Review Article

MiRNA, a New Treatment Strategy for Pulmonary Fibrosis

Author(s): Yanhong Liu, Hongguang Nie*, Yan Ding, Yapeng Hou, Kejun Mao and Yong Cui

Volume 22, Issue 7, 2021

Published on: 28 September, 2020

Page: [793 - 802] Pages: 10

DOI: 10.2174/1874609813666200928141822

Price: $65

Open Access Journals Promotions 2
Abstract

Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.

Keywords: Pulmonary fibrosis, microRNAs, transforming growth factor-β, extracellular matrix, epithelial-mesenchymal transition, pro-fibrotic.

Graphical Abstract
[1]
Ma W, Li H, Tian Z, Wang S, Zheng X, Hou J. Complete regression of pulmonary squamous carcinoma in IPF following gemcitabine plus cisplatin: a case report and literature review. BMC Pulm Med 2020; 20(1): 69.
[http://dx.doi.org/10.1186/s12890-020-1094-1] [PMID: 32197657]
[2]
Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: a review. Int J Mol Sci 2019; 20(6): 1461.
[http://dx.doi.org/10.3390/ijms20061461] [PMID: 30909462]
[3]
Sgalla G, Biffi A, Richeldi L. Idiopathic pulmonary fibrosis: Diagnosis, epidemiology and natural history. Respirology 2016; 21(3): 427-37.
[http://dx.doi.org/10.1111/resp.12683] [PMID: 26595062]
[4]
Raghu G, Rochwerg B, Zhang Y, et al. American Thoracic Society; European Respiratory society; Japanese Respiratory Society; Latin American Thoracic Association. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 2015; 192(2): e3-e19.
[http://dx.doi.org/10.1164/rccm.201506-1063ST] [PMID: 26177183]
[5]
O’Farrell HE, Yang IA. Extracellular vesicles in chronic obstructive pulmonary disease (COPD). J Thorac Dis 2019; 11(Suppl. 17): S2141-54.
[http://dx.doi.org/10.21037/jtd.2019.10.16] [PMID: 31737342]
[6]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202-7.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[7]
Cui H, Ge J, Xie N, et al. MiR-34a inhibits lung fibrosis by inducing lung fibroblast senescence. Am J Respir Cell Mol Biol 2017; 56(2): 168-78.
[PMID: 27635790]
[8]
Liu Y, Li Y, Xu Q, et al. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol Basis Dis 2018; 1864(2): 420-31.
[http://dx.doi.org/10.1016/j.bbadis.2017.11.003] [PMID: 29113749]
[9]
Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015; 6: 254.
[http://dx.doi.org/10.3389/fphar.2015.00254] [PMID: 26594173]
[10]
Sakai N, Tager AM. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta 2013; 1832(7): 911-21.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.001] [PMID: 23499992]
[11]
Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis 2008; 3: 8.
[http://dx.doi.org/10.1186/1750-1172-3-8] [PMID: 18366757]
[12]
Kuhn H, Zobel C, Vollert G, et al. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Exp Lung Res 2019; 45(7): 167-74.
[http://dx.doi.org/10.1080/01902148.2019.1636424] [PMID: 31290711]
[13]
Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev 2018; 27(148): 27.
[http://dx.doi.org/10.1183/16000617.0033-2018] [PMID: 29950306]
[14]
Wei P, Xie Y, Abel PW, et al. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019; 10(9): 670.
[http://dx.doi.org/10.1038/s41419-019-1873-x] [PMID: 31511493]
[15]
Yuan J, Li P, Pan H, et al. MiR-542-5p attenuates fibroblast activation by targeting integrin α6 in silica-induced pulmonary fibrosis. Int J Mol Sci 2018; 19(12): 3717.
[http://dx.doi.org/10.3390/ijms19123717]
[16]
Hou J, Shi J, Chen L, et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis 2018.
[17]
Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res 2018; 19(1): 170.
[http://dx.doi.org/10.1186/s12931-018-0864-2] [PMID: 30189872]
[18]
Liu H, Jakubzick C, Osterburg AR, et al. Dendritic cell trafficking and function in rare lung diseases 2017; 57: 393-402.
[http://dx.doi.org/10.1165/rcmb.2017-0051PS]
[19]
Duru N, Zhang Y, Gernapudi R, et al. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages. Sci Rep 2016; 6: 39572.
[http://dx.doi.org/10.1038/srep39572] [PMID: 27996039]
[20]
Lian X, Chen X, Sun J, et al. MicroRNA-29b inhibits supernatants from silica-treated macrophages from inducing extracellular matrix synthesis in lung fibroblasts 2017; 6: 878-8.
[21]
Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 2014; 9: 157-79.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104706] [PMID: 24050627]
[22]
Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 2016; 12(6): 325-38.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[23]
Yang ZC, Qu ZH, Yi MJ, et al. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol 2019; 234(6): 8804-14.
[http://dx.doi.org/10.1002/jcp.27540] [PMID: 30362537]
[24]
Chen X, Shi C, Wang C, et al. The role of miR-497-5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis. Sci Rep 2017; 7: 40958.
[http://dx.doi.org/10.1038/srep40958] [PMID: 28098218]
[25]
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207(8): 1589-97.
[http://dx.doi.org/10.1084/jem.20100035] [PMID: 20643828]
[26]
Yamada M, Kubo H, Ota C, et al. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir Res 2013; 14: 95.
[http://dx.doi.org/10.1186/1465-9921-14-95] [PMID: 24063588]
[27]
Wang J, He F, Chen L, et al. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed Pharmacother 2018; 105: 37-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.104] [PMID: 29843043]
[28]
Liu Z, Liang X, Li X, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 2019; 8(3): 328-40.
[http://dx.doi.org/10.1039/C9TX00019D] [PMID: 31160967]
[29]
Sun NN, Yu CH, Pan MX, et al. MiR-21 mediates the inhibitory effect of Ang (1-7) on AngII-induced NLRP3 inflammasome activation by targeting Spry1 in lung fibroblasts. Sci Rep 2017; 7(1): 14369.
[http://dx.doi.org/10.1038/s41598-017-13305-3] [PMID: 29084974]
[30]
Rubio GA, Elliot SJ, Wikramanayake TC, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol 2018; 233(8): 5503-12.
[http://dx.doi.org/10.1002/jcp.26418] [PMID: 29271488]
[31]
Lino Cardenas CL, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 2013; 9(2): e1003291.
[http://dx.doi.org/10.1371/journal.pgen.1003291] [PMID: 23459460]
[32]
Shetty SK, Tiwari N, Marudamuthu AS, et al. p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis. Am J Pathol 2017; 187(5): 1016-34.
[http://dx.doi.org/10.1016/j.ajpath.2016.12.020] [PMID: 28273432]
[33]
Disayabutr S, Kim EK, Cha SI, et al. MiR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS One 2016; 11(6): e0158367.
[http://dx.doi.org/10.1371/journal.pone.0158367] [PMID: 27362652]
[34]
Tang H, Mao J, Ye X, et al. SHIP-1, a target of miR-155, regulates endothelial cell responses in lung fibrosis. FASEB J 2020; 34(2): 2011-23.
[http://dx.doi.org/10.1096/fj.201902063R] [PMID: 31907997]
[35]
Kurowska-Stolarska M, Hasoo MK, Welsh DJ, et al. The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis. J Allergy Clin Immunol 2017; 139(6): 1946-56.
[http://dx.doi.org/10.1016/j.jaci.2016.09.021] [PMID: 27746237]
[36]
Chen Y, Xu D, Yao J, et al. Inhibition of miR-155-5p exerts anti-fibrotic effects in silicotic mice by regulating meprin alpha. Mol Ther Nucleic Acids 2020; 19: 350-60.
[http://dx.doi.org/10.1016/j.omtn.2019.11.018] [PMID: 31877411]
[37]
Liu H, He Y, Jiang Z, Shen S, Mei J, Tang M. Prodigiosin alleviates pulmonary fibrosis through inhibiting miRNA-410 and TGF-β1/ADAMTS-1 signaling pathway. Cell Physiol Biochem 2018; 49(2): 501-11.
[http://dx.doi.org/10.1159/000492989] [PMID: 30157485]
[38]
Wang C, Gu S, Cao H, et al. miR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Sci Rep 2016; 6: 30122.
[http://dx.doi.org/10.1038/srep30122] [PMID: 27444321]
[39]
Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019; 51(6): 1-16.
[http://dx.doi.org/10.1038/s12276-019-0255-x] [PMID: 31164635]
[40]
Sun L, Zhu M, Feng W, et al. Exosomal miRNA let-7 from menstrual blood-derived endometrial stem cells alleviates pulmonary fibrosis through regulating mitochondrial DNA damage. Oxid Med Cell Longev 2019; 2019: 4506303.
[http://dx.doi.org/10.1155/2019/4506303] [PMID: 31949877]
[41]
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182(2): 220-9.
[http://dx.doi.org/10.1164/rccm.200911-1698OC] [PMID: 20395557]
[42]
Kamikawaji K, Seki N, Watanabe M, et al. Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. J Hum Genet 2016; 61(12): 985-93.
[http://dx.doi.org/10.1038/jhg.2016.99] [PMID: 27488440]
[43]
Wang T, Li Y, Chen J, Xie L, Xiao T. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b. Int J Clin Exp Pathol 2018; 11(12): 5592-601.
[PMID: 31949646]
[44]
Xie T, Liang J, Geng Y, et al. MicroRNA-29c prevents pulmonary fibrosis by regulating epithelial cell renewal and apoptosis. Am J Respir Cell Mol Biol 2017; 57(6): 721-32.
[http://dx.doi.org/10.1165/rcmb.2017-0133OC] [PMID: 28799781]
[45]
Matsushima S, Ishiyama J. MicroRNA-29c regulates apoptosis sensitivity via modulation of the cell-surface death receptor, Fas, in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2016; 311(6): L1050-61.
[http://dx.doi.org/10.1152/ajplung.00252.2016] [PMID: 27765762]
[46]
Cao Y, Liu Y, Ping F, Yi L, Zeng Z, Li Y. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. Lab Invest 2018; 98(3): 339-59.
[http://dx.doi.org/10.1038/labinvest.2017.123] [PMID: 29200203]
[47]
Jiang H, Chen Y, Yu T, et al. Inhibition of lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2 loop. Am J Physiol Lung Cell Mol Physiol 2018; 315(4): L563-75.
[http://dx.doi.org/10.1152/ajplung.00434.2017] [PMID: 29952219]
[48]
Liang H, Xu C, Pan Z, et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther 2014; 22(6): 1122-33.
[http://dx.doi.org/10.1038/mt.2014.42] [PMID: 24594795]
[49]
Liang H, Gu Y, Li T, et al. Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death Dis 2014; 5(5): e1238.
[http://dx.doi.org/10.1038/cddis.2014.207] [PMID: 24853416]
[50]
Li X, Liu L, Shen Y, et al. MicroRNA-26a modulates transforming growth factor β-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun 2014; 454(4): 512-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.106] [PMID: 25451270]
[51]
Liang H, Liu S, Chen Y, et al. miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: potential cross-talks among miRNAs in IPF. J Mol Med (Berl) 2016; 94(6): 655-65.
[http://dx.doi.org/10.1007/s00109-016-1381-8] [PMID: 26787543]
[52]
Liu B, Jiang T, Hu X, et al. Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. Mol Med Rep 2018; 18(6): 5799-806.
[http://dx.doi.org/10.3892/mmr.2018.9565] [PMID: 30365083]
[53]
Zhao S, Xiao X, Sun S, et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract 2018; 214(9): 1315-23.
[http://dx.doi.org/10.1016/j.prp.2018.02.014] [PMID: 30029934]
[54]
Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci 2018; 166(2): 465-78.
[http://dx.doi.org/10.1093/toxsci/kfy221] [PMID: 30202956]
[55]
Lei GS, Kline HL, Lee CH, Wilkes DS, Zhang C. Regulation of collagen V expression and epithelial-mesenchymal transition by miR-185 and miR-186 during idiopathic pulmonary fibrosis. Am J Pathol 2016; 186(9): 2310-6.
[http://dx.doi.org/10.1016/j.ajpath.2016.04.015] [PMID: 27392970]
[56]
Ji X, Wu B, Fan J, et al. The anti-fibrotic effects and mechanisms of microRNA-486-5p in pulmonary fibrosis. Sci Rep 2015; 5: 14131.
[http://dx.doi.org/10.1038/srep14131] [PMID: 26370615]
[57]
Yan W, Wu Q, Yao W, et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep 2017; 7(1): 11313.
[http://dx.doi.org/10.1038/s41598-017-11904-8] [PMID: 28900284]
[58]
Wu Q, Han L, Yan W, et al. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci Rep 2016; 6: 30921.
[http://dx.doi.org/10.1038/srep30921] [PMID: 27506999]
[59]
Zhao X, Sun J, Chen Y, et al. lncRNA PFAR promotes lung fibroblast activation and fibrosis by targeting miR-138 to regulate the YAP1-twist axis. Mol Ther 2018; 26(9): 2206-17.
[http://dx.doi.org/10.1016/j.ymthe.2018.06.020] [PMID: 30025992]
[60]
Liu MW, Su MX, Tang DY, Hao L, Xun XH, Huang YQ. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm Med 2019; 19(1): 35.
[http://dx.doi.org/10.1186/s12890-019-0799-5] [PMID: 30744607]
[61]
Liu H, Wang B, Zhang J, et al. A novel lnc-PCF promotes the proliferation of TGF-β1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death Dis 2017; 8(10): e3137.
[http://dx.doi.org/10.1038/cddis.2017.500] [PMID: 29072702]
[62]
Liu B, Li R, Zhang J, et al. MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis. Exp Mol Med 2018; 50(3): e465.
[http://dx.doi.org/10.1038/emm.2017.311] [PMID: 29869625]
[63]
Huang C, Xiao X, Yang Y, et al. MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J Biol Chem 2017; 292(40): 16420-39.
[http://dx.doi.org/10.1074/jbc.M117.805747] [PMID: 28726637]
[64]
Loboda A, Sobczak M, Jozkowicz A, Dulak J. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm 2016; 2016: 8319283.
[http://dx.doi.org/10.1155/2016/8319283] [PMID: 27610006]
[65]
Sheedy FJ. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol 2015; 6: 19.
[http://dx.doi.org/10.3389/fimmu.2015.00019] [PMID: 25688245]
[66]
Makiguchi T, Yamada M, Yoshioka Y, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res 2016; 17(1): 110.
[http://dx.doi.org/10.1186/s12931-016-0427-3] [PMID: 27596748]
[67]
Hu Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 2018; 8(1): 169-84.
[http://dx.doi.org/10.7150/thno.21234] [PMID: 29290800]
[68]
Jansing JC, Fiedler J, Pich A, et al. MiR-21-KO alleviates alveolar structural remodeling and inflammatory signaling in acute lung injury. Int J Mol Sci 2020; 21(3): 822.
[http://dx.doi.org/10.3390/ijms21030822] [PMID: 32012801]
[69]
Qi W, Li H, Cai XH, et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury. Lab Invest 2015; 95(11): 1258-68.
[http://dx.doi.org/10.1038/labinvest.2015.109] [PMID: 26302186]
[70]
Li JW, Wei L, Han Z, Chen Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852: 68-76.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.022] [PMID: 30682335]
[71]
Ardite E, Perdiguero E, Vidal B, Gutarra S, Serrano AL, Muñoz-Cánoves P. PAI-1-regulated miR-21 defines a novel age-associated fibrogenic pathway in muscular dystrophy. J Cell Biol 2012; 196(1): 163-75.
[http://dx.doi.org/10.1083/jcb.201105013] [PMID: 22213800]
[72]
Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 2012; 4(121): 121ra18.
[http://dx.doi.org/10.1126/scitranslmed.3003205] [PMID: 22344686]
[73]
Jiang XP, Ai WB, Wan LY, Zhang YQ, Wu JF. The roles of microRNA families in hepatic fibrosis. Cell Biosci 2017; 7: 34.
[http://dx.doi.org/10.1186/s13578-017-0161-7] [PMID: 28680559]
[74]
Wang Q, Ye B, Wang P, Yao F, Zhang C, Yu G. Overview of microRNA-199a regulation in cancer. Cancer Manag Res 2019; 11: 10327-35.
[http://dx.doi.org/10.2147/CMAR.S231971] [PMID: 31849522]
[75]
Yuan Y, Li N, Zeng L, Shen Z, Jiang C. Pathogenesis investigation of miR-199-5p in oral submucous fibrosis based on bioinformatics analysis. Oral Dis 2019; 25(2): 456-65.
[http://dx.doi.org/10.1111/odi.13008] [PMID: 30485610]
[76]
Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124(Pt 16): 2826-36.
[http://dx.doi.org/10.1242/jcs.077529] [PMID: 21807947]
[77]
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med 2016; 5(4): 45.
[http://dx.doi.org/10.3390/jcm5040045] [PMID: 27077889]
[78]
Christmann RB, Wooten A, Sampaio-Barros P, et al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther 2016; 18(1): 155.
[http://dx.doi.org/10.1186/s13075-016-1054-6] [PMID: 27377409]
[79]
Yu D, Liu X, Han G, et al. The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation. Cell Commun Signal 2019; 17(1): 173.
[http://dx.doi.org/10.1186/s12964-019-0490-8] [PMID: 31881947]
[80]
Geng L, Tang X, Wang S, et al. Reduced let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front Immunol 2020; 11: 233.
[http://dx.doi.org/10.3389/fimmu.2020.00233] [PMID: 32133007]
[81]
Wang H, Ren Y, Qian C, Liu J, Li G, Li Z. Over-expression of CDX2 alleviates breast cancer by up-regulating microRNA let-7b and inhibiting COL11A1 expression. Cancer Cell Int 2020; 20: 13.
[http://dx.doi.org/10.1186/s12935-019-1066-9] [PMID: 31938021]
[82]
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar appearances are deceptive-common microRNAs and therapeutic strategies in liver cancer and melanoma. Cells 2020; 9(1): 114.
[http://dx.doi.org/10.3390/cells9010114] [PMID: 31906510]
[83]
Song X, Cao G, Jing L, et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J Cell Mol Med 2014; 18(6): 991-1003.
[http://dx.doi.org/10.1111/jcmm.12243] [PMID: 24702795]
[84]
Ideozu JE, Zhang X, Rangaraj V, McColley S, Levy H. Microarray profiling identifies extracellular circulating miRNAs dysregulated in cystic fibrosis. Sci Rep 2019; 9(1): 15483.
[http://dx.doi.org/10.1038/s41598-019-51890-7] [PMID: 31664087]
[85]
Winkler I, Bitter C, Winkler S, et al. Identification of Pparγ-modulated miRNA hubs that target the fibrotic tumor microenvironment. Proc Natl Acad Sci USA 2020; 117(1): 454-63.
[http://dx.doi.org/10.1073/pnas.1909145117] [PMID: 31871210]
[86]
Kumar M, Ahmad T, Sharma A, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation J Allergy Clin Immunol 2011; 128: 1077-85.
[87]
Brennan EP, Nolan KA, Börgeson E, et al. GENIE Consortium. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J Am Soc Nephrol 2013; 24(4): 627-37.
[http://dx.doi.org/10.1681/ASN.2012060550] [PMID: 23520204]
[88]
Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4 level and restoring antifibrotic microRNAs. Genes (Basel) 2020; 11(2): 211.
[http://dx.doi.org/10.3390/genes11020211] [PMID: 32085655]
[89]
Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG. Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 2011; 30(8): 1002-8.
[http://dx.doi.org/10.1038/onc.2010.485] [PMID: 21057545]
[90]
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. MicroRNA crosstalk influences epithelial-to-mesenchymal, endothelial-to-mesenchymal, and macrophage-to-mesenchymal transitions in the kidney. Front Pharmacol 2019; 10: 904.
[http://dx.doi.org/10.3389/fphar.2019.00904] [PMID: 31474862]
[91]
Matsuura K, De Giorgi V, Schechterly C, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatology 2016; 64(3): 732-45.
[http://dx.doi.org/10.1002/hep.28660] [PMID: 27227815]
[92]
Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67(16): 7713-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[93]
Herrera J, Beisang DJ, Peterson M, et al. Dicer1 deficiency in the idiopathic pulmonary fibrosis fibroblastic focus promotes fibrosis by suppressing microRNA biogenesis. Am J Respir Crit Care Med 2018; 198(4): 486-96.
[http://dx.doi.org/10.1164/rccm.201709-1823OC] [PMID: 29579397]
[94]
Khalil W, Xia H, Bodempudi V, et al. Pathologic regulation of collagen I by an aberrant protein phosphatase 2A/histone deacetylase C4/microRNA-29 signal axis in idiopathic pulmonary fibrosis fibroblasts. Am J Respir Cell Mol Biol 2015; 53(3): 391-9.
[http://dx.doi.org/10.1165/rcmb.2014-0150OC] [PMID: 25612003]
[95]
Gallant-Behm CL, Piper J, Lynch JM, et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Invest Dermatol 2019; 139(5): 1073-81.
[http://dx.doi.org/10.1016/j.jid.2018.11.007] [PMID: 30472058]
[96]
Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 2014; 124(4): 1622-35.
[http://dx.doi.org/10.1172/JCI71386] [PMID: 24590289]
[97]
Montgomery RL, Yu G, Latimer PA, et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 2014; 6(10): 1347-56.
[http://dx.doi.org/10.15252/emmm.201303604] [PMID: 25239947]
[98]
Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45(2): 287-94.
[http://dx.doi.org/10.1165/rcmb.2010-0323OC] [PMID: 20971881]
[99]
Mullenbrock S, Liu F, Szak S, et al. Systems analysis of transcriptomic and proteomic profiles identifies novel regulation of fibrotic programs by miRNAs in pulmonary fibrosis fibroblasts. Genes (Basel) 2018; 9(12): 588.
[http://dx.doi.org/10.3390/genes9120588] [PMID: 30501089]
[100]
Xiao J, Meng XM, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 2012; 20(6): 1251-60.
[http://dx.doi.org/10.1038/mt.2012.36] [PMID: 22395530]
[101]
Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol 2012; 180(2): 484-93.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.005] [PMID: 22189082]
[102]
Moimas S, Salton F, Kosmider B, et al. miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation. ERJ Open Res 2019; 5(4): 00138.
[http://dx.doi.org/10.1183/23120541.00138-2019] [PMID: 31857992]
[103]
Mehta SJ, Lewis A, Nijhuis A, et al. Epithelial down-regulation of the miR-200 family in fibrostenosing Crohn’s disease is associated with features of epithelial to mesenchymal transition. J Cell Mol Med 2018; 22(11): 5617-28.
[http://dx.doi.org/10.1111/jcmm.13836] [PMID: 30188001]
[104]
Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 2012; 302(3): F369-79.
[http://dx.doi.org/10.1152/ajprenal.00268.2011] [PMID: 22012804]
[105]
Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017; 7: 40342.
[http://dx.doi.org/10.1038/srep40342] [PMID: 28079129]
[106]
Chen CY, Chang JT, Ho YF, Shyu AB. MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res 2016; 44(8): 3772-87.
[http://dx.doi.org/10.1093/nar/gkw205] [PMID: 27025651]
[107]
Wang X, Yong C, Yu K, et al. Long noncoding RNA (lncRNA) n379519 promotes cardiac fibrosis in post-infarct myocardium by targeting miR-30. Med Sci Monit 2018; 24: 3958-65.
[http://dx.doi.org/10.12659/MSM.910000] [PMID: 29889825]
[108]
Li H, Cai H, Deng J, et al. TGF-β-mediated upregulation of Sox9 in fibroblast promotes renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864(2): 520-32.
[http://dx.doi.org/10.1016/j.bbadis.2017.11.011] [PMID: 29158184]
[109]
Guiot J, Struman I, Louis E, Louis R, Malaise M, Njock MS. Exosomal miRNAs in lung diseases: from biologic function to therapeutic targets. J Clin Med 2019; 8(9): 1345.
[http://dx.doi.org/10.3390/jcm8091345] [PMID: 31470655]
[110]
Kuse N, Kamio K, Azuma A, et al. Exosome-derived microRNA-22 ameliorates pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation both in vitro and in vivo. J Nippon Med Sch 2019.
[http://dx.doi.org/10.1272/jnms.JNMS.2020_87-302] [PMID: 31776321]
[111]
Njock MS, Guiot J, Henket MA, et al. Sputum exosomes: promising biomarkers for idiopathic pulmonary fibrosis. Thorax 2019; 74(3): 309-12.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211897] [PMID: 30244194]
[112]
Fujita Y, Kadota T, Araya J, Ochiya T, Kuwano K. Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases. J Clin Med 2018; 7(10): 355.
[http://dx.doi.org/10.3390/jcm7100355] [PMID: 30322213]
[113]
Quan Y, Wang Z, Gong L, et al. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling. Stem Cell Res Ther 2017; 8(1): 138.
[http://dx.doi.org/10.1186/s13287-017-0586-2] [PMID: 28595637]
[114]
Xu N, He D, Shao Y, et al. Lung-derived exosomes in phosgene-induced acute lung injury regulate the functions of mesenchymal stem cells partially via miR-28-5p. Biomed Pharmacother 2020; 121: 109603.
[http://dx.doi.org/10.1016/j.biopha.2019.109603] [PMID: 31707339]
[115]
Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 2015; 15(6): 467-74.
[http://dx.doi.org/10.2174/1389557515666150324123208] [PMID: 25807941]
[116]
Mohamed A, Kunda NK, Ross K, Hutcheon GA, Saleem IY. Polymeric nanoparticles for the delivery of miRNA to treat Chronic Obstructive Pulmonary Disease (COPD). Eur J Pharm Biopharm 2019; 136: 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.002] [PMID: 30615927]
[117]
Zhu HZ, Hou J, Guo Y, et al. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv 2018; 25(1): 1974-83.
[http://dx.doi.org/10.1080/10717544.2018.1516003] [PMID: 30621480]
[118]
Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18(9): 1650-6.
[http://dx.doi.org/10.1038/mt.2010.136] [PMID: 20606648]
[119]
Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K. A compilation of Web-based research tools for miRNA analysis. Brief Funct Genomics 2017; 16(5): 249-73.
[http://dx.doi.org/10.1093/bfgp/elw042] [PMID: 28334134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy