Review Article

肥胖和胰岛素抵抗:与慢性炎症、遗传和表观遗传因素有关

卷 28, 期 4, 2021

发表于: 24 August, 2020

页: [800 - 826] 页: 27

弟呕挨: 10.2174/0929867327666200824112056

价格: $65

Open Access Journals Promotions 2
摘要

背景:肥胖是一种多因素的疾病。在其发病机制中,慢性炎症、氧化应激、胰岛素抵抗、遗传因素、环境影响、营养失调、营养不平衡等多种因素都起着重要作用。 方法:这项研究描述了肥胖和胰岛素抵抗与慢性炎症、遗传和表观遗传因素的关系。我们回顾了以往的文献来解释肥胖与慢性低度炎症和胰岛素相关因素的关系。 结果:肥胖与胃饥饿素分泌减少、血浆瘦素水平升高、氧化应激、巨噬细胞吞噬活性增加以及诱导促炎细胞因子和干扰素的合成有关。肥胖与细胞色素P450 (CYP)酶水平降低和解毒过程受损有关。维生素和矿物质的缺乏也会在肥胖的氧化应激和慢性炎症的发展中发挥重要作用。有证据表明,儿童肥胖的遗传易感性与特定的miRNAs水平升高之间存在关联。 结论:本综述的目的是分析与肥胖相关的多种因素。

关键词: 肥胖,慢性炎症,胰岛素抵抗,遗传因素,表观遗传学,营养

[1]
Kuczmarski, R.J.; Flegal, K.M. Criteria for definition of overweight in transition: background and recommendations for the United States. Am. J. Clin. Nutr., 2000, 72(5), 1074-1081.
[http://dx.doi.org/10.1093/ajcn/72.5.1074] [PMID: 11063431]
[2]
Guilcher, S.J.T.; Kaufman-Shriqui, V.; Hwang, J.; O’Campo, P.; Matheson, F.I.; Glazier, R.H.; Booth, G.L. The association between social cohesion in the neighborhood and body mass index (BMI): an examination of gendered differences among urban-dwelling Canadians. Prev. Med., 2017, 99, 293-298.
[http://dx.doi.org/10.1016/j.ypmed.2017.02.022] [PMID: 28232099]
[3]
Hurt, R.T.; Frazier, T.H.; McClave, S.A.; Kaplan, L.M. Obesity epidemic: overview, pathophysiology, and the intensive care unit conundrum. JPEN J. Parenter. Enteral Nutr., 2011, 35(5)(Suppl.), 4S-13S.
[http://dx.doi.org/10.1177/0148607111415110] [PMID: 21881014]
[4]
Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: shaped by global drivers and local environments. Lancet, 2011, 378(9793), 804-814.
[http://dx.doi.org/10.1016/S0140-6736(11)60813-1] [PMID: 21872749]
[5]
Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA, 2016, 315(21), 2284-2291.
[http://dx.doi.org/10.1001/jama.2016.6458] [PMID: 27272580]
[6]
Castro, A.M.; Toledo-Rojas, A.A.; Macedo-De La Concha, L.E.; Inclán-Rubio, V. La obesidad infantil, un problema de salud multisistémico. Rev. Med. Hosp. Gen. (Mex.), 2012, 75(1), 41-49.
[7]
Choy, E.H.; Panayi, G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med., 2001, 344(12), 907-916.
[http://dx.doi.org/10.1056/NEJM200103223441207] [PMID: 11259725]
[8]
Sureda, A.; Martorell, M.; Capó, X.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.M.; Rasekhian, M.; Nabavi, S.M.; Tejada, S. Antitumor effects of triterpenes in hepatocellular carcinoma. Curr. Med. Chem., 2020. Epub ahead of print
[http://dx.doi.org/10.2174/0929867327666200602132000] [PMID: 32484765]
[9]
Cheng, K.; Liu, C.-F.; Rao, G.-W. Antiangiogenic agents: a review on vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Curr. Med. Chem., 2020. Epub ahead of print.
[http://dx.doi.org/10.2174/0929867327666200514082425] [PMID: 32407259]
[10]
Bitencourt-Ferreira, G.; Rizzotto, C.; de Azevedo, W.F. Jr. Machine learning-based scoring functions. Development and applications with SAnDReS. Curr. Med. Chem., 2020. Epub ahead of print
[http://dx.doi.org/10.2174/0929867327666200515101820] [PMID: 32410551]
[11]
Bitencourt-Ferreira, G.; da Silva, A.D.; de Azevedo, W.F. Jr. Application of machine learning techniques to predict binding affinity for drug targets. A study of cyclin-dependent kinase 2. Curr. Med. Chem., 2021, 28(2), 253-265.
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[12]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Jr. Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[13]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[14]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[15]
Canduri, F.; Perez, P.C.; Caceres, R.A.; de Azevedo, W.F. Jr. Protein kinases as targets for antiparasitic chemotherapy drugs. Curr. Drug Targets, 2007, 8(3), 389-398.
[http://dx.doi.org/10.2174/138945007780058979] [PMID: 17348832]
[16]
Shoelson, S.E.; Lee, J.; Yuan, M. Inflammation and the IKK β/I κ B/NF-κ B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord., 2003, 27(S3)(Suppl. 3), S49-S52.
[http://dx.doi.org/10.1038/sj.ijo.0802501] [PMID: 14704745]
[17]
Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 1993, 259(5091), 87-91.
[http://dx.doi.org/10.1126/science.7678183] [PMID: 7678183]
[18]
Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[19]
West, M. Dead adipocytes and metabolic dysfunction: recent progress. Curr. Opin. Endocrinol. Diabetes Obes., 2009, 16(2), 178-182.
[http://dx.doi.org/10.1097/MED.0b013e3283292327] [PMID: 19306530]
[20]
Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res., 2005, 46(11), 2347-2355.
[http://dx.doi.org/10.1194/jlr.M500294-JLR200] [PMID: 16150820]
[21]
Surmi, B.K.; Hasty, A.H. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol., 2008, 3(5), 545-556.
[http://dx.doi.org/10.2217/17460875.3.5.545] [PMID: 18978945]
[22]
Elgazar-Carmon, V.; Rudich, A.; Hadad, N.; Levy, R. Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J. Lipid Res., 2008, 49(9), 1894-1903.
[http://dx.doi.org/10.1194/jlr.M800132-JLR200] [PMID: 18503031]
[23]
Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol., 2011, 12(11), 1035-1044.
[http://dx.doi.org/10.1038/ni.2109] [PMID: 22012443]
[24]
Wu, D.; Molofsky, A.B.; Liang, H-E.; Ricardo-Gonzalez, R.R.; Jouihan, H.A.; Bando, J.K.; Chawla, A.; Locksley, R.M. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science, 2011, 332(6026), 243-247.
[http://dx.doi.org/10.1126/science.1201475] [PMID: 21436399]
[25]
Winer, D.A.; Winer, S.; Shen, L.; Wadia, P.P.; Yantha, J.; Paltser, G.; Tsui, H.; Wu, P.; Davidson, M.G.; Alonso, M.N.; Leong, H.X.; Glassford, A.; Caimol, M.; Kenkel, J.A.; Tedder, T.F.; McLaughlin, T.; Miklos, D.B.; Dosch, H.M.; Engleman, E.G. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med., 2011, 17(5), 610-617.
[http://dx.doi.org/10.1038/nm.2353] [PMID: 21499269]
[26]
Lowe, G.; Woodward, M.; Hillis, G.; Rumley, A.; Li, Q.; Harrap, S.; Marre, M.; Hamet, P.; Patel, A.; Poulter, N.; Chalmers, J. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes, 2014, 63(3), 1115-1123.
[http://dx.doi.org/10.2337/db12-1625] [PMID: 24222348]
[27]
Moran, A.; Jacobs, D.R., Jr; Steinberger, J.; Hong, C-P.; Prineas, R.; Luepker, R.; Sinaiko, A.R. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes, 1999, 48(10), 2039-2044.
[http://dx.doi.org/10.2337/diabetes.48.10.2039] [PMID: 10512371]
[28]
Buchanan, T.A.; Metzger, B.E.; Freinkel, N.; Bergman, R.N. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am. J. Obstet. Gynecol., 1990, 162(4), 1008-1014.
[http://dx.doi.org/10.1016/0002-9378(90)91306-W] [PMID: 2183610]
[29]
Defronzo, R.A. Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes, 1979, 28(12), 1095-1101.
[http://dx.doi.org/10.2337/diab.28.12.1095] [PMID: 510806]
[30]
Goodyear, L.J.; Kahn, B.B. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med., 1998, 49(1), 235-261.
[http://dx.doi.org/10.1146/annurev.med.49.1.235] [PMID: 9509261]
[31]
Chen, M.; Bergman, R.N.; Porte, D., Jr Insulin resistance and β-cell dysfunction in aging: the importance of dietary carbohydrate. J. Clin. Endocrinol. Metab., 1988, 67(5), 951-957.
[http://dx.doi.org/10.1210/jcem-67-5-951] [PMID: 3053750]
[32]
Wellen, K.E.; Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, 115(5), 1111-1119.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[33]
Scherer, P.E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 2006, 55(6), 1537-1545.
[http://dx.doi.org/10.2337/db06-0263] [PMID: 16731815]
[34]
Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436(7049), 356-362.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[35]
Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 2006, 116(7), 1784-1792.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[36]
Fain, J.N.; Madan, A.K.; Hiler, M.L.; Cheema, P.; Bahouth, S.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 2004, 145(5), 2273-2282.
[http://dx.doi.org/10.1210/en.2003-1336] [PMID: 14726444]
[37]
Mooney, R.A.; Senn, J.; Cameron, S.; Inamdar, N.; Boivin, L.M.; Shang, Y.; Furlanetto, R.W. Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J. Biol. Chem., 2001, 276(28), 25889-25893.
[http://dx.doi.org/10.1074/jbc.M010579200] [PMID: 11342531]
[38]
Perreault, M.; Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med., 2001, 7(10), 1138-1143.
[http://dx.doi.org/10.1038/nm1001-1138] [PMID: 11590438]
[39]
Carvalho-Filho, M.A.; Ueno, M.; Hirabara, S.M.; Seabra, A.B.; Carvalheira, J.B.; de Oliveira, M.G.; Velloso, L.A.; Curi, R.; Saad, M.J. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes, 2005, 54(4), 959-967.
[http://dx.doi.org/10.2337/diabetes.54.4.959] [PMID: 15793233]
[40]
Reaven, G.M.; Hollenbeck, C.; Jeng, C-Y.; Wu, M.S.; Chen, Y-D.I. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24h in patients with NIDDM. Diabetes, 1988, 37(8), 1020-1024.
[http://dx.doi.org/10.2337/diab.37.8.1020] [PMID: 3292322]
[41]
Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 1997, 46(1), 3-10.
[http://dx.doi.org/10.2337/diab.46.1.3] [PMID: 8971073]
[42]
Santomauro, A.T.; Boden, G.; Silva, M.E.; Rocha, D.M.; Santos, R.F.; Ursich, M.J.; Strassmann, P.G.; Wajchenberg, B.L. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes, 1999, 48(9), 1836-1841.
[http://dx.doi.org/10.2337/diabetes.48.9.1836] [PMID: 10480616]
[43]
Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest., 2000, 106(2), 171-176.
[http://dx.doi.org/10.1172/JCI10583] [PMID: 10903330]
[44]
Schwartz, M.W.; Woods, S.C.; Porte, D., Jr; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature, 2000, 404(6778), 661-671.
[http://dx.doi.org/10.1038/35007534] [PMID: 10766253]
[45]
Pandit, R.; de Jong, J.W.; Vanderschuren, L.J.; Adan, R.A. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur. J. Pharmacol., 2011, 660(1), 28-42.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.034] [PMID: 21295024]
[46]
Wasim, M.; Fakhar, N. Leptin gene mutations in morbidly obese and severely lean individuals from Punjab, Pakistan. J. Obes. Weight Loss Ther., 2014, 4(4), 233.
[http://dx.doi.org/10.4172/2165-7904.1000233]]
[47]
Wasim, M. Role of leptin in obesity. J. Obes. Weight Loss Ther., 2015, 5(258), 2.
[http://dx.doi.org/10.4172/2165-7904.1000258]]
[48]
Montague, C.T.; Farooqi, I.S.; Whitehead, J.P.; Soos, M.A.; Rau, H.; Wareham, N.J.; Sewter, C.P.; Digby, J.E.; Mohammed, S.N.; Hurst, J.A.; Cheetham, C.H.; Earley, A.R.; Barnett, A.H.; Prins, J.B.; O’Rahilly, S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 1997, 387(6636), 903-908.
[http://dx.doi.org/10.1038/43185] [PMID: 9202122]
[49]
Yupanqui-Lozno, H.; Bastarrachea, R.A.; Yupanqui-Velazco, M.E.; Alvarez-Jaramillo, M.; Medina-Méndez, E.; Giraldo-Peña, A.P.; Arias-Serrano, A.; Torres-Forero, C.; Garcia-Ordoñez, A.M.; Mastronardi, C.A.; Restrepo, C.M.; Rodriguez-Ayala, E.; Nava-Gonzalez, E.J.; Arcos-Burgos, M.; Kent, J.W. Jr; Cole, S.A.; Licinio, J.; Celis-Regalado, L.G. Congenital leptin deficiency and leptin gene missense mutation found in two Colombian sisters with severe obesity. Genes (Basel), 2019, 10(5), 342.
[http://dx.doi.org/10.3390/genes10050342] [PMID: 31067764]
[50]
Álvarez-Castro, P.; Pena, L.; Cordido, F. Ghrelin in obesity, physiological and pharmacological considerations. Mini Rev. Med. Chem., 2013, 13(4), 541-552.
[http://dx.doi.org/10.2174/1389557511313040007] [PMID: 22931534]
[51]
Morrish, G.A.; Pai, M.P.; Green, B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin. Drug Metab. Toxicol., 2011, 7(6), 697-706.
[http://dx.doi.org/10.1517/17425255.2011.570331] [PMID: 21417960]
[52]
Ghose, R. Clinical consequences of altered drug disposition in obesity. J. Clin. Trials, 2013, 2e107
[http://dx.doi.org/10.4172/2167-0870.1000e107]]
[53]
Tomankova, V.; Liskova, B.; Skalova, L.; Bartikova, H.; Bousova, I.; Jourova, L.; Anzenbacher, P.; Ulrichova, J.; Anzenbacherova, E. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity. Life Sci., 2015, 133, 15-20.
[http://dx.doi.org/10.1016/j.lfs.2015.04.014] [PMID: 25998026]
[54]
Zhang, W.V.; Ramzan, I.; Murray, M. Impaired microsomal oxidation of the atypical antipsychotic agent clozapine in hepatic steatosis. J. Pharmacol. Exp. Ther., 2007, 322(2), 770-777.
[http://dx.doi.org/10.1124/jpet.107.124024] [PMID: 17522342]
[55]
DuBois, B.N.; O’Tierney-Ginn, P.; Pearson, J.; Friedman, J.E.; Thornburg, K.; Cherala, G. Maternal obesity alters feto-placental cytochrome P4501A1 activity. Placenta, 2012, 33(12), 1045-1051.
[http://dx.doi.org/10.1016/j.placenta.2012.09.008] [PMID: 23046808]
[56]
Donato, M.T.; Jiménez, N.; Serralta, A.; Mir, J.; Castell, J.V.; Gómez-Lechón, M.J. Effects of steatosis on drug-metabolizing capability of primary human hepatocytes. Toxicol. In Vitro, 2007, 21(2), 271-276.
[http://dx.doi.org/10.1016/j.tiv.2006.07.008] [PMID: 16950596]
[57]
Xu, C.; Li, C.Y-T.; Kong, A-N.T. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res., 2005, 28(3), 249-268.
[http://dx.doi.org/10.1007/BF02977789] [PMID: 15832810]
[58]
Schwartz, J.; Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Weiss, S.; Kelsey, K. Glutathione-S-transferase M1, obesity, statins, and autonomic effects of particles: gene-by-drug-by-environment interaction. Am. J. Respir. Crit. Care Med., 2005, 172(12), 1529-1533.
[http://dx.doi.org/10.1164/rccm.200412-1698OC] [PMID: 16020798]
[59]
Ge, B.; Song, Y.; Zhang, Y.; Liu, X.; Wen, Y.; Guo, X. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) null polymorphisms and the risk of hypertension: a meta-analysis. PLoS One, 2015, 10(3)e0118897
[http://dx.doi.org/10.1371/journal.pone.0118897] [PMID: 25742618]
[60]
Gong, M.; Dong, W.; Shi, Z.; Xu, Y.; Ni, W.; An, R. Genetic polymorphisms of GSTM1, GSTT1, and GSTP1 with prostate cancer risk: a meta-analysis of 57 studies. PLoS One, 2012, 7(11)e50587
[http://dx.doi.org/10.1371/journal.pone.0050587] [PMID: 23189206]
[61]
Saeed, S.; Bonnefond, A.; Tamanini, F.; Mirza, M.U.; Manzoor, J.; Janjua, Q.M.; Din, S.M.; Gaitan, J.; Milochau, A.; Durand, E.; Vaillant, E.; Haseeb, A.; De Graeve, F.; Rabearivelo, I.; Sand, O.; Queniat, G.; Boutry, R.; Schott, D.A.; Ayesha, H.; Ali, M.; Khan, W.I.; Butt, T.A.; Rinne, T.; Stumpel, C.; Abderrahmani, A.; Lang, J.; Arslan, M.; Froguel, P. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet., 2018, 50(2), 175-179.
[http://dx.doi.org/10.1038/s41588-017-0023-6] [PMID: 29311637]
[62]
Grarup, N.; Moltke, I.; Andersen, M.K.; Dalby, M.; Vitting-Seerup, K.; Kern, T.; Mahendran, Y.; Jørsboe, E.; Larsen, C.V.L.; Dahl-Petersen, I.K.; Gilly, A.; Suveges, D.; Dedoussis, G.; Zeggini, E.; Pedersen, O.; Andersson, R.; Bjerregaard, P.; Jørgensen, M.E.; Albrechtsen, A.; Hansen, T. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet., 2018, 50(2), 172-174.
[http://dx.doi.org/10.1038/s41588-017-0022-7] [PMID: 29311636]
[63]
Tomankova, V.; Anzenbacher, P.; Anzenbacherova, E. Effects of obesity on liver cytochromes P450 in various animal models Biomed. Pap. Med. Fa.c Univ. Palacky Olomouc, 2017, 161(2), 144-151.
[http://dx.doi.org/10.5507/bp.2017.026] [PMID: 28546638]
[64]
Almoshabek, H.A.; Mustafa, M.; Al-Asmari, M.M.; Alajmi, T.K.; Al-Asmari, A.K. Association of glutathione S-transferase GSTM1 and GSTT1 deletion polymorphisms with obesity and their relationship with body mass index, lipoprotein and hypertension among young age Saudis. JRSM Cardiovasc. Dis., 2016, 52048004016669645
[http://dx.doi.org/10.1177/2048004016669645] [PMID: 27721975]
[65]
Savini, I.; Catani, M.V.; Evangelista, D.; Gasperi, V.; Avigliano, L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int. J. Mol. Sci., 2013, 14(5), 10497-10538.
[http://dx.doi.org/10.3390/ijms140510497] [PMID: 23698776]
[66]
Warolin, J.; Coenen, K.R.; Kantor, J.L.; Whitaker, L.E.; Wang, L.; Acra, S.A.; Roberts, L.J. II; Buchowski, M.S. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy black and white American youth. Pediatr. Obes., 2014, 9(1), 43-52.
[http://dx.doi.org/10.1111/j.2047-6310.2012.00135.x] [PMID: 23296459]
[67]
Tran, B.; Oliver, S.; Rosa, J.; Galassetti, P. Aspects of inflammation and oxidative stress in pediatric obesity and type 1 diabetes: an overview of ten years of studies. Exp. Diabetes Res., 2012, 2012683680
[http://dx.doi.org/10.1155/2012/683680] [PMID: 23093953]
[68]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[69]
Strauss, R.S. Comparison of serum concentrations of α-tocopherol and β-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J. Pediatr., 1999, 134(2), 160-165.
[http://dx.doi.org/10.1016/S0022-3476(99)70409-9] [PMID: 9931523]
[70]
Ortega, R.M.; Rodríguez-Rodríguez, E.; Aparicio, A.; Jiménez-Ortega, A.I.; Palmeros, C.; Perea, J.M.; Navia, B.; López-Sobaler, A.M. Young children with excess of weight show an impaired selenium status. Int. J. Vitam. Nutr. Res., 2012, 82(2), 121-129.
[http://dx.doi.org/10.1024/0300-9831/a000101] [PMID: 23065837]
[71]
Salvadori, A.; Fanari, P.; Fontana, M.; Buontempi, L.; Saezza, A.; Baudo, S.; Miserocchi, G.; Longhini, E. Oxygen uptake and cardiac performance in obese and normal subjects during exercise. Respiration, 1999, 66(1), 25-33.
[http://dx.doi.org/10.1159/000029333] [PMID: 9973687]
[72]
Wheatcroft, S.B.; Williams, I.L.; Shah, A.M.; Kearney, M.T. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet. Med., 2003, 20(4), 255-268.
[http://dx.doi.org/10.1046/j.1464-5491.2003.00869.x] [PMID: 12675638]
[73]
Martínez, J.A. Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J. Physiol. Biochem., 2006, 62(4), 303-306.
[http://dx.doi.org/10.1007/BF03165759] [PMID: 17615956]
[74]
Khan, N.I.; Naz, L.; Yasmeen, G. Obesity: an independent risk factor for systemic oxidative stress. Pak. J. Pharm. Sci., 2006, 19(1), 62-65.
[PMID: 16632456]
[75]
Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord., 2015, 13(10), 423-444.
[http://dx.doi.org/10.1089/met.2015.0095] [PMID: 26569333]
[76]
Omrani, H.Q.; Shandiz, E.E.; Qabai, M.; Chaman, R.; Fard, H.A.; Qaffarpoor, M. Hyperhomocysteinemia, folateo and B12 vitamin in Iranian patients with acute ischemic stroke. ARYA Atheroscler., 2011, 7(3), 97-101.
[PMID: 22577454]
[77]
Nervana, M.; Bayoumy, M.M.; Khaled, A. Assessment of homocysteine plasma levels and insulin resistance among obese women with anovulatory infertility. Life Sci. J., 2012, 9(4), 1599-1604.
[78]
Wang, Y.; Li, X.; Qin, X.; Cai, Y.; He, M.; Sun, L.; Li, J.; Zhang, Y.; Tang, G.; Wang, B.; Sun, N.; Xu, X.; Liu, L.; Xu, X.; Huo, Y. Prevalence of hyperhomocysteinaemia and its major determinants in rural Chinese hypertensive patients aged 45-75 years. Br. J. Nutr., 2013, 109(7), 1284-1293.
[http://dx.doi.org/10.1017/S0007114512003157] [PMID: 22850357]
[79]
Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J., 2015, 14(1), 6.
[http://dx.doi.org/10.1186/1475-2891-14-6] [PMID: 25577237]
[80]
Fan, Y-L.; Zhan, R.; Dong, Y-F.; Huang, L.; Ji, X-X.; Lu, P.; Liu, J.; Li, P.; Cheng, X-S. Significant interaction of hypertension and homocysteine on neurological severity in first-ever ischemic stroke patients. J. Am. Soc. Hypertens., 2018, 12(7), 534-541.
[http://dx.doi.org/10.1016/j.jash.2018.03.011] [PMID: 29678422]
[81]
Kopelman, P. Health risks associated with overweight and obesity. Obes. Rev., 2007, 8(Suppl. 1), 13-17.
[http://dx.doi.org/10.1111/j.1467-789X.2007.00311.x] [PMID: 17316295]
[82]
den Heijer, M.; Rosendaal, F.R.; Blom, H.J.; Gerrits, W.B.; Bos, G.M. Hyperhomocysteinemia and venous thrombosis: a meta-analysis. Thromb. Haemost., 1998, 80(6), 874-877.
[http://dx.doi.org/10.1055/s-0037-1615380] [PMID: 9869152]
[83]
Nakazato, M.; Maeda, T.; Takamura, N.; Wada, M.; Yamasaki, H.; Johnston, K.E.; Tamura, T. Relation of body mass index to blood folate and total homocysteine concentrations in Japanese adults. Eur. J. Nutr., 2011, 50(7), 581-585.
[http://dx.doi.org/10.1007/s00394-010-0165-0] [PMID: 21221977]
[84]
Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; Samuel, V.T. Obesity, adiposity, and dyslipidemia: a consensus statement from the national lipid association. J. Clin. Lipidol., 2013, 7(4), 304-383.
[http://dx.doi.org/10.1016/j.jacl.2013.04.001] [PMID: 23890517]
[85]
Goh, V.H.H.; Hart, W.G. Association of general and abdominal obesity with age, endocrine and metabolic factors in Asian men. Aging Male, 2016, 19(1), 27-33.
[http://dx.doi.org/10.3109/13685538.2015.1088825] [PMID: 26444311]
[86]
Xiao, C.; Dash, S.; Morgantini, C.; Hegele, R.A.; Lewis, G.F. Pharmacological targeting of the atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes, 2016, 65(7), 1767-1778.
[http://dx.doi.org/10.2337/db16-0046] [PMID: 27329952]
[87]
Franssen, R.; Monajemi, H.; Stroes, E.S.; Kastelein, J.J. Obesity and dyslipidemia. Med. Clin. North Am., 2011, 95(5), 893-902.
[http://dx.doi.org/10.1016/j.mcna.2011.06.003] [PMID: 21855698]
[88]
Berneis, K.K.; Krauss, R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res., 2002, 43(9), 1363-1379.
[http://dx.doi.org/10.1194/jlr.R200004-JLR200] [PMID: 12235168]
[89]
Masuda, D.; Yamashita, S. Postprandial hyperlipidemia and remnant lipoproteins. J. Atheroscler. Thromb., 2016, 24(2), 95-109.
[http://dx.doi.org/10.5551/jat.RV16003]] [PMID: 27829582]
[90]
Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013, 5(4), 1218-1240.
[http://dx.doi.org/10.3390/nu5041218] [PMID: 23584084]
[91]
Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic risks and severity of obesity in children and young adults. N. Engl. J. Med., 2015, 373(14), 1307-1317.
[http://dx.doi.org/10.1056/NEJMoa1502821] [PMID: 26422721]
[92]
Blottière, H.M.; de Vos, W.M.; Ehrlich, S.D.; Doré, J. Human intestinal metagenomics: state of the art and future. Curr. Opin. Microbiol., 2013, 16(3), 232-239.
[http://dx.doi.org/10.1016/j.mib.2013.06.006] [PMID: 23870802]
[93]
Vangay, P.; Ward, T.; Gerber, J.S.; Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe, 2015, 17(5), 553-564.
[http://dx.doi.org/10.1016/j.chom.2015.04.006] [PMID: 25974298]
[94]
Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[95]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[96]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbial ecology linked to obesity. Nature, 2006, 444, 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[97]
Cani, P.D.; Delzenne, N.M. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des., 2009, 15(13), 1546-1558.
[http://dx.doi.org/10.2174/138161209788168164] [PMID: 19442172]
[98]
Cummings, D.E.; Schwartz, M.W. Genetics and pathophysiology of human obesity. Annu. Rev. Med., 2003, 54(1), 453-471.
[http://dx.doi.org/10.1146/annurev.med.54.101601.152403] [PMID: 12414915]
[99]
Kalil, G.Z.; Haynes, W.G. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens. Res., 2012, 35(1), 4-16.
[http://dx.doi.org/10.1038/hr.2011.173] [PMID: 22048570]
[100]
Grassi, G.; Seravalle, G.; Cattaneo, B.M.; Bolla, G.B.; Lanfranchi, A.; Colombo, M.; Giannattasio, C.; Brunani, A.; Cavagnini, F.; Mancia, G. Sympathetic activation in obese normotensive subjects. Hypertension, 1995, 25(4 Pt 1), 560-563.
[http://dx.doi.org/10.1161/01.HYP.25.4.560] [PMID: 7721398]
[101]
Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health, 2017, 5, 258.
[http://dx.doi.org/10.3389/fpubh.2017.00258] [PMID: 29034226]
[102]
Yadav, R.L.; Yadav, P.K.; Yadav, L.K.; Agrawal, K.; Sah, S.K.; Islam, M.N. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration - a risk of CVD. Diabetes Metab. Syndr. Obes., 2017, 10, 57-64.
[http://dx.doi.org/10.2147/DMSO.S123935] [PMID: 28255249]
[103]
Vanderlei, L.C.M.; Pastre, C.M.; Freitas Júnior, I.F.; Godoy, M.F. Analysis of cardiac autonomic modulation in obese and eutrophic children. Clinics (São Paulo), 2010, 65(8), 789-792.
[http://dx.doi.org/10.1590/S1807-59322010000800008] [PMID: 20835556]
[104]
Ko, G.T.; Chan, J.C.; Chan, A.W.; Wong, P.T.; Hui, S.S.; Tong, S.D.; Ng, S.M.; Chow, F.; Chan, C.L. Association between sleeping hours, working hours and obesity in Hong Kong Chinese: the ‘better health for better Hong Kong’ health promotion campaign. Int. J. Obes., 2007, 31(2), 254-260.
[http://dx.doi.org/10.1038/sj.ijo.0803389] [PMID: 16718283]
[105]
Baron, K.G.; Reid, K.J.; Kim, T.; Van Horn, L.; Attarian, H.; Wolfe, L.; Siddique, J.; Santostasi, G.; Zee, P.C. Circadian timing and alignment in healthy adults: associations with BMI, body fat, caloric intake and physical activity. Int. J. Obes., 2017, 41(2), 203-209.
[http://dx.doi.org/10.1038/ijo.2016.194] [PMID: 27795550]
[106]
Chaput, J.P.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity (Silver Spring), 2007, 15(1), 253-261.
[http://dx.doi.org/10.1038/oby.2007.512] [PMID: 17228054]
[107]
Cummings, D.E.; Foster, K.E. Ghrelin-leptin tango in body-weight regulation. Gastroenterology, 2003, 124(5), 1532-1535.
[http://dx.doi.org/10.1016/S0016-5085(03)00350-0] [PMID: 12730891]
[108]
Schwartz, M.W.; Morton, G. J. Obesity: keeping hunger at bay. Nature, 2002, 418(6898), 595-597.
[http://dx.doi.org/10.1038/418595a] [PMID: 12167841]
[109]
Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med., 2004, 1(3)e62
[http://dx.doi.org/10.1371/journal.pmed.0010062] [PMID: 15602591]
[110]
Ayas, N.T.; White, D.P.; Al-Delaimy, W.K.; Manson, J.E.; Stampfer, M.J.; Speizer, F.E.; Patel, S.; Hu, F.B. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care, 2003, 26(2), 380-384.
[http://dx.doi.org/10.2337/diacare.26.2.380] [PMID: 12547866]
[111]
Horne, J. Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance. Biol. Psychol., 2008, 77(3), 266-276.
[http://dx.doi.org/10.1016/j.biopsycho.2007.12.003] [PMID: 18243480]
[112]
Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med., 2008, 9(Suppl. 1), S23-S28.
[http://dx.doi.org/10.1016/S1389-9457(08)70013-3] [PMID: 18929315]
[113]
Harrison, Y.; Horne, J.A. Should we be taking more sleep? Sleep, 1995, 18(10), 901-907.
[PMID: 8746399]
[114]
Destors, M.; Tamisier, R.; Galerneau, L-M.; Lévy, P.; Pepin, J-L. Pathophysiology of obstructive sleep apnea syndrome and its cardiometabolic consequences Presse Med., 2017, 46(4), 395-403.
[http://dx.doi.org/10.1016/j.lpm.2016.09.008] [PMID: 28126503]
[115]
Phillips, B.G.; Kato, M.; Narkiewicz, K.; Choe, I.; Somers, V.K. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am. J. Physiol. Heart Circ. Physiol., 2000, 279(1), H234-H237.
[http://dx.doi.org/10.1152/ajpheart.2000.279.1.H234] [PMID: 10899061]
[116]
Jehan, S.; Auguste, E.; Zizi, F.; Pandi-Perumal, S.R.; Gupta, R.; Attarian, H.; Jean-Louis, G.; McFarlane, S.I. Obstructive sleep apnea: women’s perspective. J. Sleep Med. Disord., 2016, 3(6), 1064.
[PMID: 28239685]
[117]
Ulukavak Ciftci, T.; Kokturk, O.; Bukan, N.; Bilgihan, A. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome. Respiration, 2005, 72(4), 395-401.
[http://dx.doi.org/10.1159/000086254] [PMID: 16088283]
[118]
Öztürk, L.; Ünal, M.; Tamer, L.; Çelikoğlu, F. The association of the severity of obstructive sleep apnea with plasma leptin levels. Arch. Otolaryngol. Head Neck Surg., 2003, 129(5), 538-540.
[http://dx.doi.org/10.1001/archotol.129.5.538] [PMID: 12759266]
[119]
Carotenuto, M.; Santoro, N.; Grandone, A.; Santoro, E.; Pascotto, C.; Pascotto, A.; Perrone, L.; del Giudice, E.M. The insulin gene variable number of tandemrepeats (INS VNTR) genotype and sleep disordered breathing in childhood obesity. J. Endocrinol. Invest., 2009, 32(9), 752-755.
[http://dx.doi.org/10.1007/BF03346531] [PMID: 19574727]
[120]
Carotenuto, M.; Bruni, O.; Santoro, N.; Del Giudice, E.M.; Perrone, L.; Pascotto, A. Waist circumference predicts the occurrence of sleep-disordered breathing in obese children and adolescents: a questionnaire-based study. Sleep Med., 2006, 7(4), 357-361.
[http://dx.doi.org/10.1016/j.sleep.2006.01.005] [PMID: 16713341]
[121]
Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.; Olson, L.J.; Pickering, T.G.; Russell, R.; Woo, M.; Young, T. Sleep apnea and cardiovascular disease. J. Am. Coll. Cardiol., 2008, 52(8), 686-717.
[http://dx.doi.org/10.1016/j.jacc.2008.05.002] [PMID: 18702977]
[122]
Pearson, N.J.; Johnson, L.L.; Nahin, R.L. Insomnia, trouble sleeping, and complementary and alternative medicine: Analysis of the 2002 national health interview survey data. Arch. Intern. Med., 2006, 166(16), 1775-1782.
[http://dx.doi.org/10.1001/archinte.166.16.1775] [PMID: 16983058]
[123]
Singareddy, R.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Liao, D.; Calhoun, S.; Shaffer, M.L.; Bixler, E.O. Risk factors for incident chronic insomnia: a general population prospective study. Sleep Med., 2012, 13(4), 346-353.
[http://dx.doi.org/10.1016/j.sleep.2011.10.033] [PMID: 22425576]
[124]
Vgontzas, A.N.; Lin, H.M.; Papaliaga, M.; Calhoun, S.; Vela-Bueno, A.; Chrousos, G.P.; Bixler, E.O. Short sleep duration and obesity: the role of emotional stress and sleep disturbances. Int. J. Obes., 2008, 32(5), 801-809.
[http://dx.doi.org/10.1038/ijo.2008.4] [PMID: 18253159]
[125]
Laumann, E.O.; Paik, A.; Rosen, R.C. Sexual dysfunction in the United States: prevalence and predictors. JAMA, 1999, 281(6), 537-544.
[http://dx.doi.org/10.1001/jama.281.6.537] [PMID: 10022110]
[126]
Allison, K.C.; Lavery, M.E.; Sarwer, D.B. Obesity and reproductive functioning: psychiatric considerations. Prim. Psychiatry, 2009, 16(3), 35-40.
[127]
Sarwer, D.B.; Allison, K.C.; Gibbons, L.M.; Markowitz, J.T.; Nelson, D.B. Pregnancy and obesity: a review and agenda for future research. J. Womens Health (Larchmt.), 2006, 15(6), 720-733.
[http://dx.doi.org/10.1089/jwh.2006.15.720] [PMID: 16910904]
[128]
Leenen, R.; van der Kooy, K.; Seidell, J.C.; Deurenberg, P.; Koppeschaar, H.P. Visceral fat accumulation in relation to sex hormones in obese men and women undergoing weight loss therapy. J. Clin. Endocrinol. Metab., 1994, 78(6), 1515-1520.
[http://dx.doi.org/10.1210/jcem.78.6.8200956] [PMID: 8200956]
[129]
Strain, G.W.; Zumoff, B.; Miller, L.K.; Rosner, W. Sex difference in the effect of obesity on 24-hour mean serum gonadotropin levels. Horm. Metab. Res., 2003, 35(6), 362-366.
[http://dx.doi.org/10.1055/s-2003-41358] [PMID: 12920659]
[130]
Aversa, A.; Isidori, A.M.; De Martino, M.U.; Caprio, M.; Fabbrini, E.; Rocchietti-March, M.; Frajese, G.; Fabbri, A. Androgens and penile erection: evidence for a direct relationship between free testosterone and cavernous vasodilation in men with erectile dysfunction. Clin. Endocrinol. (Oxf.), 2000, 53(4), 517-522.
[http://dx.doi.org/10.1046/j.1365-2265.2000.01118.x] [PMID: 11012578]
[131]
Pears, J.; Jung, R.T.; Gunn, A. Long-term weight changes in treated hyperthyroid and hypothyroid patients. Scott. Med. J., 1990, 35(6), 180-182.
[http://dx.doi.org/10.1177/003693309003500609] [PMID: 2077652]
[132]
Dale, J.; Daykin, J.; Holder, R.; Sheppard, M.C.; Franklyn, J.A. Weight gain following treatment of hyperthyroidism. Clin. Endocrinol. (Oxf.), 2001, 55(2), 233-239.
[http://dx.doi.org/10.1046/j.1365-2265.2001.01329.x] [PMID: 11531931]
[133]
Xanthakos, S.A. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr. Clin. North Am., 2009, 56(5), 1105-1121.
[http://dx.doi.org/10.1016/j.pcl.2009.07.002] [PMID: 19931066]
[134]
Davison, K.M.; Gondara, L.; Kaplan, B.J. Food insecurity, poor diet quality, and suboptimal intakes of folate and iron are independently associated with perceived mental health in Canadian adults. Nutrients, 2017, 9(3), 274.
[http://dx.doi.org/10.3390/nu9030274] [PMID: 28335418]
[135]
McGuire, S. Scientific report of the 2015 dietary guidelines advisory committee. Washington, DC: US departments of agriculture and health and human services, 2015. Adv. Nutr., 2016, 7(1), 202-204.
[http://dx.doi.org/10.3945/an.115.011684] [PMID: 26773024]
[136]
Cutler, D.M.; Glaeser, E.L.; Shapiro, J.M. Why have Americans become more obese? J. Econ. Perspect., 2003, 17(3), 93-118.
[http://dx.doi.org/10.1257/089533003769204371]
[137]
De Baerdemaeker, L.E.; Mortier, E.P.; Struys, M.M. Pharmacokinetics in obese patients. Contin. Educ. Anaesth. Crit. Care Pain, 2004, 4(5), 152-155.
[http://dx.doi.org/10.1093/bjaceaccp/mkh042]
[138]
Agarwal, S.; Reider, C.; Brooks, J.R.; Fulgoni, V.L. III. Comparison of prevalence of inadequate nutrient intake based on body weight status of adults in the United States: an analysis of NHANES 2001-2008. J. Am. Coll. Nutr., 2015, 34(2), 126-134.
[http://dx.doi.org/10.1080/07315724.2014.901196] [PMID: 25564766]
[139]
Zuckerman, M.; Greller, H.A.; Babu, K.M. A review of the toxicologic implications of obesity. J. Med. Toxicol., 2015, 11(3), 342-354.
[http://dx.doi.org/10.1007/s13181-015-0488-6] [PMID: 26108709]
[140]
Blouin, R.A.; Kolpek, J.H.; Mann, H.J. Influence of obesity on drug disposition. Clin. Pharm., 1987, 6(9), 706-714.
[PMID: 3315402]
[141]
Liel, Y.; Ulmer, E.; Shary, J.; Hollis, B.W.; Bell, N.H. Low circulating vitamin D in obesity. Calcif. Tissue Int., 1988, 43(4), 199-201.
[http://dx.doi.org/10.1007/BF02555135] [PMID: 3145124]
[142]
Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr., 2000, 72(3), 690-693.
[http://dx.doi.org/10.1093/ajcn/72.3.690] [PMID: 10966885]
[143]
Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring), 2012, 20(7), 1444-1448.
[http://dx.doi.org/10.1038/oby.2011.404] [PMID: 22262154]
[144]
Tremblay, A.; Chaput, J-P. About unsuspected potential determinants of obesity. Appl. Physiol. Nutr. Metab., 2008, 33(4), 791-796.
[http://dx.doi.org/10.1139/H08-038] [PMID: 18641724]
[145]
Astrup, A.; Bügel, S. Micronutrient deficiency in the aetiology of obesity. Int. J. Obes., 2010, 34(6), 947-948.
[http://dx.doi.org/10.1038/ijo.2010.81] [PMID: 20543852]
[146]
García, O.P.; Long, K.Z.; Rosado, J.L. Impact of micronutrient deficiencies on obesity. Nutr. Rev., 2009, 67(10), 559-572.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00228.x] [PMID: 19785688]
[147]
Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int. J. Behav. Nutr. Phys. Act., 2014, 11(1), 4.
[http://dx.doi.org/10.1186/1479-5868-11-4] [PMID: 24450617]
[148]
Enes, C.C.; Slater, B. Obesity in adolescence and its main determinants Rev. Bras. Epidemiol., 2010, 13(1), 163-171.
[http://dx.doi.org/10.1590/S1415-790X2010000100015] [PMID: 20683564]
[149]
Manson, J.E.; Skerrett, P.J.; Greenland, P.; VanItallie, T.B. The escalating pandemics of obesity and sedentary lifestyle. A call to action for clinicians. Arch. Intern. Med., 2004, 164(3), 249-258.
[http://dx.doi.org/10.1001/archinte.164.3.249] [PMID: 14769621]
[150]
Jebb, S.A.; Moore, M.S. Contribution of a sedentary lifestyle and inactivity to the etiology of overweight and obesity: current evidence and research issues. Med. Sci. Sports Exerc., 1999, 31(11)(Suppl.), S534-S541.
[http://dx.doi.org/10.1097/00005768-199911001-00008] [PMID: 10593524]
[151]
Ziviani, J.; Scott, J.; Wadley, D. Walking to school: incidental physical activity in the daily occupations of Australian children. Occup. Ther. Int., 2004, 11(1), 1-11.
[http://dx.doi.org/10.1002/oti.193] [PMID: 15118767]
[152]
O’Rahilly, S.; Farooqi, I.S.; Yeo, G.S.; Challis, B.G. Minireview: human obesity-lessons from monogenic disorders. Endocrinology, 2003, 144(9), 3757-3764.
[http://dx.doi.org/10.1210/en.2003-0373] [PMID: 12933645]
[153]
Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; Croteau-Chonka, D.C.; Esko, T.; Fall, T.; Ferreira, T.; Gustafsson, S.; Kutalik, Z.; Luan, J.; Mägi, R.; Randall, J.C.; Winkler, T.W.; Wood, A.R.; Workalemahu, T.; Faul, J.D.; Smith, J.A.; Zhao, J.H.; Zhao, W.; Chen, J.; Fehrmann, R.; Hedman, Å.K.; Karjalainen, J.; Schmidt, E.M.; Absher, D.; Amin, N.; Anderson, D.; Beekman, M.; Bolton, J.L.; Bragg-Gresham, J.L.; Buyske, S.; Demirkan, A.; Deng, G.; Ehret, G.B.; Feenstra, B.; Feitosa, M.F.; Fischer, K.; Goel, A.; Gong, J.; Jackson, A.U.; Kanoni, S.; Kleber, M.E.; Kristiansson, K.; Lim, U.; Lotay, V.; Mangino, M.; Leach, I.M.; Medina-Gomez, C.; Medland, S.E.; Nalls, M.A.; Palmer, C.D.; Pasko, D.; Pechlivanis, S.; Peters, M.J.; Prokopenko, I.; Shungin, D.; Stančáková, A.; Strawbridge, R.J.; Sung, Y.J.; Tanaka, T.; Teumer, A.; Trompet, S.; van der Laan, S.W.; van Setten, J.; Van Vliet-Ostaptchouk, J.V.; Wang, Z.; Yengo, L.; Zhang, W.; Isaacs, A.; Albrecht, E.; Ärnlöv, J.; Arscott, G.M.; Attwood, A.P.; Bandinelli, S.; Barrett, A.; Bas, I.N.; Bellis, C.; Bennett, A.J.; Berne, C.; Blagieva, R.; Blüher, M.; Böhringer, S.; Bonnycastle, L.L.; Böttcher, Y.; Boyd, H.A.; Bruinenberg, M.; Caspersen, I.H.; Chen, Y.I.; Clarke, R.; Daw, E.W.; de Craen, A.J.M.; Delgado, G.; Dimitriou, M.; Doney, A.S.F.; Eklund, N.; Estrada, K.; Eury, E.; Folkersen, L.; Fraser, R.M.; Garcia, M.E.; Geller, F.; Giedraitis, V.; Gigante, B.; Go, A.S.; Golay, A.; Goodall, A.H.; Gordon, S.D.; Gorski, M.; Grabe, H.J.; Grallert, H.; Grammer, T.B.; Gräßler, J.; Grönberg, H.; Groves, C.J.; Gusto, G.; Haessler, J.; Hall, P.; Haller, T.; Hallmans, G.; Hartman, C.A.; Hassinen, M.; Hayward, C.; Heard-Costa, N.L.; Helmer, Q.; Hengstenberg, C.; Holmen, O.; Hottenga, J.J.; James, A.L.; Jeff, J.M.; Johansson, Å.; Jolley, J.; Juliusdottir, T.; Kinnunen, L.; Koenig, W.; Koskenvuo, M.; Kratzer, W.; Laitinen, J.; Lamina, C.; Leander, K.; Lee, N.R.; Lichtner, P.; Lind, L.; Lindström, J.; Lo, K.S.; Lobbens, S.; Lorbeer, R.; Lu, Y.; Mach, F.; Magnusson, P.K.E.; Mahajan, A.; McArdle, W.L.; McLachlan, S.; Menni, C.; Merger, S.; Mihailov, E.; Milani, L.; Moayyeri, A.; Monda, K.L.; Morken, M.A.; Mulas, A.; Müller, G.; Müller-Nurasyid, M.; Musk, A.W.; Nagaraja, R.; Nöthen, M.M.; Nolte, I.M.; Pilz, S.; Rayner, N.W.; Renstrom, F.; Rettig, R.; Ried, J.S.; Ripke, S.; Robertson, N.R.; Rose, L.M.; Sanna, S.; Scharnagl, H.; Scholtens, S.; Schumacher, F.R.; Scott, W.R.; Seufferlein, T.; Shi, J.; Smith, A.V.; Smolonska, J.; Stanton, A.V.; Steinthorsdottir, V.; Stirrups, K.; Stringham, H.M.; Sundström, J.; Swertz, M.A.; Swift, A.J.; Syvänen, A.C.; Tan, S.T.; Tayo, B.O.; Thorand, B.; Thorleifsson, G.; Tyrer, J.P.; Uh, H.W.; Vandenput, L.; Verhulst, F.C.; Vermeulen, S.H.; Verweij, N.; Vonk, J.M.; Waite, L.L.; Warren, H.R.; Waterworth, D.; Weedon, M.N.; Wilkens, L.R.; Willenborg, C.; Wilsgaard, T.; Wojczynski, M.K.; Wong, A.; Wright, A.F.; Zhang, Q.; Brennan, E.P.; Choi, M.; Dastani, Z.; Drong, A.W.; Eriksson, P.; Franco-Cereceda, A.; Gådin, J.R.; Gharavi, A.G.; Goddard, M.E.; Handsaker, R.E.; Huang, J.; Karpe, F.; Kathiresan, S.; Keildson, S.; Kiryluk, K.; Kubo, M.; Lee, J.Y.; Liang, L.; Lifton, R.P.; Ma, B.; McCarroll, S.A.; McKnight, A.J.; Min, J.L.; Moffatt, M.F.; Montgomery, G.W.; Murabito, J.M.; Nicholson, G.; Nyholt, D.R.; Okada, Y.; Perry, J.R.B.; Dorajoo, R.; Reinmaa, E.; Salem, R.M.; Sandholm, N.; Scott, R.A.; Stolk, L.; Takahashi, A.; Tanaka, T.; van ’t Hooft, F.M.; Vinkhuyzen, A.A.E.; Westra, H.J.; Zheng, W.; Zondervan, K.T.; Heath, A.C.; Arveiler, D.; Bakker, S.J.L.; Beilby, J.; Bergman, R.N.; Blangero, J.; Bovet, P.; Campbell, H.; Caulfield, M.J.; Cesana, G.; Chakravarti, A.; Chasman, D.I.; Chines, P.S.; Collins, F.S.; Crawford, D.C.; Cupples, L.A.; Cusi, D.; Danesh, J.; de Faire, U.; den Ruijter, H.M.; Dominiczak, A.F.; Erbel, R.; Erdmann, J.; Eriksson, J.G.; Farrall, M.; Felix, S.B.; Ferrannini, E.; Ferrières, J.; Ford, I.; Forouhi, N.G.; Forrester, T.; Franco, O.H.; Gansevoort, R.T.; Gejman, P.V.; Gieger, C.; Gottesman, O.; Gudnason, V.; Gyllensten, U.; Hall, A.S.; Harris, T.B.; Hattersley, A.T.; Hicks, A.A.; Hindorff, L.A.; Hingorani, A.D.; Hofman, A.; Homuth, G.; Hovingh, G.K.; Humphries, S.E.; Hunt, S.C.; Hyppönen, E.; Illig, T.; Jacobs, K.B.; Jarvelin, M.R.; Jöckel, K.H.; Johansen, B.; Jousilahti, P.; Jukema, J.W.; Jula, A.M.; Kaprio, J.; Kastelein, J.J.P.; Keinanen-Kiukaanniemi, S.M.; Kiemeney, L.A.; Knekt, P.; Kooner, J.S.; Kooperberg, C.; Kovacs, P.; Kraja, A.T.; Kumari, M.; Kuusisto, J.; Lakka, T.A.; Langenberg, C.; Marchand, L.L.; Lehtimäki, T.; Lyssenko, V.; Männistö, S.; Marette, A.; Matise, T.C.; McKenzie, C.A.; McKnight, B.; Moll, F.L.; Morris, A.D.; Morris, A.P.; Murray, J.C.; Nelis, M.; Ohlsson, C.; Oldehinkel, A.J.; Ong, K.K.; Madden, P.A.F.; Pasterkamp, G.; Peden, J.F.; Peters, A.; Postma, D.S.; Pramstaller, P.P.; Price, J.F.; Qi, L.; Raitakari, O.T.; Rankinen, T.; Rao, D.C.; Rice, T.K.; Ridker, P.M.; Rioux, J.D.; Ritchie, M.D.; Rudan, I.; Salomaa, V.; Samani, N.J.; Saramies, J.; Sarzynski, M.A.; Schunkert, H.; Schwarz, P.E.H.; Sever, P.; Shuldiner, A.R.; Sinisalo, J.; Stolk, R.P.; Strauch, K.; Tönjes, A.; Trégouët, D.A.; Tremblay, A.; Tremoli, E.; Virtamo, J.; Vohl, M.C.; Völker, U.; Waeber, G.; Willemsen, G.; Witteman, J.C.; Zillikens, M.C.; Adair, L.S.; Amouyel, P.; Asselbergs, F.W.; Assimes, T.L.; Bochud, M.; Boehm, B.O.; Boerwinkle, E.; Bornstein, S.R.; Bottinger, E.P.; Bouchard, C.; Cauchi, S.; Chambers, J.C.; Chanock, S.J.; Cooper, R.S.; de Bakker, P.I.W.; Dedoussis, G.; Ferrucci, L.; Franks, P.W.; Froguel, P.; Groop, L.C.; Haiman, C.A.; Hamsten, A.; Hui, J.; Hunter, D.J.; Hveem, K.; Kaplan, R.C.; Kivimaki, M.; Kuh, D.; Laakso, M.; Liu, Y.; Martin, N.G.; März, W.; Melbye, M.; Metspalu, A.; Moebus, S.; Munroe, P.B.; Njølstad, I.; Oostra, B.A.; Palmer, C.N.A.; Pedersen, N.L.; Perola, M.; Pérusse, L.; Peters, U.; Power, C.; Quertermous, T.; Rauramaa, R.; Rivadeneira, F.; Saaristo, T.E.; Saleheen, D.; Sattar, N.; Schadt, E.E.; Schlessinger, D.; Slagboom, P.E.; Snieder, H.; Spector, T.D.; Thorsteinsdottir, U.; Stumvoll, M.; Tuomilehto, J.; Uitterlinden, A.G.; Uusitupa, M.; van der Harst, P.; Walker, M.; Wallaschofski, H.; Wareham, N.J.; Watkins, H.; Weir, D.R.; Wichmann, H.E.; Wilson, J.F.; Zanen, P.; Borecki, I.B.; Deloukas, P.; Fox, C.S.; Heid, I.M.; O’Connell, J.R.; Strachan, D.P.; Stefansson, K.; van Duijn, C.M.; Abecasis, G.R.; Franke, L.; Frayling, T.M.; McCarthy, M.I.; Visscher, P.M.; Scherag, A.; Willer, C.J.; Boehnke, M.; Mohlke, K.L.; Lindgren, C.M.; Beckmann, J.S.; Barroso, I.; North, K.E.; Ingelsson, E.; Hirschhorn, J.N.; Loos, R.J.F.; Speliotes, E.K. LifeLines Cohort Study; ADIPOGen Consortium; AGEN-BMI Working Group; CARDIOGRAMplusC4D Consortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investigators; MuTHER Consortium; MIGen Consortium; PAGE Consortium; ReproGen Consortium; GENIE Consortium; International Endogene Consortium. Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518(7538), 197-206.
[http://dx.doi.org/10.1038/nature14177] [PMID: 25673413]
[154]
Silventoinen, K.; Jelenkovic, A.; Sund, R.; Yokoyama, Y.; Hur, Y-M.; Cozen, W.; Hwang, A.E.; Mack, T.M.; Honda, C.; Inui, F.; Iwatani, Y.; Watanabe, M.; Tomizawa, R.; Pietiläinen, K.H.; Rissanen, A.; Siribaddana, S.H.; Hotopf, M.; Sumathipala, A.; Rijsdijk, F.; Tan, Q.; Zhang, D.; Pang, Z.; Piirtola, M.; Aaltonen, S.; Öncel, S.Y.; Aliev, F.; Rebato, E.; Hjelmborg, J.B.; Christensen, K.; Skytthe, A.; Kyvik, K.O.; Silberg, J.L.; Eaves, L.J.; Cutler, T.L.; Ordoñana, J.R.; Sánchez-Romera, J.F.; Colodro-Conde, L.; Song, Y.M.; Yang, S.; Lee, K.; Franz, C.E.; Kremen, W.S.; Lyons, M.J.; Busjahn, A.; Nelson, T.L.; Whitfield, K.E.; Kandler, C.; Jang, K.L.; Gatz, M.; Butler, D.A.; Stazi, M.A.; Fagnani, C.; D’Ippolito, C.; Duncan, G.E.; Buchwald, D.; Martin, N.G.; Medland, S.E.; Montgomery, G.W.; Jeong, H.U.; Swan, G.E.; Krasnow, R.; Magnusson, P.K.; Pedersen, N.L.; Dahl Aslan, A.K.; McAdams, T.A.; Eley, T.C.; Gregory, A.M.; Tynelius, P.; Baker, L.A.; Tuvblad, C.; Bayasgalan, G.; Narandalai, D.; Spector, T.D.; Mangino, M.; Lachance, G.; Burt, S.A.; Klump, K.L.; Harris, J.R.; Brandt, I.; Nilsen, T.S.; Krueger, R.F.; McGue, M.; Pahlen, S.; Corley, R.P.; Huibregtse, B.M.; Bartels, M.; van Beijsterveldt, C.E.; Willemsen, G.; Goldberg, J.H.; Rasmussen, F.; Tarnoki, A.D.; Tarnoki, D.L.; Derom, C.A.; Vlietinck, R.F.; Loos, R.J.; Hopper, J.L.; Sung, J.; Maes, H.H.; Turkheimer, E.; Boomsma, D.I.; Sørensen, T.I.; Kaprio, J. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am. J. Clin. Nutr., 2017, 106(2), 457-466.
[http://dx.doi.org/10.3945/ajcn.117.153643] [PMID: 28679550]
[155]
Han, J.C. Rare syndromes and common variants of the brain-derived neurotrophic factor gene in human obesity. Prog. Mol. Biol. Transl. Sci., 2016, 140, 75-95.
[http://dx.doi.org/10.1016/bs.pmbts.2015.12.002] [PMID: 27288826]
[156]
Danielle, F.; Neilsen, B.; Costanzo-Garvey, D.; Fisher, K.; Lewis, R. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras. F1000 Res., 2017, 6, 1621.
[http://dx.doi.org/10.12688/f1000research.11895.1 ] [PMID: 29026529 ]
[157]
Wasim, M.; Awan, F.R.; Najam, S.S.; Khan, A.R.; Khan, H.N. Role of leptin deficiency, inefficiency, and leptin receptors in obesity. Biochem. Genet., 2016, 54(5), 565-572.
[http://dx.doi.org/10.1007/s10528-016-9751-z] [PMID: 27313173]
[158]
Reddon, H.; Gerstein, H.C.; Engert, J.C.; Mohan, V.; Bosch, J.; Desai, D.; Bailey, S.D.; Diaz, R.; Yusuf, S.; Anand, S.S.; Meyre, D. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study. Sci. Rep., 2016, 6, 18672.
[http://dx.doi.org/10.1038/srep18672] [PMID: 26727462]
[159]
Xiang, L.; Wu, H.; Pan, A.; Patel, B.; Xiang, G.; Qi, L.; Kaplan, R.C.; Hu, F.; Wylie-Rosett, J.; Qi, Q. FTO genotype and weight loss in diet and lifestyle interventions: a systematic review and meta-analysis. Am. J. Clin. Nutr., 2016, 103(4), 1162-1170.
[http://dx.doi.org/10.3945/ajcn.115.123448] [PMID: 26888713]
[160]
Bray, M.S.; Loos, R.J.; McCaffery, J.M.; Ling, C.; Franks, P.W.; Weinstock, G.M.; Snyder, M.P.; Vassy, J.L.; Agurs-Collins, T. Conference Working Group. NIH working group report-using genomic information to guide weight management: From universal to precision treatment. Obesity (Silver Spring), 2016, 24(1), 14-22.
[http://dx.doi.org/10.1002/oby.21381] [PMID: 26692578]
[161]
Kai, A.K.; Lam, A.K.; Chen, Y.; Tai, A.C.; Zhang, X.; Lai, A.K.; Yeung, P.K.; Tam, S.; Wang, J.; Lam, K.S.; Vanhoutte, P.M.; Bos, J.L.; Chung, S.S.; Xu, A.; Chung, S.K. Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J., 2013, 27(10), 4122-4135.
[http://dx.doi.org/10.1096/fj.13-230433] [PMID: 23825225]
[162]
Hu, Y.; Robichaux, W.G., III; Mei, F.C.; Kim, E.R.; Wang, H.; Tong, Q.; Jin, J.; Xu, M.; Chen, J.; Cheng, X. Role of exchange protein directly activated by cyclic AMP isoform 1 in energy homeostasis: regulation of leptin expression and secretion in white adipose tissue. Mol. Cell. Biol., 2016, 36(19), 2440-2450.
[http://dx.doi.org/10.1128/MCB.01034-15] [PMID: 27381457]
[163]
Komai, A.M.; Musovic, S.; Peris, E.; Alrifaiy, A.; El Hachmane, M.F.; Johansson, M.; Wernstedt Asterholm, I.; Olofsson, C.S. White adipocyte adiponectin exocytosis is stimulated via β3-adrenergic signaling and activation of Epac1: catecholamine resistance in obesity and type 2 diabetes. Diabetes, 2016, 65(11), 3301-3313.
[http://dx.doi.org/10.2337/db15-1597] [PMID: 27554468]
[164]
Lesseur, C.; Armstrong, D.A.; Paquette, A.G.; Koestler, D.C.; Padbury, J.F.; Marsit, C.J. Tissue-specific leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol. Cell. Endocrinol., 2013, 381(1-2), 160-167.
[http://dx.doi.org/10.1016/j.mce.2013.07.024] [PMID: 23911897]
[165]
Thaker, V.V. genetic and epigenetic causes of obesity. Adolesc. Med. State Art Rev., 2017, 28(2), 379-405.
[PMID: 30416642]
[166]
Crujeiras, A.B.; Campion, J.; Díaz-Lagares, A.; Milagro, F.I.; Goyenechea, E.; Abete, I.; Casanueva, F.F.; Martínez, J.A. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul. Pept., 2013, 186, 1-6.
[http://dx.doi.org/10.1016/j.regpep.2013.06.012] [PMID: 23831408]
[167]
Yoo, J.Y.; Lee, S.; Lee, H.A.; Park, H.; Park, Y.J.; Ha, E.H.; Kim, Y.J. Can proopiomelanocortin methylation be used as an early predictor of metabolic syndrome? Diabetes Care, 2014, 37(3), 734-739.
[http://dx.doi.org/10.2337/dc13-1012] [PMID: 24222450]
[168]
Zhang, Q.; Ramlee, M.K.; Brunmeir, R.; Villanueva, C.J.; Halperin, D.; Xu, F. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle, 2012, 11(23), 4310-4322.
[http://dx.doi.org/10.4161/cc.22224] [PMID: 23085542]
[169]
Prats-Puig, A.; Ortega, F.J.; Mercader, J.M.; Moreno-Navarrete, J.M.; Moreno, M.; Bonet, N.; Ricart, W.; López-Bermejo, A.; Fernández-Real, J.M. Changes in circulating microRNAs are associated with childhood obesity. J. Clin. Endocrinol. Metab., 2013, 98(10), E1655-E1660.
[http://dx.doi.org/10.1210/jc.2013-1496] [PMID: 23928666]
[170]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[171]
Zhao, H.; Shen, J.; Daniel-MacDougall, C.; Wu, X.; Chow, W.H. Plasma MicroRNA signature predicting weight gain among Mexican-American women. Obesity (Silver Spring), 2017, 25(5), 958-964.
[http://dx.doi.org/10.1002/oby.21824] [PMID: 28342299]
[172]
Heneghan, H.M.; Miller, N.; Kerin, M.J. Role of microRNAs in obesity and the metabolic syndrome. Obes. Rev., 2010, 11(5), 354-361.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00659.x] [PMID: 19793375]
[173]
Fernandez-Valverde, S.L.; Taft, R.J.; Mattick, J.S. MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes, 2011, 60(7), 1825-1831.
[http://dx.doi.org/10.2337/db11-0171] [PMID: 21709277]
[174]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[175]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells Nat. cell Bio, 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[176]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins Nat. cell Bio, 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[177]
Ortega, F.J.; Mercader, J.M.; Catalán, V.; Moreno-Navarrete, J.M.; Pueyo, N.; Sabater, M.; Gómez-Ambrosi, J.; Anglada, R.; Fernández-Formoso, J.A.; Ricart, W.; Frühbeck, G.; Fernández-Real, J.M. Targeting the circulating microRNA signature of obesity. Clin. Chem., 2013, 59(5), 781-792.
[http://dx.doi.org/10.1373/clinchem.2012.195776] [PMID: 23396142]
[178]
Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.T.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2012, 97(12), E2271-E2276.
[http://dx.doi.org/10.1210/jc.2012-1996] [PMID: 23032062]
[179]
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J.; Mayr, M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res., 2010, 107(6), 810-817.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[180]
Fain, J.N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the non-fat cells. Vitam. Horm., 2006, 74, 443-477.
[http://dx.doi.org/10.1016/S0083-6729(06)74018-3] [PMID: 17027526]
[181]
Zhang, J-M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[182]
Maachi, M.; Piéroni, L.; Bruckert, E.; Jardel, C.; Fellahi, S.; Hainque, B.; Capeau, J.; Bastard, J.P. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFalpha, leptin and IL-6 levels in obese women. Int. J. Obes. Relat. Metab. Disord., 2004, 28(8), 993-997.
[http://dx.doi.org/10.1038/sj.ijo.0802718] [PMID: 15211360]
[183]
Alexandraki, K.I.; Piperi, C.; Ziakas, P.D.; Apostolopoulos, N.V.; Makrilakis, K.; Syriou, V.; Diamanti-Kandarakis, E.; Kaltsas, G.; Kalofoutis, A. Cytokine secretion in long-standing diabetes mellitus type 1 and 2: associations with low-grade systemic inflammation. J. Clin. Immunol., 2008, 28(4), 314-321.
[http://dx.doi.org/10.1007/s10875-007-9164-1] [PMID: 18224429]
[184]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[185]
Ye, J. Mechanisms of insulin resistance in obesity. Front. Med., 2013, 7(1), 14-24.
[http://dx.doi.org/10.1007/s11684-013-0262-6] [PMID: 23471659]
[186]
Castro, A.; Macedo-de la Concha, L.; Pantoja-Meléndez, C. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev. Med. Hosp. Gen. (Mex.), 2017, 80(2), 101-105.
[http://dx.doi.org/10.1016/j.hgmx.2016.06.011]
[187]
Ota, T. Chemokine systems link obesity to insulin resistance. Diabetes Metab. J., 2013, 37(3), 165-172.
[http://dx.doi.org/10.4093/dmj.2013.37.3.165] [PMID: 23807918]
[188]
Russell-Jones, D.; Khan, R. Insulin-associated weight gain in diabetes--causes, effects and coping strategies. Diabetes Obes. Metab., 2007, 9(6), 799-812.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00686.x] [PMID: 17924864]
[189]
Alemán-González-Duhart, D.; Tamay-Cach, F.; Álvarez-Almazán, S.; Mendieta-Wejebe, J.E. Current advances in the biochemical and physiological aspects of the treatment of type 2 diabetes mellitus with thiazolidinediones. PPAR Res., 2016, 20167614270
[http://dx.doi.org/10.1155/2016/7614270] [PMID: 27313601]
[190]
Sharma, A.M.; Pischon, T.; Hardt, S.; Kunz, I.; Luft, F.C. Hypothesis: β-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension, 2001, 37(2), 250-254.
[http://dx.doi.org/10.1161/01.HYP.37.2.250] [PMID: 11230280]
[191]
Manconi, F.; Zuddas, A.; Piccardi, M.; Del Zompo, M.; Corsini, G. Behavioural and biochemical effects of flunarizine on the dopaminergic system in rodents. Cephalalgia, 1987, 7(6), 420-421.
[http://dx.doi.org/10.1177/03331024870070S6185]
[192]
Larsen, P.J.; Jessop, D.S.; Chowdrey, H.S.; Lightman, S.L.; Mikkelsen, J.D. Chronic administration of glucocorticoids directly upregulates prepro-neuropeptide Y and Y1-receptor mRNA levels in the arcuate nucleus of the rat. J. Neuroendocrinol., 1994, 6(2), 153-159.
[http://dx.doi.org/10.1111/j.1365-2826.1994.tb00566.x] [PMID: 8049712]
[193]
Chen, D.; Misra, A.; Garg, A. Clinical review 153: lipodystrophy in human immunodeficiency virus-infected patients. J. Clin. Endocrinol. Metab., 2002, 87(11), 4845-4856.
[http://dx.doi.org/10.1210/jc.2002-020794] [PMID: 12414837]
[194]
Ballon, J.S.; Pajvani, U.; Freyberg, Z.; Leibel, R.L.; Lieberman, J.A. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol. Metab., 2014, 25(11), 593-600.
[http://dx.doi.org/10.1016/j.tem.2014.07.004] [PMID: 25190097]
[195]
Serretti, A.; Mandelli, L. Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry, 2010, 71(10), 1259-1272.
[http://dx.doi.org/10.4088/JCP.09r05346blu] [PMID: 21062615]
[196]
Masand, P.S.; Gupta, S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann. Clin. Psychiatry, 2002, 14(3), 175-182.
[http://dx.doi.org/10.3109/10401230209147454] [PMID: 12585567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy