with reliving childhood epilepsy, brain trauma, and neurodegenerative diseases. Δ9-THC via CB1 receptors affects nociception, emotion, memory, and reduces neuronal excitability and excitotoxicity in epilepsy. It also increases renal blood flow, reduces intraocular pressure via a sympathetic pathway, and modulates hormonal release, thereby decreasing the reproductive function and increasing glucose metabolism. Versatile medical marijuana has stimulated abundant research demonstrating substantial therapeutic promise, suggesting the possibilities of first-in-class drugs in diverse therapeutic segments. This review represents the current pharmacological status of the phytocannabinoid, Δ9-THC, and synthetic analogs in cancer, cardiovascular, and neurodegenerative disorders.

Keywords: Δ9-Tetrahydrocannabinol, tetrahydrocannabinol, epilepsy, atherogenesis, neuroinflammation, neurodegenerative diseases.

Graphical Abstract
[1]
Booth M. Cannabis: A History. Macmillan 2005.
[2]
O’Shaughnessy WB. On the preparations of the Indian hemp, or Gunjah: Cannabis indica their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. Prov Med J Retrosp Med Sci 1843; 5(123): 363.
[3]
Sandeep C. World drug report 2011. U N Publ U N Off Drugs Crime UNODC 2011.
[4]
Touw M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs 1981; 13(1): 23-34.
[http://dx.doi.org/10.1080/02791072.1981.10471447] [PMID: 7024492]
[5]
Voth EA, Schwartz RH. Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann Intern Med 1997; 126(10): 791-8.
[http://dx.doi.org/10.7326/0003-4819-126-10-199705150-00008] [PMID: 9148653]
[6]
ElSohly M, Gul W. Constituents of cannabis sativa. Handb Cannabis 2014; 3: 1093.
[7]
Mechoulam R, Gaoni Y. A total synthesis of dl-Δ1-tetrahydrocannabinol, the active constituent of hashish1. J Am Chem Soc 1965; 87(14): 3273-5.
[http://dx.doi.org/10.1021/ja01092a065] [PMID: 14324315]
[8]
Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86(8): 1646-7.
[http://dx.doi.org/10.1021/ja01062a046]
[9]
[10]
Sharma P, Murthy P, Bharath MM. Chemistry, metabolism, and toxicology of cannabis: clinical implications. Iran J Psychiatry 2012; 7(4): 149-56.
[PMID: 23408483]
[11]
Baker D, Pryce G, Giovannoni G, Thompson AJ. The therapeutic potential of cannabis. Lancet Neurol 2003; 2(5): 291-8.
[http://dx.doi.org/10.1016/S1474-4422(03)00381-8] [PMID: 12849183]
[12]
McPartland JM, Duncan M, Di Marzo V, Pertwee RG. Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 2015; 172(3): 737-53.
[http://dx.doi.org/10.1111/bph.12944] [PMID: 25257544]
[13]
Howlett AC, Bidaut-Russell M, Devane WA, Melvin LS, Johnson MR, Herkenham M. The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci 1990; 13(10): 420-3.
[http://dx.doi.org/10.1016/0166-2236(90)90124-S] [PMID: 1700516]
[14]
Mukhopadhyay S, Shim J-Y, Assi A-A, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids 2002; 121(1-2): 91-109.
[http://dx.doi.org/10.1016/S0009-3084(02)00153-6] [PMID: 12505694]
[15]
Niehaus JL, Liu Y, Wallis KT, et al. CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol 2007; 72(6): 1557-66.
[http://dx.doi.org/10.1124/mol.107.039263] [PMID: 17895407]
[16]
Isbell H, Gorodetzsky CW, Jasinski D, Claussen U, von Spulak F, Korte F. Effects of (--)δ-9-trans-tetrahydrocannabinol in man. Psychopharmacology (Berl) 1967; 11(2): 184-8.
[http://dx.doi.org/10.1007/BF00401256] [PMID: 4871478]
[17]
Howlett AC. Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 1995; 35(1): 607-34.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.003135] [PMID: 7598509]
[18]
Malan TP Jr, Ibrahim MM, Deng H, et al. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain 2001; 93(3): 239-45.
[http://dx.doi.org/10.1016/S0304-3959(01)00321-9] [PMID: 11514083]
[19]
Porcella A, Marchese G, Casu MA, et al. Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid. Eur J Endocrinol 2002; 147(2): 255-61.
[http://dx.doi.org/10.1530/eje.0.1470255] [PMID: 12153749]
[20]
Ryberg E, Larsson N, Sjögren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 2007; 152(7): 1092-101.
[http://dx.doi.org/10.1038/sj.bjp.0707460] [PMID: 17876302]
[21]
Pertwee RG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem 1999; 6(8): 635-64.
[PMID: 10469884]
[22]
Devane WA, Dysarz FA III, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34(5): 605-13.
[PMID: 2848184]
[23]
Bhattacharya SK. delta-9-tetrahydrocannabinol (THC) increases brain prostaglandins in the rat. Psychopharmacology (Berl) 1986; 90(4): 499-502.
[http://dx.doi.org/10.1007/BF00174068] [PMID: 3027735]
[24]
Ungerleider JT, Andrysiak T. Therapeutic issues of marijuana and THC (tetrahydrocannabinol). Int J Addict 1985; 20(5): 691-9.
[http://dx.doi.org/10.3109/10826088509044289] [PMID: 2995262]
[25]
Bambico FR, Hattan PR, Garant J-P, Gobbi G. Effect of delta-9-tetrahydrocannabinol on behavioral despair and on pre- and postsynaptic serotonergic transmission. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38(1): 88-96.
[http://dx.doi.org/10.1016/j.pnpbp.2012.02.006] [PMID: 22386778]
[26]
Bloomfield MA, Ashok AH, Volkow ND, Howes OD. The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539(7629): 369-77.
[http://dx.doi.org/10.1038/nature20153] [PMID: 27853201]
[27]
Colizzi M, Weltens N, McGuire P, et al. Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: implications for psychosis. Mol Psychiatry 2019; 1-10.
[http://dx.doi.org/10.1038/s41380-019-0374-8] [PMID: 30770892]
[28]
Sano K, Mishima K, Koushi E, et al. Δ 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience 2008; 151(2): 320-8.
[http://dx.doi.org/10.1016/j.neuroscience.2007.10.026] [PMID: 18083311]
[29]
Pertwee RG. Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 2009; 156(3): 397-411.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00048.x] [PMID: 19226257]
[30]
Baker D, Pryce G, Croxford JL, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 2000; 404(6773): 84-7.
[http://dx.doi.org/10.1038/35003583] [PMID: 10716447]
[31]
Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME. Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Other Motor Neuron Disord 2004; 5(1): 33-9.
[http://dx.doi.org/10.1080/14660820310016813] [PMID: 15204022]
[32]
García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández-Ruiz J. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res 2007; 1134(1): 162-70.
[http://dx.doi.org/10.1016/j.brainres.2006.11.063] [PMID: 17196181]
[33]
Fernández-Ruiz J, Moreno-Martet M, Rodríguez-Cueto C, et al. Prospects for cannabinoid therapies in basal ganglia disorders. Br J Pharmacol 2011; 163(7): 1365-78.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01365.x] [PMID: 21545415]
[34]
Calabrese EJ, Rubio-Casillas A. Biphasic effects of THC in memory and cognition. Eur J Clin Invest 2018; 48(5): e12920.
[http://dx.doi.org/10.1111/eci.12920] [PMID: 29574698]
[35]
Harilal S, Jose J, Parambi DGT, et al. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res Bull 2020; 160: 121-40.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.018] [PMID: 32315731]
[36]
van der Stelt M, Mazzola C, Esposito G, et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 2006; 63(12): 1410-24.
[http://dx.doi.org/10.1007/s00018-006-6037-3] [PMID: 16732431]
[37]
Walther S, Mahlberg R, Eichmann U, Kunz D. Delta-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl) 2006; 185(4): 524-8.
[http://dx.doi.org/10.1007/s00213-006-0343-1] [PMID: 16521031]
[38]
Yoo K-Y, Park S-Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012; 17(3): 3524-38.
[http://dx.doi.org/10.3390/molecules17033524] [PMID: 22430119]
[39]
Eubanks LM, Rogers CJ, Beuscher AE IV, et al. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 2006; 3(6): 773-7.
[http://dx.doi.org/10.1021/mp060066m] [PMID: 17140265]
[40]
Freeman RM, Adekanmi O, Waterfield MR, Waterfield AE, Wright D, Zajicek J. The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct 2006; 17(6): 636-41.
[http://dx.doi.org/10.1007/s00192-006-0086-x] [PMID: 16552618]
[41]
Zajicek J, Fox P, Sanders H, et al. UK MS Research Group. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 2003; 362(9395): 1517-26.
[http://dx.doi.org/10.1016/S0140-6736(03)14738-1] [PMID: 14615106]
[42]
Zajicek JP, Sanders HP, Wright DE, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry 2005; 76(12): 1664-9.
[http://dx.doi.org/10.1136/jnnp.2005.070136] [PMID: 16291891]
[43]
Campbell KA, Foster TC, Hampson RE, Deadwyler SA. Effects of delta 9-tetrahydrocannabinol on sensory-evoked discharges of granule cells in the dentate gyrus of behaving rats. J Pharmacol Exp Ther 1986; 239(3): 941-5.
[PMID: 3025424]
[44]
Colizzi M, Bhattacharyya S. Does cannabis composition matter? Differential effects of delta-9-tetrahydrocannabinol and cannabidiol on human cognition. Curr Addict Rep 2017; 4(2): 62-74.
[http://dx.doi.org/10.1007/s40429-017-0142-2] [PMID: 28580227]
[45]
Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci 1990; 240(1): 1-4.
[http://dx.doi.org/10.1007/BF02190083] [PMID: 2175265]
[46]
Ungerleider JT, Andyrsiak T, Fairbanks L, Ellison GW, Myers LW. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 1987; 7(1): 39-50.
[http://dx.doi.org/10.1300/J251v07n01_04] [PMID: 2831701]
[48]
Green K, Kim K, Bowman K. Ocular effects of delta-9-tetrahydrocannabinol.The Therapeutic Potential of Marihuana. Springer 1976; pp. 49-62.
[http://dx.doi.org/10.1007/978-1-4613-4286-1_4]
[49]
Korczyn AD. The ocular effects of cannabinoids. Gen Pharmacol 1980; 11(5): 419-23.
[http://dx.doi.org/10.1016/0306-3623(80)90026-9] [PMID: 6998830]
[50]
Green K, Roth M. Ocular effects of topical administration of delta 9-tetrahydrocannabinol in man. Arch Ophthalmol 1982; 100(2): 265-7.
[http://dx.doi.org/10.1001/archopht.1982.01030030267006] [PMID: 6279061]
[51]
Tashkin DP, Roth MD. Pulmonary effects of inhaled cannabis smoke. Am J Drug Alcohol Abuse 2019; 45(6): 596-609.
[http://dx.doi.org/10.1080/00952990.2019.1627366] [PMID: 31298945]
[52]
Pergolizzi JV Jr, LeQuang JA, Bisney JF. Cannabinoid hyperemesis. Med Cannabis Cannabinoids 2018; 1(2): 73-95.
[http://dx.doi.org/10.1159/000494992]
[53]
Abel EL. Cannabis: effects on hunger and thirst. Behav Biol 1975; 15(3): 255-81.
[http://dx.doi.org/10.1016/S0091-6773(75)91684-3] [PMID: 1106391]
[54]
Camilleri M. Cannabinoids and gastrointestinal motility: Pharmacology, clinical effects, and potential therapeutics in humans. Neurogastroenterol Motil 2018; 30(9): e13370.
[http://dx.doi.org/10.1111/nmo.13370] [PMID: 29745439]
[55]
Weiss JL, Watanabe AM, Lemberger L, Tamarkin NR, Cardon PV. Cardiovascular effects of delta-9-tetrahydrocannabinol in man. Clin Pharmacol Ther 1972; 13(5): 671-84.
[http://dx.doi.org/10.1002/cpt1972135part1671] [PMID: 4559810]
[56]
Iversen LL. The science of marijuana. Oxford University Press 2001.
[57]
Murphy LL, Muñoz RM, Adrian BA, Villanúa MA. Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion. Neurobiol Dis 1998; 5(6 Pt B): 432-46.
[http://dx.doi.org/10.1006/nbdi.1998.0224] [PMID: 9974176]
[58]
Kokka N, Garcia JF. Effects of delta 9-THC on growth hormone and ACTH secretion in rats. Life Sci 1974; 15(2): 329-38.
[http://dx.doi.org/10.1016/0024-3205(74)90223-9] [PMID: 4378081]
[59]
Dewey WL, Peng T-C, Harris LS. The effect of 1-trans-delta 9-tetrahydrocannabinol on the hypothalamo-hypophyseal-adrenal axis of rats. Eur J Pharmacol 1970; 12(3): 382-4.
[http://dx.doi.org/10.1016/0014-2999(70)90094-4] [PMID: 4322071]
[60]
Rettori V, Aguila MC, Gimeno MF, Franchi AM, McCann SM. In vitro effect of delta 9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2. Proc Natl Acad Sci USA 1990; 87(24): 10063-6.
[http://dx.doi.org/10.1073/pnas.87.24.10063] [PMID: 1979873]
[61]
Hillard CJ, Farber NE, Hagen TC, Bloom AS. The effects of delta 9-tetrahydrocannabinol on serum thyrotropin levels in the rat. Pharmacol Biochem Behav 1984; 20(4): 547-50.
[http://dx.doi.org/10.1016/0091-3057(84)90303-4] [PMID: 6328543]
[62]
Laychock SG, Hoffman JM, Meisel E, Bilgin S. Pancreatic islet arachidonic acid turnover and metabolism and insulin release in response to delta-9-tetrahydrocannabinol. Biochem Pharmacol 1986; 35(12): 2003-8.
[http://dx.doi.org/10.1016/0006-2952(86)90733-1] [PMID: 3013206]
[63]
Baczynsky WO, Zimmerman AM. Effects of delta 9-tetrahydrocannabinol, cannabinol and cannabidiol on the immune system in mice. I. In vivo investigation of the primary and secondary immune response. Pharmacology 1983; 26(1): 1-11.
[http://dx.doi.org/10.1159/000137763] [PMID: 6298841]
[64]
Schatz AR, Koh WS, Kaminski NEΔ. Delta 9-tetrahydrocannabinol selectively inhibits T-cell dependent humoral immune responses through direct inhibition of accessory T-cell function. Immunopharmacology 1993; 26(2): 129-37.
[http://dx.doi.org/10.1016/0162-3109(93)90005-B] [PMID: 8282537]
[65]
Galiègue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 1995; 232(1): 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[66]
Massi P, Valenti M, Solinas M, Parolaro D. Molecular mechanisms involved in the antitumor activity of cannabinoids on gliomas: role for oxidative stress. Cancers (Basel) 2010; 2(2): 1013-26.
[http://dx.doi.org/10.3390/cancers2021013] [PMID: 24281104]
[67]
Guida M, Ligresti A, De Filippis D, et al. The levels of the endocannabinoid receptor CB2 and its ligand 2-arachidonoylglycerol are elevated in endometrial carcinoma. Endocrinology 2010; 151(3): 921-8.
[http://dx.doi.org/10.1210/en.2009-0883] [PMID: 20133454]
[68]
Guzmán M. Cannabinoids: potential anticancer agents. Nat Rev Cancer 2003; 3(10): 745-55.
[http://dx.doi.org/10.1038/nrc1188] [PMID: 14570037]
[69]
Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for cancer treatment: progress and promise. Cancer Res 2008; 68(2): 339-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2785] [PMID: 18199524]
[70]
Velasco G, Hernández-Tiedra S, Dávila D, Lorente M. The use of cannabinoids as anticancer agents. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64: 259-66.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.010] [PMID: 26071989]
[71]
Guindon J, Hohmann AG. The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol 2011; 163(7): 1447-63.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01327.x] [PMID: 21410463]
[72]
Caffarel MM, Sarrió D, Palacios J, Guzmán M, Sánchez C. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 2006; 66(13): 6615-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4566] [PMID: 16818634]
[73]
Takeda S, Ikeda E, Su S, et al. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells. Toxicology 2014; 326: 18-24.
[http://dx.doi.org/10.1016/j.tox.2014.09.011] [PMID: 25291031]
[74]
Kisková T, Mungenast F, Suváková M, Jäger W, Thalhammer T. Future Aspects for cannabinoids in breast cancer therapy. Int J Mol Sci 2019; 20(7): 1673.
[http://dx.doi.org/10.3390/ijms20071673] [PMID: 30987191]
[75]
Carracedo A, Gironella M, Lorente M, et al. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 2006; 66(13): 6748-55.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0169] [PMID: 16818650]
[76]
Blasco-Benito S, Seijo-Vila M, Caro-Villalobos M, et al. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem Pharmacol 2018; 157: 285-93.
[http://dx.doi.org/10.1016/j.bcp.2018.06.025] [PMID: 29940172]
[77]
Sharafi G, He H, Nikfarjam M. Potential use of cannabinoids for the treatment of pancreatic cancer. J Pancreat Cancer 2019; 5(1): 1-7.
[http://dx.doi.org/10.1089/pancan.2018.0019] [PMID: 30706048]
[78]
Galanti G, Fisher T, Kventsel I, et al. Δ 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells. Acta Oncol 2008; 47(6): 1062-70.
[http://dx.doi.org/10.1080/02841860701678787] [PMID: 17934890]
[79]
Salazar M, Carracedo A, Salanueva ÍJ, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119(5): 1359-72.
[http://dx.doi.org/10.1172/JCI37948] [PMID: 19425170]
[80]
Scott KA, Dalgleish AG, Liu WM. The combination of cannabidiol and Δ9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol Cancer Ther 2014; 13(12): 2955-67.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0402] [PMID: 25398831]
[81]
López-Valero I, Saiz-Ladera C, Torres S, et al. Targeting Glioma Initiating Cells with A combined therapy of cannabinoids and temozolomide. Biochem Pharmacol 2018; 157: 266-74.
[http://dx.doi.org/10.1016/j.bcp.2018.09.007] [PMID: 30195736]
[82]
Armstrong JL, Hill DS, McKee CS, et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 2015; 135(6): 1629-37.
[http://dx.doi.org/10.1038/jid.2015.45] [PMID: 25674907]
[83]
Zhang Y, Zheng W, Shen K, Shen W. ∆9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer. Oncol Lett 2018; 15(6): 8527-35.
[http://dx.doi.org/10.3892/ol.2018.8407] [PMID: 29805589]
[84]
Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 2003; 42(4): 327-60.
[http://dx.doi.org/10.2165/00003088-200342040-00003] [PMID: 12648025]
[85]
Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers 2007; 4(8): 1770-804.
[http://dx.doi.org/10.1002/cbdv.200790152] [PMID: 17712819]
[86]
Moreno-Sanz G. Can you pass the acid test? critical review and novel therapeutic perspectives of a 9-tetrahydrocannabinolic acid a. Cannabis Cannabinoid Res 2016; 1(1): 124-30.
[87]
Lemberger L, Tamarkin NR, Axelrod J, Kopin IJ. Delta-9-tetrahydrocannabinol: metabolism and disposition in long-term marihuana smokers. Science 1971; 173(3991): 72-4.
[http://dx.doi.org/10.1126/science.173.3991.72] [PMID: 5087483]
[88]
O’Donnell B, Gupta V. Dronabinol.StatPearls. StatPearls Publishing 2020.
[89]
Gable RS. Toward a comparative overview of dependence potential and acute toxicity of psychoactive substances used nonmedically. Am J Drug Alcohol Abuse 1993; 19(3): 263-81.
[http://dx.doi.org/10.3109/00952999309001618] [PMID: 8213692]
[90]
Abrams DI, Hilton JF, Leiser RJ, et al. Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med 2003; 139(4): 258-66.
[http://dx.doi.org/10.7326/0003-4819-139-4-200308190-00008] [PMID: 12965981]
[91]
Katona S, Kaminski E, Sanders H, Zajicek J. Cannabinoid influence on cytokine profile in multiple sclerosis. Clin Exp Immunol 2005; 140(3): 580-5.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02803.x] [PMID: 15932522]
[92]
Banerjee BN, Galbreath C, Sofia RD. Teratologic evaluation of synthetic delta-9-tetrahydrocannabinol in rats. Teratology 1975; 11(1): 99-101.
[http://dx.doi.org/10.1002/tera.1420110112] [PMID: 1138409]
[93]
Borgen LA, Davis WM, Pace HB. Effects of synthetic 9 -tetrahydrocannabinol on pregnancy and offspring in the rat. Toxicol Appl Pharmacol 1971; 20(4): 480-6.
[http://dx.doi.org/10.1016/0041-008X(71)90252-3] [PMID: 5143590]
[94]
Harbison RD, Mantilla-Plata B, Lubin DJ. Alteration of delta 9-tetrahydrocannabinol-induced teratogenicity by stimulation and inhibition of its metabolism. J Pharmacol Exp Ther 1977; 202(2): 455-65.
[PMID: 886474]
[95]
Tetrault JM, Crothers K, Moore BA, Mehra R, Concato J, Fiellin DA. Effects of marijuana smoking on pulmonary function and respiratory complications: a systematic review. Arch Intern Med 2007; 167(3): 221-8.
[http://dx.doi.org/10.1001/archinte.167.3.221] [PMID: 17296876]
[96]
Sarafian TA, Kouyoumjian S, Khoshaghideh F, Tashkin DP, Roth MDΔ. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 2003; 284(2): L298-306.
[http://dx.doi.org/10.1152/ajplung.00157.2002] [PMID: 12533310]
[97]
Sarafian TA, Magallanes JAM, Shau H, Tashkin D, Roth MD. Oxidative stress produced by marijuana smoke. An adverse effect enhanced by cannabinoids. Am J Respir Cell Mol Biol 1999; 20(6): 1286-93.
[http://dx.doi.org/10.1165/ajrcmb.20.6.3424] [PMID: 10340948]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy