Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Evidences of Brain Plasticity and Motor Control Modulation after Hemodialysis Session by Helixone Membrane: BOLD-fMRI Study

Author(s): Saïd Boujraf*, Rachida Belaïch, Abdelkhalek Housni, Badreeddine Alami, Tariq Skalli, Mustapha Maaroufi and Siham Tizniti

Volume 19, Issue 6, 2020

Page: [466 - 477] Pages: 12

DOI: 10.2174/1871527319666200902133343

Price: $65

Abstract

Objective: The aim of this paper is to demonstrate the impact of hemodialysis (HD) using synthetic Helixone membrane on brain functional control reorganization and plasticity in the cortical area generated while Oxidative Stress (OS) would be the main impacting agent.

Methods: Indeed, 9 chronic HD patients underwent identical brain BOLD-fMRI assessment using the motor paradigm immediately before and after the same HD sessions. To assess the oxidative stress, the same patients underwent biological-assessment, including Malondialdehyde (MDA) and Total- Antioxidant-Activity (TAOA) reported in earlier papers.

Results: BOLD-fMRI maps of motor areas obtained from HD-patients before and after HD sessions revealed a significant enhancement of activation volume of the studied motor cortex after HD reflecting brain plasticity. Results were correlated with OS assessed by the measurement of MDA and TAOA; this correlation was close to 1.

Conclusion: Indeed, HD enhances the inflammatory state of brain tissues reflected by the increased OS. The functional brain reaction demonstrated a functional activity reorganization to overcome the inflammatory state and OS enhanced by HD process. This functional activity reorganization reveals brain plasticity induced by OS originated by HD.

Keywords: BOLD-fMRI, plasticity, brain functional control, hemodialysis, helixone membrane, oxidative stress.

« Previous
Graphical Abstract
[1]
Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin Biochem 2011; 44(14-15): 1189-98.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.06.988] [PMID: 21777574]
[2]
Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005; 15(4): 316-28.
[http://dx.doi.org/10.1016/j.numecd.2005.05.003] [PMID: 16054557]
[3]
Stefoni S, Colì L, Cianciolo G, et al. Inflammatory response of a new synthetic dialyzer membrane: A randomised cross-over comparison between polysulfone and helixone. Int J Artif Organs 2003; 26(1): 26-32.
[http://dx.doi.org/10.1177/039139880302600105] [PMID: 12602466]
[4]
McQuillan R, Jassal SV. Neuropsychiatric complications of chronic kidney disease. Nat Rev Nephrol 2010; 6(8): 471-9.
[http://dx.doi.org/10.1038/nrneph.2010.83] [PMID: 20567247]
[5]
Rizzo MA, Frediani F, Granata A, Ravasi B, Cusi D, Gallieni M. Neurological complications of hemodialysis: State of the art. J Nephrol 2012; 25(2): 170-82.
[http://dx.doi.org/10.5301/jn.5000087] [PMID: 22241633]
[6]
Belaich R, Boujraf S, Benzagmout M. Impact of oxidative stress and inflammation in hemodialysis patients. Theor Med 2015; 21: 95-103.
[7]
Belaich R, Boujraf S, Housni A, et al. Assessment of hemodialysis impact by Polysulfone membrane on brain plasticity using BOLD-fMRI. Neuroscience 2015; 288: 94-104.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.064] [PMID: 25522721]
[8]
Belaich R, Boujraf S. Oxidative stress and inflammatory factors in hemodialysis: Effects and strategies. Med Metabol Dis 2016; 10: 38-42.
[9]
Belaïch R, Boujraf S, Benzagmout M, et al. Indices of adrenal deficiency involved in brain plasticity and functional control reorganization in hemodialysis patients with polysulfone membrane: BOLD-fMRI study. J Integr Neurosci 2016; 15(2): 191-203.
[http://dx.doi.org/10.1142/S0219635216500126] [PMID: 27301905]
[10]
Belaïch R, Boujraf S, Benzagmout M, Magoul R, Maaroufi M, Tizniti S. Implications of oxidative stress in the brain plasticity originated by fasting: A BOLD-fMRI study. Nutr Neurosci 2017; 20(9): 505-12.
[http://dx.doi.org/10.1080/1028415X.2016.1191165] [PMID: 27276372]
[11]
Betzen C, White R, Zehendner CM, et al. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med 2009; 47(8): 1212-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.034] [PMID: 19660541]
[12]
Rauchová H, Vokurková M, Koudelová J. Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res 2012; 61(Suppl. 1): S89-S101.
[PMID: 22827877]
[13]
Boujraf S, Belaïch R, Housni A, et al. Blood oxygenation level-dependent functional MRI of early evidences of brain plasticity after hemodialysis session by Helixone membrane of patients with indices of adrenal deficiency. Ann Neurosci 2017; 24(2): 82-9.
[http://dx.doi.org/10.1159/000475897] [PMID: 28588363]
[14]
Numakawa T, Matsumoto T, Numakawa Y, et al. Protective action of neurotrophic factors and estrogen against oxidative stress-mediated neurodegeneration. J Toxicol 2011; 2011405194
[http://dx.doi.org/10.1155/2011/405194]
[15]
Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Lang Hear Res 2008; 51(1): S225-39.
[http://dx.doi.org/10.1044/1092-4388(2008/018)] [PMID: 18230848]
[16]
Boujraf S, Benajiba N, Belahsen F, Tizniti S, Garey LJ. The impact of restricted diet on brain function using BOLD-fMRI. Exp Brain Res 2006; 173(2): 318-21.
[http://dx.doi.org/10.1007/s00221-006-0500-0] [PMID: 16710683]
[17]
Li A, Yau SY, Machado S, Wang P, Yuan TF, So KF. Enhancement of hippocampal plasticity by physical exercise as a polypill for stress and depression: A review. CNS Neurol Disord Drug Targets 2019; 18(4): 294-306.
[http://dx.doi.org/10.2174/1871527318666190308102804] [PMID: 30848219]
[18]
Di Nuzzo C, Ruggiero F, Cortese F, Cova I, Priori A, Ferrucci R. Non-invasive cerebellar stimulation in cerebellar disorders. CNS Neurol Disord Drug Targets 2018; 17(3): 193-8.
[http://dx.doi.org/10.2174/1871527317666180404113444] [PMID: 29623859]
[19]
Arias-Carrion O, Ortega-Robles E, de Celis-Alonso B, et al. Depletion of hypocretin/orexin neurons increases cell proliferation in the adult subventricular zone. CNS Neurol Disord Drug Targets 2018; 17(2): 106-12.
[http://dx.doi.org/10.2174/1871527317666180314115623] [PMID: 29542425]
[20]
Boujraf S, Summers P, Belahsen F, Prüssmann K, Kollias S. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging. J Med Phys 2009; 34(1): 37-42.
[http://dx.doi.org/10.4103/0971-6203.48719] [PMID: 20126564]
[21]
Pillai JJ. Insights into adult postlesional language cortical plasticity provided by cerebral blood oxygen level-dependent functional MR imaging. AJNR Am J Neuroradiol 2010; 31(6): 990-6.
[http://dx.doi.org/10.3174/ajnr.A1896] [PMID: 20007726]
[22]
Pareek V, Nath B, Roy PK. Role of neuroimaging modality in the assessment of oxidative stress in brain: A comprehensive review. CNS Neurol Disord Drug Targets 2019; 18(5): 372-81.
[http://dx.doi.org/10.2174/1871527318666190507102340] [PMID: 31580247]
[23]
de Celis-Alonso B, Hidalgo-Tobón SS, Barragán-Pérez E, et al. Different food odors control brain connectivity in impulsive children. CNS Neurol Disord Drug Targets 2019; 18(1): 63-77.
[http://dx.doi.org/10.2174/1871527317666181105105113] [PMID: 30394220]
[24]
Hama A, Natsume T, Ogawa SY, et al. Pain-related behavior and brain activation in a cynomolgus macaque model of postoperative pain. CNS Neurol Disord Drug Targets 2018; 17(5): 348-60.
[http://dx.doi.org/10.2174/1871527317666180515121350] [PMID: 29766827]
[25]
Luypaert R, Boujraf S, Sourbron S, Osteaux M. Diffusion and perfusion MRI: Basic physics. Eur J Radiol 2001; 38(1): 19-27.
[http://dx.doi.org/10.1016/S0720-048X(01)00286-8] [PMID: 11287161]
[26]
Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29(5): 1433-49.
[http://dx.doi.org/10.1148/rg.295095034] [PMID: 19755604]
[27]
Boujraf S, Luypaert R, Osteaux M. b matrix errors in echo planar diffusion tensor imaging. J Appl Clin Med Phys 2001; 2(3): 178-83.
[http://dx.doi.org/10.1120/jacmp.v2i3.2612] [PMID: 11602015]
[28]
Bangen KJ, Restom K, Liu TT, et al. Differential age effects on cerebral blood flow and BOLD response to encoding: Associations with cognition and stroke risk. Neurobiol Aging 2009; 30(8): 1276-87.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.012] [PMID: 18160181]
[29]
D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nat Rev Neurosci 2003; 4(11): 863-72.
[http://dx.doi.org/10.1038/nrn1246] [PMID: 14595398]
[30]
De Pasquale F, Caravasso CF, Péran P, et al. Functional magnetic resonance imaging in disorders of consciousness: Preliminary results of an innovative analysis of brain connectivity. Funct Neurol 2015; 30(3): 193-201.
[PMID: 26910178]
[31]
Halder P, Brem S, Bucher K, et al. Electrophysiological and hemodynamic evidence for late maturation of hand power grip and force control under visual feedback. Hum Brain Mapp 2007; 28(1): 69-84.
[http://dx.doi.org/10.1002/hbm.20262] [PMID: 16761271]
[32]
Harandou M, Madani N, Labibe S, et al. Neuroimaging findings in eclamptic patients still symptomatic after 24 hours: A descriptive study about 19 cases. Ann Fr Anesth Reanim 2006; 25(6): 577-83.
[http://dx.doi.org/10.1016/j.annfar.2006.02.022] [PMID: 16632295]
[33]
Bucher K, Dietrich T, Marcar VL, et al. Maturation of luminance- and motion-defined form perception beyond adolescence: A combined ERP and fMRI study. Neuroimage 2006; 31(4): 1625-36.
[http://dx.doi.org/10.1016/j.neuroimage.2006.02.032] [PMID: 16624584]
[34]
Boujraf S, Luypaert R, Shabana W, De Meirleir L, Sourbron S, Osteaux M. Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion. Magn Reson Imaging 2002; 20(4): 327-36.
[http://dx.doi.org/10.1016/S0730-725X(02)00501-5] [PMID: 12165351]
[35]
Batta FZ. Characterization of the impact of the biocompatibility of hemodialysis membranes and their change on oxidative stress: biological studies and by IRMf-BOLD 2011; 2011; 102
[36]
Housni A, Boujraf S. Multimodal magnetic resonance imaging in the diagnosis and therapeutical follow-up of brain tumors. Neurosciences 2013; 18(1): 3-10.
[PMID: 23291791]
[37]
Housni A, Boujraf S, Maaroufi M, et al. Diagnosis and monitoring of the intraparenchymal brain tumors by magnetic resonance imaging. Med Nucl (Paris) 2014; 38: 469-77.
[http://dx.doi.org/10.1016/j.mednuc.2014.05.002]
[38]
Amore A, Coppo R. Immunological basis of inflammation in dialysis. Nephrol Dial Transplant 2002; 17(Suppl. 8): 16-24.
[http://dx.doi.org/10.1093/ndt/17.suppl_8.16] [PMID: 12147772]
[39]
Miri AL, Hosni AP, Gomes JC, et al. Study of the effects of L-tryptophane nanoparticles on motor behavior in Alzheimer’s experimental models. CNS Neurol Disord Drug Targets 2019; 18(1): 44-51.
[http://dx.doi.org/10.2174/1871527317666181105111157] [PMID: 30394223]
[40]
Ibarra A, Mendieta-Arbesú E, Suarez-Meade P, et al. Motor Recovery after chronic spinal cord transection in rats: A proof-of-concept study evaluating a combined strategy. CNS Neurol Disord Drug Targets 2019; 18(1): 52-62.
[http://dx.doi.org/10.2174/1871527317666181105101756] [PMID: 30394222]
[41]
Benzagmout M, Boujraf S, Alami B, et al. Emotion processing in Parkinson’s disease: A blood oxygenation level-dependent functional magnetic resonance imaging study. Neural Regen Res 2019; 14(4): 666-72.
[http://dx.doi.org/10.4103/1673-5374.247470] [PMID: 30632507]
[42]
Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995; 45(8): 1594-601.
[http://dx.doi.org/10.1212/WNL.45.8.1594] [PMID: 7644059]
[43]
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14(10): 2013-54.
[http://dx.doi.org/10.1089/ars.2010.3208] [PMID: 20649473]
[44]
Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bachá RS. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011; 2011467180
[http://dx.doi.org/10.1155/2011/467180] [PMID: 22191013]
[45]
Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 2007; 292(2): F513-22.
[http://dx.doi.org/10.1152/ajprenal.00222.2006] [PMID: 17062846]
[46]
Awwad HO, Gonzalez LP, Tompkins P, et al. Blast overpressure waves induce transient anxiety and regional changes in cerebral glucose metabolism and delayed hyperarousal in rats. Front Neurol 2015; 6: 132.
[http://dx.doi.org/10.3389/fneur.2015.00132] [PMID: 26136722]
[47]
Steghens JP, Combarnous F, Arkouche W, Flourie F, Hadj-Aissa A. Influence of hemodialysis on the concentrations of total and free malonedial-dehyde, measured by a new specific HPLC technique. Nephrol Ther 2005; 1(2): 121-5.
[http://dx.doi.org/10.1016/j.nephro.2004.04.001] [PMID: 16895675]
[48]
Ramakrishna P, Reddy EP, Suchitra MM, Bitla AR, Rao PV, Sivakumar V. Effect of reuse of polysulfone membrane on oxidative stress during hemodialysis. Indian J Nephrol 2012; 22(3): 200-5.
[http://dx.doi.org/10.4103/0971-4065.98758] [PMID: 23087556]
[49]
Hörl WH. Hemodialysis membranes: Interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol 2002; 13(Suppl. 1): S62-71.
[PMID: 11792764]
[50]
Takemoto Y, Naganuma T, Yoshimura R. Biocompatibility of the dialysis membrane. Contrib Nephrol 2011; 168: 139-45.
[http://dx.doi.org/10.1159/000321753] [PMID: 20938134]
[51]
Jahromi SR, Hosseini S, Razeghi E. Meysamie Ap, Sadrzadeh H. Malnutrition predicting factors in hemodialysis patients. Saudi J Kidney Dis Transpl 2010; 21(5): 846-51.
[PMID: 20814118]
[52]
Oberg BP, McMenamin E, Lucas FL, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 2004; 65(3): 1009-16.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00465.x] [PMID: 14871421]
[53]
Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL. Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR Biomed 2001; 14(7-8): 413-31.
[http://dx.doi.org/10.1002/nbm.733] [PMID: 11746934]
[54]
Kim DS, Ronen I, Olman C, Kim SG, Ugurbil K, Toth LJ. Spatial relationship between neuronal activity and BOLD functional MRI. Neuroimage 2004; 21(3): 876-85.
[http://dx.doi.org/10.1016/j.neuroimage.2003.10.018] [PMID: 15006654]
[55]
Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: A window into human brain plasticity. Neuroscientist 2014; 20(5): 522-33.
[http://dx.doi.org/10.1177/1073858414524442] [PMID: 24561514]
[56]
Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: Unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295(5): F1259-70.
[http://dx.doi.org/10.1152/ajprenal.90230.2008] [PMID: 18550645]
[57]
Thoeny HC, Kessler TM, Simon-Zoula S, et al. Renal oxygenation changes during acute unilateral ureteral obstruction: Assessment with blood oxygen level-dependent MRI- initial experience. Radiology 2008; 247(3): 754-61.
[http://dx.doi.org/10.1148/radiol.2473070877] [PMID: 18403623]
[58]
Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB. Neuroprotective strategies in Parkinson’s disease: An update on progress. CNS Drugs 2003; 17(10): 729-62.
[http://dx.doi.org/10.2165/00023210-200317100-00004] [PMID: 12873156]
[59]
von Arnim CA, Gola U, Biesalski HK. More than the sum of its parts? Nutrition in Alzheimer’s disease. Nutrition 2010; 26(7-8): 694-700.
[http://dx.doi.org/10.1016/j.nut.2009.11.009] [PMID: 20381316]
[60]
Radak Z, Kumagai S, Taylor AW, Naito H, Goto S. Effects of exercise on brain function: Role of free radicals. Appl Physiol Nutr Metab 2007; 32(5): 942-6.
[http://dx.doi.org/10.1139/H07-081] [PMID: 18059620]
[61]
Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 2005; 64(9): 816-30.
[http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a] [PMID: 16141792]
[62]
Christen T, Bolar DS, Zaharchuk G. Imaging brain oxygenation with MRI using blood oxygenation approaches: Methods, validation, and clinical applications. AJNR Am J Neuroradiol 2013; 34(6): 1113-23.
[http://dx.doi.org/10.3174/ajnr.A3070] [PMID: 22859287]
[63]
Malenka RC, Nicoll RA. Long-term potentiation- A decade of progress? Science 1999; 285(5435): 1870-4.
[http://dx.doi.org/10.1126/science.285.5435.1870] [PMID: 10489359]
[64]
Hota SK, Hota KB, Prasad D, Ilavazhagan G, Singh SB. Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med 2010; 49(2): 178-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.027] [PMID: 20381604]
[65]
Cioffi F, Adam RHI, Broersen K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J Alzheimers Dis 2019; 72(4): 981-1017.
[http://dx.doi.org/10.3233/JAD-190863] [PMID: 31744008]
[66]
Allec SI, Sun Y, Sun J, Chang CA, Wong BM. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J Chem Theory Comput 2019; 15(5): 2807-15.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy