Review Article

利用基因治疗载体靶向递送神经退行性疾病:基因下一个治疗目标

卷 21, 期 1, 2021

发表于: 17 August, 2020

页: [23 - 42] 页: 20

弟呕挨: 10.2174/1566523220999200817164907

价格: $65

摘要

基因治疗技术,自从它在近50年前出现以来,一直被科学家用作各种疾病的潜在治疗选择。综述讨论了一些主要的神经退行性疾病(NDDs)像阿尔茨海默病(AD)、帕金森病(PD),运动神经元病(MND),脊髓性肌萎缩(SMA),亨廷顿氏病(HD),多发性硬化症(MS)等和其内在的遗传机制以及基因疗法的作用发挥在打击他们。本文还详细讨论了每一种NDDs的发病机制和基因表达改变的分子机制。基因治疗载体的使用将被证明是治疗性现代医学领域的有效工具。因此,对其实施的持续努力和不断的研究可以为我们提供迄今被认为无法治愈的疾病的强有力的治疗选择。

关键词: 基因治疗,神经退行性疾病,病毒载体,非病毒载体,阿尔茨海默病,帕金森病,精神分裂症逆转录病毒

图形摘要
[1]
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches. Brain Sci 2018; 8(9): 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[2]
Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 2009; 10(10): 715-24.
[http://dx.doi.org/10.1038/nrg2662] [PMID: 19763154]
[3]
Li M, Snider BJ. Gene therapy methods and their applications in neurological disorders.In: Gene therapy in neurological disorders. Elsevier 2018; pp. 3-39.
[http://dx.doi.org/10.1016/B978-0-12-809813-4.00001-6]
[4]
Washbourne P, McAllister A K. Techniques for gene transfer into neurons 2002; 12(5): 566-73.
[http://dx.doi.org/10.1016/S0959-4388(02)00365-3]
[5]
Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci 2020; 11: 373-.
[http://dx.doi.org/10.3389/fnagi.2019.00373] [PMID: 31998120]
[6]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77(1): 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[7]
Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013; 9(1): 25-34.
[http://dx.doi.org/10.1038/nrneurol.2012.236] [PMID: 23183882]
[8]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189-9.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[9]
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The role of apoe4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci 2019; 11: 14-4.
[http://dx.doi.org/10.3389/fnagi.2019.00014] [PMID: 30804776]
[10]
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018] [PMID: 23380027]
[11]
Lemmens R, Moore MJ, Al-Chalabi A, Brown RH Jr, Robberecht W. RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33(5): 249-58.
[http://dx.doi.org/10.1016/j.tins.2010.02.003] [PMID: 20227117]
[12]
Gillingwater TH, Wishart TM. Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol Appl Neurobiol 2013; 39(4): 320-34.
[http://dx.doi.org/10.1111/nan.12014] [PMID: 23289367]
[13]
Ahmad S, Bhatia K, Kannan A, Gangwani L. Molecular mechanisms of neurodegeneration in spinal muscular atrophy. J Exp Neurosci 2016; 10: 39-49.
[http://dx.doi.org/10.4137/JEN.S33122] [PMID: 27042141]
[14]
Lennon MJ, Jones SP, Lovelace MD, Guillemin GJ, Brew BJ. Bcl11b: A new piece to the complex puzzle of amyotrophic lateral sclerosis neuropathogenesis? Neurotox Res 2016; 29(2): 201-7.
[http://dx.doi.org/10.1007/s12640-015-9573-5] [PMID: 26563995]
[15]
Goodall EF, Morrison KE. Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev Mol Med 2006; 8(11): 1-22.
[http://dx.doi.org/10.1017/S1462399406010854] [PMID: 16723044]
[16]
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene Therapy for ALS-A Perspective. Int J Mol Sci 2019; 20(18): 4388.
[http://dx.doi.org/10.3390/ijms20184388] [PMID: 31500113]
[17]
Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008; 27(11): 2803-20.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06310.x] [PMID: 18588526]
[18]
Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H. Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 2013; 10(4): 664-76.
[http://dx.doi.org/10.1007/s13311-013-0206-5] [PMID: 24006238]
[19]
Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 2014; 10(4): 225-38.
[http://dx.doi.org/10.1038/nrneurol.2014.37] [PMID: 24638138]
[20]
Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015; 14(2): 183-93.
[http://dx.doi.org/10.1016/S1474-4422(14)70256-X] [PMID: 25772897]
[21]
Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 2011; 24(3): 224-9.
[http://dx.doi.org/10.1097/WCO.0b013e328346056f] [PMID: 21455066]
[22]
Boia R, Ruzafa N, Aires ID, et al. Neuroprotective strategies for retinal ganglion cell degeneration: current status and challenges ahead. Int J Mol Sci 2020; 21(7): 2262.
[http://dx.doi.org/10.3390/ijms21072262] [PMID: 32218163]
[23]
Mirzaei M, Deng L, Gupta VB, Graham S, Gupta V. Complement pathway in Alzheimer’s pathology and retinal neurodegenerative disorders - the road ahead. Neural Regen Res 2020; 15(2): 257-8.
[http://dx.doi.org/10.4103/1673-5374.265550] [PMID: 31552893]
[24]
Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 2005; 18(3): 383-95.
[http://dx.doi.org/10.1016/j.ohc.2005.04.002] [PMID: 16054996]
[25]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[26]
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene therapy tools for brain diseases. Front Pharmacol 2019; 10: 724-4.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[27]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[28]
Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem 2010; 397(8): 3173-8.
[http://dx.doi.org/10.1007/s00216-010-3821-6] [PMID: 20549496]
[29]
Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther 2002; 9(24): 1647-52.
[http://dx.doi.org/10.1038/sj.gt.3301923] [PMID: 12457277]
[30]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[31]
Chung EP, Cotter JD, Prakapenka AV, Cook RL, DiPerna DM, Sirianni RW. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics 2020; 12(2): 93.
[http://dx.doi.org/10.3390/pharmaceutics12020093] [PMID: 31991664]
[32]
Ivics Z, Izsvák Z. Transposons for gene therapy! Curr Gene Ther 2006; 6(5): 593-607.
[http://dx.doi.org/10.2174/156652306778520647] [PMID: 17073604]
[33]
Aronovich EL, McIvor RS, Hackett PB. The sleeping beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 2011; 20(R1): R14-20.
[http://dx.doi.org/10.1093/hmg/ddr140] [PMID: 21459777]
[34]
Zhao S, Jiang E, Chen S, et al. PiggyBac transposon vectors: the tools of the human gene encoding. Transl Lung Cancer Res 2016; 5(1): 120-5.
[PMID: 26958506]
[35]
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7: 76.
[http://dx.doi.org/10.3389/fnmol.2014.00076] [PMID: 25285067]
[36]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[37]
Rincon MY, Zhou L, Marneffe C, et al. AAV mediated delivery of a novel anti-BACE1 VHH reduces Abeta in an Alzheimer’s disease mouse model. bioRxiv 2019; 698506.
[http://dx.doi.org/10.1101/698506]
[38]
Rosenblad C, Li Q, Pioli EY, et al. Vector-mediated l-3,4-dihydroxyphenylalanine delivery reverses motor impairments in a primate model of Parkinson’s disease. Brain 2019; 142(8): 2402-16.
[http://dx.doi.org/10.1093/brain/awz176] [PMID: 31243443]
[39]
Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J Neurol 2019; 266(1): 27-36.
[http://dx.doi.org/10.1007/s00415-018-8919-3] [PMID: 29845377]
[40]
Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-beta peptide in vivo. Gene Ther 2006; 13(14): 1068-79.
[http://dx.doi.org/10.1038/sj.gt.3302719] [PMID: 16541122]
[41]
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 2015; 8: 14-4.
[http://dx.doi.org/10.3389/fnmol.2015.00014] [PMID: 26041987]
[42]
Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4(2): 43-63.
[http://dx.doi.org/10.1016/j.gendis.2017.04.001] [PMID: 28944281]
[43]
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[44]
Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol 2011; 807: 47-92.
[http://dx.doi.org/10.1007/978-1-61779-370-7_3] [PMID: 22034026]
[45]
Chen CL, Jensen RL, Schnepp BC, et al. Molecular characterization of adeno-associated viruses infecting children. J Virol 2005; 79(23): 14781-92.
[http://dx.doi.org/10.1128/JVI.79.23.14781-14792.2005] [PMID: 16282478]
[46]
Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012; 12(6): 757-66.
[http://dx.doi.org/10.1517/14712598.2012.681463] [PMID: 22519910]
[47]
Ma C-C, Wang Z-L, Xu T, He Z-Y, Wei Y-Q. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 401: 07502.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107502] [PMID: 31887345]
[48]
Liu H, Tariq R, Liu GL, Yan H, Kaye AD. Inadvertent intrathecal injections and best practice management. Acta Anaesthesiol Scand 2017; 61(1): 11-22.
[http://dx.doi.org/10.1111/aas.12821] [PMID: 27766633]
[49]
Ding J, Allen E, Wang W, et al. Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet 2006; 15(9): 1451-63.
[http://dx.doi.org/10.1093/hmg/ddl069] [PMID: 16565160]
[50]
Chira S, Jackson CS, Oprea I, et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2015; 6(31): 30675-703.
[http://dx.doi.org/10.18632/oncotarget.5169] [PMID: 26362400]
[51]
Fedorova E, Battini L, Prakash-Cheng A, Marras D, Gusella GL. Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice. J Gene Med 2006; 8(4): 414-24.
[http://dx.doi.org/10.1002/jgm.861] [PMID: 16389638]
[52]
Cohen-Pfeffer JL, Gururangan S, Lester T, et al. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol 2017; 67: 23-35.
[http://dx.doi.org/10.1016/j.pediatrneurol.2016.10.022] [PMID: 28089765]
[53]
Rubenstein JL, Li J, Chen L, et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood 2013; 121(5): 745-51.
[http://dx.doi.org/10.1182/blood-2012-07-440974] [PMID: 23197589]
[54]
Vuillemenot BR, Kennedy D, Reed RP, et al. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: safety, pharmacokinetics, and distribution. Toxicol Appl Pharmacol 2014; 277(1): 49-57.
[http://dx.doi.org/10.1016/j.taap.2014.03.005] [PMID: 24642058]
[55]
. A Phase 1/2 open-label dose-escalation study to evaluate safety, tolerability, pharmacokinetics, and efficacy of intracerebroventricular BMN 190 in patients with late-infantile neuronal ceroid lipofuscinosis (CLN2) disease. U.S. Patent NCT01907087, 2013.
[56]
An open label, safety and tolerability continuation study of intracerebroventricular administration of snn0029 to patients with amyotrophic lateral sclerosis. U.S. Patent NCT01384162, 2011.
[57]
Study on tolerability of repeat I.C.V. administration of sNN0031 infusion solution in patients with PD. US Patent NCT02408562, 2015.
[58]
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2013; 68: 2-82.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.015] [PMID: 23246909]
[59]
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol 2020; 41: 1289-300.
[http://dx.doi.org/10.1038/s41401-019-0338-1]
[60]
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91: 25-33.
[http://dx.doi.org/10.1016/j.mcn.2018.03.013] [PMID: 29596897]
[61]
Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3: 16034-4.
[http://dx.doi.org/10.1038/mtm.2016.34] [PMID: 27257611]
[62]
Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014; 11(4): 517-35.
[http://dx.doi.org/10.1517/17425247.2014.882314] [PMID: 24479793]
[63]
Kazuki Y, Oshimura M. Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 2011; 19(9): 1591-601.
[http://dx.doi.org/10.1038/mt.2011.136] [PMID: 21750534]
[64]
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10: 486.
[PMID: 31105589]
[65]
Daya S, Berns K I J C mr. Gene therapy using adeno-associated virus vectors 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08]
[66]
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol 2019; 10: 486-6.
[http://dx.doi.org/10.3389/fphys.2019.00486] [PMID: 31105589]
[67]
Janson C, McPhee S, Bilaniuk L, et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 2002; 13(11): 1391-412.
[http://dx.doi.org/10.1089/104303402760128612] [PMID: 12162821]
[68]
Eyjolfsdottir H, Eriksdotter M, Linderoth B, et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 2016; 8(1): 30.
[http://dx.doi.org/10.1186/s13195-016-0195-9] [PMID: 27389402]
[69]
Sun A. Lysosomal storage disease overview. Ann Transl Med 2018; 6(24): 476-6.
[http://dx.doi.org/10.21037/atm.2018.11.39] [PMID: 30740407]
[70]
Bailey RM, Armao D, Nagabhushan Kalburgi S, Gray SJ. Development of intrathecal AAV9 gene therapy for giant axonal neuropathy. Mol Ther Methods Clin Dev 2018; 9: 160-71.
[http://dx.doi.org/10.1016/j.omtm.2018.02.005] [PMID: 29766026]
[71]
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical mouse models of neurodegenerative lysosomal storage diseases. Front Mol Biosci 2020; 7: 57.
[http://dx.doi.org/10.3389/fmolb.2020.00057] [PMID: 32351971]
[72]
Weismann CM, Ferreira J, Keeler AM, et al. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum Mol Genet 2015; 24(15): 4353-64.
[http://dx.doi.org/10.1093/hmg/ddv168] [PMID: 25964428]
[73]
Hinderer C, Bell P, Gurda BL, et al. Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I. Mol Ther 2014; 22(12): 2018-27.
[http://dx.doi.org/10.1038/mt.2014.135] [PMID: 25027660]
[74]
Gilkes JA, Bloom MD, Heldermon CD. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes. Mol Genet Metab Rep 2015; 6: 48-54.
[http://dx.doi.org/10.1016/j.ymgmr.2015.11.006] [PMID: 27014573]
[75]
Gray-Edwards HL, Brunson BL, Holland M, et al. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol Genet Metab 2015; 116(1-2): 80-7.
[http://dx.doi.org/10.1016/j.ymgme.2015.05.003] [PMID: 25971245]
[76]
Miyake N, Miyake K, Asakawa N, Yamamoto M, Shimada T. Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Ther 2014; 21(4): 427-33.
[http://dx.doi.org/10.1038/gt.2014.17] [PMID: 24572788]
[77]
Lin D-S, Hsiao C-D, Lee AY-L, et al. Mitigation of cerebellar neuropathy in globoid cell leukodystrophy mice by AAV-mediated gene therapy. Gene 2015; 571(1): 81-90.
[http://dx.doi.org/10.1016/j.gene.2015.06.049] [PMID: 26115766]
[78]
Wang Y, Chen X, Liu C, et al. Metachromatic leukodystrophy: Characterization of two (p.Leu433Val, p.Gly449Arg) arylsulfatase A mutations. Exp Ther Med 2019; 18(3): 1738-44.
[http://dx.doi.org/10.3892/etm.2019.7760] [PMID: 31410132]
[79]
Consiglio A, Quattrini A, Martino S, et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 2001; 7(3): 310-6.
[http://dx.doi.org/10.1038/85454] [PMID: 11231629]
[80]
Rosenberg JB, Kaminsky SM, Aubourg P, Crystal RG, Sondhi D. Gene therapy for metachromatic leukodystrophy. J Neurosci Res 2016; 94(11): 1169-79.
[http://dx.doi.org/10.1002/jnr.23792] [PMID: 27638601]
[81]
Zahoor I, Shafi A, Haq E. Pharmacological treatment of parkinson’s disease.parkinson’s disease: pathogenesis and clinical aspects; Stoker TB, Greenland JC, Eds Brisbane (AU). In: 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch7]
[82]
Badin RA, Binley K, Van Camp N, et al. Gene therapy for parkinson’s disease: preclinical evaluation of optimally configured th:ch1 fusion for maximal dopamine synthesis. Mol Ther Methods Clin Dev 2019; 14: 206-16.
[http://dx.doi.org/10.1016/j.omtm.2019.07.002] [PMID: 31406701]
[83]
Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383(9923): 1138-46.
[http://dx.doi.org/10.1016/S0140-6736(13)61939-X] [PMID: 24412048]
[84]
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67(4): 657-85.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[85]
Golzio M, Mazzolini L, Moller P, Rols MP, Teissié J. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 2005; 12(3): 246-51.
[http://dx.doi.org/10.1038/sj.gt.3302405] [PMID: 15592423]
[86]
Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an in vitro model of huntington’s disease. Int J Mol Sci 2017; 18(4): 754.
[http://dx.doi.org/10.3390/ijms18040754] [PMID: 28368337]
[87]
Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014; 25(5): 461-74.
[http://dx.doi.org/10.1089/hum.2013.200] [PMID: 24484067]
[88]
Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 2008; 16(5): 947-56.
[http://dx.doi.org/10.1038/mt.2008.50] [PMID: 18388917]
[89]
Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 2009; 19(9): 774-8.
[http://dx.doi.org/10.1016/j.cub.2009.03.030] [PMID: 19361997]
[90]
Bendotti C, Carrì MT. Lessons from models of SOD1-linked familial ALS. Trends Mol Med 2004; 10(8): 393-400.
[http://dx.doi.org/10.1016/j.molmed.2004.06.009] [PMID: 15310460]
[91]
Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52(1): 39-59.
[http://dx.doi.org/10.1016/j.neuron.2006.09.018] [PMID: 17015226]
[92]
Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 2006; 7(9): 710-23.
[http://dx.doi.org/10.1038/nrn1971] [PMID: 16924260]
[93]
Shefner JM, Reaume AG, Flood DG, et al. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 1999; 53(6): 1239-46.
[http://dx.doi.org/10.1212/WNL.53.6.1239] [PMID: 10522879]
[94]
Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 2016; 4(7): 35-50.
[http://dx.doi.org/10.14304/SURYA.JPR.V4N7.5] [PMID: 27570789]
[95]
McCampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest 2018; 128(8): 3558-67.
[http://dx.doi.org/10.1172/JCI99081] [PMID: 30010620]
[96]
Ly CV, Miller TM. Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2018; 31(5): 648-54.
[http://dx.doi.org/10.1097/WCO.0000000000000594] [PMID: 30028737]
[97]
Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24(3): 430-46.
[http://dx.doi.org/10.1038/mt.2016.10] [PMID: 26755333]
[98]
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[99]
Hotta A, Yamanaka S. From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu Rev Genet 2015; 49: 47-70.
[http://dx.doi.org/10.1146/annurev-genet-112414-054926] [PMID: 26407033]
[100]
Marrone L, Bus C, Schöndorf D, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson’s disease. PLoS One 2018; 13(3): e0192497
[http://dx.doi.org/10.1371/journal.pone.0192497] [PMID: 29513666]
[101]
Ousterout DG, Kabadi AM, Thakore PI, et al. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Therap 2015; 23(3): 523-32.
[http://dx.doi.org/10.1038/mt.2014.234]
[102]
Huang R, Hui S, Zhang M, et al. A conserved basal transcription factor is required for the function of diverse tal effectors in multiple plant hosts. Front Plant Sci 2017; 8: 1919-9.
[http://dx.doi.org/10.3389/fpls.2017.01919] [PMID: 29163628]
[103]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[104]
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 2013; 6(6): 2008-11.
[http://dx.doi.org/10.1093/mp/sst121] [PMID: 23963532]
[105]
Carlson DF, Fahrenkrug SC, Hackett PB. Targeting DNA with fingers and TALENs Mol Ther Nucleic Acids 2012. 1e3
[http://dx.doi.org/10.1038/mtna.2011.5] [PMID: 23344620]
[106]
Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321-34.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[107]
Zhou J, Shen B, Zhang W, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 2014; 46: 49-55.
[http://dx.doi.org/10.1016/j.biocel.2013.10.010] [PMID: 24269190]
[108]
Ma Y, Shen B, Zhang X, et al. Heritable multiplex genetic engineering in rats using CRISPR/Cas9. PLoS One 2014; 9(3): e89413.
[http://dx.doi.org/10.1371/journal.pone.0089413] [PMID: 24598943]
[109]
Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25(3): 427-32.
[http://dx.doi.org/10.1038/s41591-019-0344-3] [PMID: 30778238]
[110]
Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids 2019; 17: 829-39.
[http://dx.doi.org/10.1016/j.omtn.2019.07.009] [PMID: 31465962]
[111]
DiDonato CJ, Parks RJ, Kothary R. Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 2003; 14(2): 179-88.
[http://dx.doi.org/10.1089/104303403321070874] [PMID: 12614569]
[112]
Zhang M-L, Lorson CL, Androphy EJ, Zhou J. An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 2001; 8(20): 1532-8.
[http://dx.doi.org/10.1038/sj.gt.3301550] [PMID: 11704813]
[113]
Singh RN, Singh NN. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv Neurobiol 2018; 20: 31-61.
[http://dx.doi.org/10.1007/978-3-319-89689-2_2] [PMID: 29916015]
[114]
Lorson MA, Lorson CL. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med Chem 2012; 4(16): 2067-84.
[http://dx.doi.org/10.4155/fmc.12.131] [PMID: 23157239]
[115]
Friedmann T. Progress toward human gene therapy. Science 1989; 244(4910): 1275-81.
[http://dx.doi.org/10.1126/science.2660259] [PMID: 2660259]
[116]
Sumner CJ, Crawford TO. Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest 2018; 128(8): 3219-27.
[http://dx.doi.org/10.1172/JCI121658] [PMID: 29985170]
[117]
Gouze-Decaris E, Pawliuk R, Pilapil C, Leboulch P, Evans CH, Ghivizzani SC. In vitro and in vivo gene delivery using a lentiviral vector. Arthritis Res 2001; 3(Suppl. 1): 34-P34.
[http://dx.doi.org/10.1186/ar361]
[118]
Cherry JJ, Osman EY, Evans MC, et al. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds. EMBO Mol Med 2013; 5(7): 1103-18.
[http://dx.doi.org/10.1002/emmm.201202305] [PMID: 23740718]
[119]
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21.
[http://dx.doi.org/10.1016/S0896-6273(03)00434-3] [PMID: 12895417]
[120]
Dodart JC, Marr RA, Koistinaho M, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2005; 102(4): 1211-6.
[http://dx.doi.org/10.1073/pnas.0409072102] [PMID: 15657137]
[121]
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer’s disease. Neural Regen Res 2018; 13(1): 19-25.
[http://dx.doi.org/10.4103/1673-5374.224362] [PMID: 29451200]
[122]
Wang M-M, Miao D, Cao X-P, Tan L, Tan L. Innate immune activation in Alzheimer’s disease. Ann Transl Med 2018; 6(10): 177.
[http://dx.doi.org/10.21037/atm.2018.04.20] [PMID: 29951499]
[123]
Saadoun D, Rosenzwajg M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011; 365(22): 2067-77.
[http://dx.doi.org/10.1056/NEJMoa1105143] [PMID: 22129253]
[124]
Alves S, Churlaud G, Audrain M, et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain 2017; 140(3): 826-42.
[PMID: 28003243]
[125]
Zhao L, Gottesdiener AJ, Parmar M, et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging 2016; 44: 159-72.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.04.020] [PMID: 27318144]
[126]
Raikwar SP, Thangavel R, Dubova I, et al. Targeted gene editing of glia maturation factor in microglia: a novel Alzheimer’s disease therapeutic target. Mol Neurobiol 2019; 56(1): 378-93.
[http://dx.doi.org/10.1007/s12035-018-1068-y] [PMID: 29704201]
[127]
Sasmita AO. Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotechnol Genet Eng Rev 2019; 35(1): 26-45.
[http://dx.doi.org/10.1080/02648725.2018.1523521] [PMID: 30317930]
[128]
Rosenberg JB, Kaplitt MG, De BP, et al. 10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer's disease 2018; 29(1): 24-47.
[129]
O’Connor DM, Boulis NM. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21(8): 504-12.
[http://dx.doi.org/10.1016/j.molmed.2015.06.001] [PMID: 26122838]
[130]
Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97.
[http://dx.doi.org/10.1038/mt.2013.281] [PMID: 24356252]
[131]
Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 2012; 23(4): 377-81.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[132]
Emborg ME, Moirano J, Raschke J, et al. Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 2009; 36(2): 303-11.
[http://dx.doi.org/10.1016/j.nbd.2009.07.022] [PMID: 19660547]
[133]
Herzog CD, Brown L, Kruegel BR, et al. Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis 2013; 58: 38-48.
[http://dx.doi.org/10.1016/j.nbd.2013.04.011] [PMID: 23631873]
[134]
Warren Olanow C, Bartus RT, Baumann TL, et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. Ann Neurol 2015; 78(2): 248-57.
[http://dx.doi.org/10.1002/ana.24436] [PMID: 26061140]
[135]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[136]
Nicolson GL. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas) 2014; 13(4): 35-43.
[PMID: 26770107]
[137]
Oliveira de Carvalho A, Filho ASS, Murillo-Rodriguez E, Rocha NB, Carta MG, Machado S. Physical exercise for parkinson’s disease: clinical and experimental evidence. Clin Pract Epidemiol Ment Health 2018; 14: 89-98.
[http://dx.doi.org/10.2174/1745017901814010089] [PMID: 29785199]
[138]
Burghes AHM, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10(8): 597-609.
[http://dx.doi.org/10.1038/nrn2670] [PMID: 19584893]
[139]
Branchu J, Biondi O, Chali F, et al. Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells. J Neurosci 2013; 33(10): 4280-94.
[http://dx.doi.org/10.1523/JNEUROSCI.2728-12.2013] [PMID: 23467345]
[140]
Howell MD, Singh NN, Singh RN. Advances in therapeutic development for spinal muscular atrophy. Future Med Chem 2014; 6(9): 1081-99.
[http://dx.doi.org/10.4155/fmc.14.63] [PMID: 25068989]
[141]
Awano T, Kim J-K, Monani UR. Spinal muscular atrophy: journeying from bench to bedside. Neurotherapeutics 2014; 11(4): 786-95.
[http://dx.doi.org/10.1007/s13311-014-0293-y] [PMID: 24990202]
[142]
Singh NN, Lee BM, DiDonato CJ, Singh RN. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7(13): 1793-808.
[http://dx.doi.org/10.4155/fmc.15.101] [PMID: 26381381]
[143]
Seo J, Ottesen EW, Singh RN. Antisense methods to modulate pre-mRNA splicing. Methods Mol Biol 2014; 1126: 271-83.
[http://dx.doi.org/10.1007/978-1-62703-980-2_20] [PMID: 24549671]
[144]
Singh RN, Singh NN, Singh NK, Androphy EJ. Spinal muscular atrophy (SMA) treatment via targeting of SMN2 splice site inhibitory sequences U.S. Patent 20190292540, 2010.
[145]
Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006; 26(4): 1333-46.
[http://dx.doi.org/10.1128/MCB.26.4.1333-1346.2006] [PMID: 16449646]
[146]
Pattali R, Mou Y, Li X-J. AAV9 Vector: a Novel modality in gene therapy for spinal muscular atrophy. Gene Ther 2019; 26(7-8): 287-95.
[http://dx.doi.org/10.1038/s41434-019-0085-4] [PMID: 31243392]
[147]
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 2018; 29(3): 285-98.
[http://dx.doi.org/10.1089/hum.2018.015] [PMID: 29378426]
[148]
Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010; 28(3): 271-4.
[http://dx.doi.org/10.1038/nbt.1610] [PMID: 20190738]
[149]
Passini MA, Bu J, Roskelley EM, et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120(4): 1253-64.
[http://dx.doi.org/10.1172/JCI41615] [PMID: 20234094]
[150]
Valori CF, Ning K, Wyles M, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010; 2(35): 35ra42-2.
[http://dx.doi.org/10.1126/scitranslmed.3000830]
[151]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[152]
Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision medicine through antisense oligonucleotide-mediated exon skipping. Trends Pharmacol Sci 2018; 39(11): 982-94.
[http://dx.doi.org/10.1016/j.tips.2018.09.001] [PMID: 30282590]
[153]
Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther 2017; 25(5): 1069-75.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[154]
Donde A, Wong PC, Chen LL. Challenges and advances in gene therapy approaches for neurodegenerative disorders. Curr Gene Ther 2017; 17(3): 187-93.
[http://dx.doi.org/10.2174/1566523217666171013124150] [PMID: 29034834]
[155]
Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs 2019; 79(11): 1255-62.
[http://dx.doi.org/10.1007/s40265-019-01162-5] [PMID: 31270752]
[156]
Dabbous O, Maru B, Jansen JP, et al. Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv Ther 2019; 36(5): 1164-76.
[http://dx.doi.org/10.1007/s12325-019-00923-8] [PMID: 30879249]
[157]
Wootz H, Hansson I, Korhonen L, Lindholm D. XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 2006; 312(10): 1890-8.
[http://dx.doi.org/10.1016/j.yexcr.2006.02.021] [PMID: 16566922]
[158]
Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004; 429(6990): 413-7.
[http://dx.doi.org/10.1038/nature02544] [PMID: 15164063]
[159]
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 2010; 4: 32-2.
[http://dx.doi.org/10.3389/fnins.2010.00032] [PMID: 20592948]
[160]
Benkler C, Barhum Y, Ben-Zur T, Offen D. Multifactorial gene therapy enhancing the glutamate uptake system and reducing oxidative stress delays symptom onset and prolongs survival in the SOD1-G93A ALS mouse model. J Mol Neurosci 2016; 58(1): 46-58.
[http://dx.doi.org/10.1007/s12031-015-0695-2] [PMID: 26691332]
[161]
Biferi MG, Cohen-Tannoudji M, Cappelletto A, et al. A new AAV10-U7-mediated gene therapy prolongs survival and restores function in an ALS mouse model. Mol Ther 2017; 25(9): 2038-52.
[http://dx.doi.org/10.1016/j.ymthe.2017.05.017] [PMID: 28663100]
[162]
Ali RR, Reichel MB, Thrasher AJ, et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5(5): 591-4.
[http://dx.doi.org/10.1093/hmg/5.5.591] [PMID: 8733124]
[163]
Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94(13): 6916-21.
[http://dx.doi.org/10.1073/pnas.94.13.6916] [PMID: 9192666]
[164]
Jomary C, Vincent KA, Grist J, Neal MJ, Jones SE. Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther 1997; 4(7): 683-90.
[http://dx.doi.org/10.1038/sj.gt.3300440] [PMID: 9282169]
[165]
Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci USA 2005; 102(35): 12413-8.
[http://dx.doi.org/10.1073/pnas.0503460102] [PMID: 16116091]
[166]
Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19(10): 979-90.
[http://dx.doi.org/10.1089/hum.2008.107] [PMID: 18774912]
[167]
Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358(21): 2240-8.
[http://dx.doi.org/10.1056/NEJMoa0802315] [PMID: 18441370]
[168]
Ochakovski GA, Bartz-Schmidt KU, Fischer MD. Retinal gene therapy: surgical vector delivery in the translation to clinical trials. Front Neurosci 2017; 11: 174-4.
[http://dx.doi.org/10.3389/fnins.2017.00174] [PMID: 28420956]
[169]
Yang S, Ma SQ, Wan X, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine 2016; 10: 258-68.
[http://dx.doi.org/10.1016/j.ebiom.2016.07.002] [PMID: 27426279]
[170]
Guy J, Feuer WJ, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: low-and medium-dose visual results. Ophthalmology 2017; 124(11): 1621-34.
[http://dx.doi.org/10.1016/j.ophtha.2017.05.016] [PMID: 28647203]
[171]
Roh YJ, Rho CR, Cho W-K, Kang S. Science, V. The antiangiogenic effects of gold nanoparticles on experimental choroidal neovascularization in mice. Invest Ophthalmol Vis Sci 2016; 57(15): 6561-7.
[http://dx.doi.org/10.1167/iovs.16-19754] [PMID: 27918830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy