Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Investigating the Molecular Basis for the Selective Inhibition of Aldehyde Dehydrogenase 2 by the Isoflavonoid Daidzin

Author(s): Thayssa Tavares da Silva Cunha, Felipe Rodrigues de Souza, Pedro de Sena Murteira Pinheiro, Carlos Maurício Rabello de Sant’Anna, François Noël, Tanos Celmar Costa França and Carlos Alberto Manssour Fraga*

Volume 19, Issue 6, 2020

Page: [437 - 447] Pages: 11

DOI: 10.2174/1871527319999200817153150

Price: $65

Abstract

Background: ALDH-2 has been considered an important molecular target for the treatment of drug addiction due to its involvement in the metabolism of the neurotransmitter dopamine: however, the molecular basis for the selective inhibition of ALDH-2 versus ALDH-1 should be better investigated to enable a more pragmatic approach to the design of novel ALDH-2 selective inhibitors.

Objective: In the present study, we investigated the molecular basis for the selective inhibition of ALDH-2 by the antioxidant isoflavonoid daidzin (IC50 = 0.15 μM) compared to isoform 1 of ALDH through molecular dynamics studies and semiempirical calculations of the enthalpy of interaction.

Methods: The applied methodology consisted of performing the molecular docking of daidzin in the structures of ALDH-1 and ALDH-2 and submitting the lower energy complexes obtained to semiempirical calculations and dynamic molecular simulations.

Results: Daidzin in complex with ALDH-2 presented directed and more specific interactions, resulting in stronger bonds in energetic terms and, therefore, in enthalpic gain. Moreover, the hydrophobic subunits of daidzin, in a conformationally more restricted environment (such as the catalytic site of ALDH-2), promote the better organization of the water molecules when immersed in the solvent, also resulting in an entropic gain.

Conclusion: The molecular basis of selective inhibition of ALDH-2 by isoflavonoids and related compounds could be related to a more favorable equilibrium relationship between enthalpic and entropic features. The results described herein expand the available knowledge regarding the physiopathological and therapeutic mechanisms associated with drug addiction.

Keywords: ALDH-2, molecular dynamics, daidzin, selective inhibition, isoflavonoids, nucleus accumbens.

Graphical Abstract
[1]
Schulte MT, Hser YI. Substance use and associated health conditions throughout the lifespan. Public Health Rev 2014; 35(2): 1-23.
[PMID: 28366975]
[2]
Volkow ND, Baler RD, Goldstein RZ. Addiction: Pulling at the neural threads of social behaviors. Neuron 2011; 69(4): 599-602.
[http://dx.doi.org/10.1016/j.neuron.2011.01.027] [PMID: 21338873]
[3]
World Drug Report Global overview of drug demand and supply 2019. Available from https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_2_DRUG_DEMAND.pdf
[4]
Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry 2004; 12(6): 305-20.
[http://dx.doi.org/10.1080/10673220490910844] [PMID: 15764467]
[5]
Ozburn AR, Janowsky AJ, Crabbe JC. Commonalities and distinctions among mechanisms of addiction to alcohol and other drugs. Alcohol Clin Exp Res 2015; 39(10): 1863-77.
[http://dx.doi.org/10.1111/acer.12810] [PMID: 26431116]
[6]
Konova AB, Moeller SJ, Goldstein RZ. Common and distinct neural targets of treatment: Changing brain function in substance addiction. Neurosci Biobehav Rev 2013; 37(10 Pt. 2): 2806-17.
[http://dx.doi.org/10.1016/j.neubiorev.2013.10.002] [PMID: 24140399]
[7]
Heidbreder C. Novel pharmacotherapeutic targets for the management of drug addiction. Eur J Pharmacol 2005; 526(1-3): 101-12.
[http://dx.doi.org/10.1016/j.ejphar.2005.09.038] [PMID: 16253234]
[8]
Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: A matter of choice? Transl Psychiatry 2019; 9(1): 255.
[http://dx.doi.org/10.1038/s41398-019-0591-6 ] [PMID: 31594920]
[9]
Keung WM. Anti-dipsotropic isoflavones: The potential therapeutic agents for alcohol dependence. Med Res Rev 2003; 23(6): 669-96.
[http://dx.doi.org/10.1002/med.10049] [PMID: 12939789]
[10]
Lowe ED, Gao GY, Johnson LN, Keung WM. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J Med Chem 2008; 51(15): 4482-7.
[http://dx.doi.org/10.1021/jm800488j] [PMID: 18613661]
[11]
Arolfo MP, Overstreet DH, Yao L, et al. Suppression of heavy drinking and alcohol seeking by a selective ALDH-2 inhibitor. Alcohol Clin Exp Res 2009; 33(11): 1935-44.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01031.x] [PMID: 19673742]
[12]
Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev 2004; 36(2): 279-99.
[http://dx.doi.org/10.1081/DMR-120034001] [PMID: 15237855]
[13]
Yoval-Sánchez B, Rodríguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol 2012; 25(3): 722-9.
[http://dx.doi.org/10.1021/tx2005184] [PMID: 22339434]
[14]
Batt RD. Regulation, Enzymology and Metabolism of Ethanol.Human Metabolism of Alcohol. Boca Raton: CRC Press 1989; vol. 11: pp. 3-16.
[15]
Yoshida A, Rzhetsky A, Hsu LC, Chang C. Human aldehyde dehydrogenase gene family. Eur J Biochem 1998; 251(3): 549-57.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2510549.x] [PMID: 9490025]
[16]
Oyama T, Isse T, Kagawa N, et al. Tissue-distribution of aldehyde dehysrogenase 2 and effects of the ALDH-2 gene-disruption on the expression of enzymes involved in alcohol metabolism. Front Biosci 2005; 10: 421-8.
[http://dx.doi.org/10.2741/1589]
[17]
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4(6): 697-720.
[http://dx.doi.org/10.1517/17425255.4.6.697] [PMID: 18611112]
[18]
Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol Rev 2014; 94(1): 1-34.
[http://dx.doi.org/10.1152/physrev.00017.2013] [PMID: 24382882]
[19]
Dixit VA, Lal LA, Agrawal SR. Wires recent advances in the prediction of non-CYP450-mediated drug metabolism. Comput Mol Sci 2017; 7: 1-43.
[http://dx.doi.org/10.1002/wcms.1323]
[20]
Yao L, Fan P, Arolfo M, et al. Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use-dependent inhibitor of dopamine synthesis. Nat Med 2010; 16(9): 1024-8.
[http://dx.doi.org/10.1038/nm.2200] [PMID: 20729865]
[21]
Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol 2006; 66(7): 606-30.
[http://dx.doi.org/10.1002/neu.20242] [PMID: 16688755]
[22]
Keung WM, Vallee BL. Daidzin: A potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA 1993; 90(4): 1247-51.
[http://dx.doi.org/10.1073/pnas.90.4.1247] [PMID: 8433985]
[23]
Wang X, Weiner H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry 1995; 34(1): 237-43.
[http://dx.doi.org/10.1021/bi00001a028] [PMID: 7819202]
[24]
Ferreira TTSC, Fraga CAM. Understanding the structural basis of ALDH-2 inhibition by molecular docking. Med Chem 2016; 12: 506-12.
[25]
Bikadi Z, Hazai E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of Auto Dock. J Cheminform 2009; 1: 15.
[http://dx.doi.org/10.1186/1758-2946-1-15] [PMID: 20150996]
[26]
Christensen AS, Kromann JC, Jensen JH, Cui Q. Intermolecular interactions in the condensed phase: Evaluation of semi-empirical quantum mechanical methods. J Chem Phys 2017; 147(16)161704
[http://dx.doi.org/10.1063/1.4985605] [PMID: 29096452]
[27]
Morgan CA, Hurley TD. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. J Med Chem 2015; 58(4): 1964-75.
[http://dx.doi.org/10.1021/jm501900s] [PMID: 25634381]
[28]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[29]
Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19: 1639-62.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[30]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[31]
Manning T, Sleator RD, Walsh P. Naturally selecting solutions: The use of genetic algorithms in bioinformatics. Bioengineered 2013; 4(5): 266-78.
[http://dx.doi.org/10.4161/bioe.23041] [PMID: 23222169]
[32]
Korb O, Stützle T, Exner TE. Empirical scoring functions for advanced protein-ligand docking with Plants. J Chem Inf Model 2009; 49(1): 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[33]
Ni L, Zhou J, Hurley TD, Weiner H. Human liver mitochondrial aldehyde dehydrogenase: Three-dimensional structure and the restoration of solubility and activity of chimeric forms. Protein Sci 1999; 8(12): 2784-90.
[http://dx.doi.org/10.1110/ps.8.12.2784] [PMID: 10631996]
[34]
Stewart JJP. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 2013; 19(1): 1-32.
[http://dx.doi.org/10.1007/s00894-012-1667-x] [PMID: 23187683]
[35]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[36]
Jorgensen WL, Maxwell DS, Rives-Tirado J. Development and testing of the OPLS All-Atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225-36.
[http://dx.doi.org/10.1021/ja9621760]
[37]
Kaminski GA, Friesner RA. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem 2001; 105: 6474-87.
[http://dx.doi.org/10.1021/jp003919d]
[38]
Robertson MJ, Tirado-Rives J, Jorgensen WL. Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput 2015; 11(7): 3499-509.
[http://dx.doi.org/10.1021/acs.jctc.5b00356] [PMID: 26190950]
[39]
Jorgensen WL, Madura JD. Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. J Am Chem Soc 1983; 105: 1407-13.
[http://dx.doi.org/10.1021/ja00344a001]
[40]
Petrova SS, Solov’ev AD. The origin of the method of steepest descent. Hist Math 1997; 24: 361-75.
[http://dx.doi.org/10.1006/hmat.1996.2146]
[41]
Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 1952; 49: 409-36.
[http://dx.doi.org/10.6028/jres.049.044]
[42]
Nocedal J. Updating quase-Newton matrices with limited storage. Math Comput 1980; 35: 773-82.
[http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7]
[43]
Telitchev IY, Vinogradov O. Modeling of hydrogen-assisted cracking in iron crystal using a quasi-Newton method. J Mol Model 2008; 14(7): 621-30.
[http://dx.doi.org/10.1007/s00894-008-0316-x] [PMID: 18481119]
[44]
Ray JR, Rahman A. Statistical ensembles and molecular dynamics studies of anisotropic solids. J Chem Phys 1984; 80: 4423-8.
[http://dx.doi.org/10.1063/1.447221]
[45]
Hess B. A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 2008; 4(1): 116-22.
[http://dx.doi.org/10.1021/ct700200b] [PMID: 26619985]
[46]
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577-93.
[http://dx.doi.org/10.1063/1.470117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy