Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Current Biomedical and Diagnostic Applications of Gold Micro and Nanoparticles

Author(s): Miroslav Pohanka*

Volume 21, Issue 9, 2021

Published on: 30 July, 2020

Page: [1085 - 1095] Pages: 11

DOI: 10.2174/1389557520666200730155616

Price: $65

Abstract

Production of particles and their adaptation in the pharmacology became an object of interest, and they are the currently introduced therapies based on the use of micro and nanoparticles. The use of gold particles is not an exception. This review has focused on the application of gold micro and nanoparticles in pharmacology and biomedicine. The particles can be used for diagnosis respective theranostic of cancer, rheumatoid arthritis and as antimicrobial means. Besides these applications, specifications of gold, gold particles, and colloidal gold manufacturing and their comparison with the solid gold, are described as well. This review is based on a survey of actual scientific literature.

Keywords: Biomedicine, cancer, chrysotherapy, drug delivery, gold, hyperthermia, magnetic resonance imaging, microparticles, nanoparticles, nanomedicine, nanotechnology, photothermal therapy, theragnostic.

Graphical Abstract
[1]
Shifrina, Z.B.; Matveeva, V.G.; Bronstein, L.M. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev., 2020, 120(2), 1350-1396.
[http://dx.doi.org/10.1021/acs.chemrev.9b00137] [PMID: 31181907]
[2]
Sadovnikov, S.I.; Gusev, A.I.; Rempel, A.A. Nanostructured lead sulfide: Synthesis, structure and properties. Russ. Chem. Rev., 2016, 85(7), 731-758.
[http://dx.doi.org/10.1070/RCR4594]
[3]
Kozhevnikova, N.S.; Vorokh, A.S.; Uritskaya, A.A. Cadmium sulfide nanoparticles prepared by chemical bath deposition. Russ. Chem. Rev., 2015, 84(3), 225-250.
[http://dx.doi.org/10.1070/RCR4452]
[4]
Pohanka, M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl. Lek Listy, 2019, 120(6), 397-409.
[http://dx.doi.org/10.4149/BLL_2019_065] [PMID: 31223019]
[5]
Ameh, T.; Sayes, C.M. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Pharmacol., 2019, 71, 103220-103220.
[http://dx.doi.org/10.1016/j.etap.2019.103220] [PMID: 31306862]
[6]
Pohanka, M. Magnetic particles in electrochemical analyses. Int. J. Electrochem. Sci., 2018, 13(12), 12000-12009.
[http://dx.doi.org/10.20964/2018.12.259]
[7]
Tangchaikeeree, T.; Polpanich, D.; Elaissari, A.; Jangpatarapongsa, K. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems. Colloids Surf. B Biointerfaces, 2017, 158, 1-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.024] [PMID: 28654866]
[8]
Zhao, K.; Li, D.; Shi, C.; Ma, X.; Rong, G.; Kang, H.; Wang, X.; Sun, B. Biodegradable polymeric nanoparticles as the delivery carrier for drug. Curr. Drug Deliv., 2016, 13(4), 494-499.
[http://dx.doi.org/10.2174/156720181304160521004609 ] [PMID: 27230997]
[9]
Serenko, O.A.; Muzafarov, A.M. Polymer composites with surface modified SiO2 nanoparticles: Structures, properties, and promising applications. Polym. Sci. Ser. C, 2016, 58(1), 93-101.
[http://dx.doi.org/10.1134/S1811238216010112]
[10]
Eremin, A.V. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Pror. Energy Combust. Sci., 2012, 38(1), 1-40.
[http://dx.doi.org/10.1016/j.pecs.2011.09.002]
[11]
Pohanka, M. Quantum dots in the therapy: Current trends and perspectives. Mini Rev. Med. Chem., 2017, 17(8), 650-656.
[http://dx.doi.org/10.2174/1389557517666170120153342 ] [PMID: 28117021]
[12]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[13]
Pleskova, S.; Mikheeva, E.; Gornostaeva, E. Using of quantum dots in biology and medicine. Adv. Exp. Med. Biol., 2018, 1048, 323-334.
[http://dx.doi.org/10.1007/978-3-319-72041-8_19] [PMID: 29453547]
[14]
Giorgio, A.; Merlino, A. Gold metalation of proteins: Structural studies. Coord. Chem. Rev., 2020, 407213175
[http://dx.doi.org/10.1016/j.ccr.2019.213175]
[15]
Mompó-Roselló, O.; Vergara-Barberán, M.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. In syringe hybrid monoliths modified with gold nanoparticles for selective extraction of glutathione in biological fluids prior to its determination by HPLC. Talanta, 2020, 209120566
[http://dx.doi.org/10.1016/j.talanta.2019.120566] [PMID: 31892018]
[16]
Thilagam, R.; Gnanamani, A. Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. Appl. Nanosci., 2020.
[http://dx.doi.org/10.1007/s13204-020-01250-z]
[17]
Wagner, F.E.; Haslbeck, S.; Stievano, L.; Calogero, S.; Pankhurst, Q.A.; Martinek, K.P. Before striking gold in gold-ruby glass. Nature, 2000, 407(6805), 691-692.
[http://dx.doi.org/10.1038/35037661] [PMID: 11048705]
[18]
Barber, D.J.; Freestone, I.C. An investigation of the origin of the color of the lycurgus cup by analytical transmission electron-microscopy. Archaeometry, 1990, 32, 33-45.
[19]
Turkevich, J.; Stevenson, P.C.; Hiller, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[20]
Agunloye, E.; Panariello, L.; Gavriilidis, A.; Mazzei, L. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem. Eng. Sci., 2018, 191, 318-331.
[http://dx.doi.org/10.1016/j.ces.2018.06.046]
[21]
Leng, W.N.; Pati, P.; Vikesland, P.J. Room temperature seed mediated growth of gold nanoparticles: Mechanistic investigations and life cycle assesment. Environ. Sci. Nano, 2015, 2(5), 440-453.
[http://dx.doi.org/10.1039/C5EN00026B]
[22]
Sivaraman, S.K.; Rao, M.; Kumar, S.; Santhanam, V. Role of coagulation in the synthesis of gold nanoparticles by citrate reduction. Proc. 4th Asian Particle Technology Symposium, 2009, pp. 1-6.
[23]
Young, J.K.; Lewinski, N.A.; Langsner, R.J.; Kennedy, L.C.; Satyanarayan, A.; Nammalvar, V.; Lin, A.Y.; Drezek, R.A. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction. Nanoscale Res. Lett., 2011, 6(1), 428-428.
[http://dx.doi.org/10.1186/1556-276X-6-428] [PMID: 21711955]
[24]
Lee, Y.J.; Park, Y. Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. J. Nanosci. Nanotechnol., 2020, 20(5), 2781-2790.
[http://dx.doi.org/10.1166/jnn.2020.17453] [PMID: 31635614]
[25]
Alsamhary, K.; Al-Enazi, N.; Alshehri, W.A.; Ameen, F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial Nanomed to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog., 2020.139103928
[http://dx.doi.org/10.1016/j.micpath.2019.103928] [PMID: 31843547]
[26]
Nakagawa, T.; Takagai, Y. Simple synthesis of gold nanoparticles by sodium borohydride reduction method and their ligand exchange reaction. Bunseki Kagaku, 2019, 68(10), 751-755.
[http://dx.doi.org/10.2116/bunsekikagaku.68.751]
[27]
Dykman, L.; Lyakhov, A.A.; Bogatyrev, V.A.; Shchyogolev, S. Synthesis of colloidal gold using high-molecular-weight reducing agents. Colloid J., 1998, 60(6), 700-704.
[28]
Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World, 2014, 7(2), 72-77.
[http://dx.doi.org/10.14202/vetworld.2014.72-77]
[29]
Shedbalkar, U.; Singh, R.; Wadhwani, S.; Gaidhani, S.; Chopade, B.A. Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv. Colloid Interface Sci., 2014, 209, 40-48.
[http://dx.doi.org/10.1016/j.cis.2013.12.011] [PMID: 24456802]
[30]
Abdel-Kareem, M.M.; Zohri, A.A. Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: Optimization, characterization and antimicrobial activity. Lett. Appl. Microbiol., 2018, 67(5), 465-475.
[http://dx.doi.org/10.1111/lam.13055] [PMID: 30028030]
[31]
Ngoc, L.N.; Vu, L.V.; Kiem, C.D.; Doanh, S.C.; Nguyet, C.T.; Hang, P.T.; Nguyen, D.T.; Luu, Q.M. Synthesis and optical properties of colloidal gold nanoparticles. J. Phys. Conf. Ser., 2009, 187(1), 2026-2026.
[32]
Alle, M.; Lee, S.H.; Kim, J.C. Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity. J. Mater. Sci. Technol., 2020, 41, 168-177.
[http://dx.doi.org/10.1016/j.jmst.2019.11.003]
[33]
Freitas de Freitas, L.; Varca, G.H.C.; Dos Santos Batista, J.G.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials (Basel), 2018, 8(11), 939.
[http://dx.doi.org/10.3390/nano8110939] [PMID: 30445694]
[34]
Huang, X.; Hu, X.J.; Song, S.F.D.; Mao, D.S.; Lee, J.; Koh, K.; Zhu, Z.Z.; Chen, H.X. Triple-enhanced surface plasmon resonance spectroscopy based on cell membrane and folic acid functionalized gold nanoparticles for dual-selective circulating tumor cell sensing. Sens. Actuators B Chem., 2020, 305127543
[35]
Ying, Y.; Wang, J.K.; Hu, N.; Xu, K.; Sun, L.L.; Si, G.Y. Determination of refractive index using surface plasmon resonance (spr) and rigorous coupled wave analysis (rcwa) with a d-shaped optical fiber and a nano-gold grating. Instrum. Sci. Technol., 2020.
[http://dx.doi.org/10.1080/10739149.2020.1728694]
[36]
Das, C.M.; Ouyang, Q.L.; Dinh, X.Q.; Coquet, P.; Yong, K.T. A theoretical insight into the use of anti-reflective coatings for the upliftment of sensitivity of surface plasmon resonance sensors. Opt. Commun., 2020, 458124748
[http://dx.doi.org/10.1016/j.optcom.2019.124748]
[37]
Bhardwaj, H.; Sumana, G.; Marquette, C.A. A label-free ultrasensitive microfluidic surface plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chem., 2020, 307125530
[http://dx.doi.org/10.1016/j.foodchem.2019.125530 ] [PMID: 31639579]
[38]
Austin, J.; Minelli, C.; Hamilton, D.; Wywijas, M.; Jones, H.J. Nanoparticle number concentration measurements by multi-angle dynamic light scattering. J. Nanopart. Res., 2020, 22(5), 108.
[http://dx.doi.org/10.1007/s11051-020-04840-8]
[39]
Font, F.; Myers, T.G. Spherically symmetric nanoparticle melting with a variable phase change temperature. J. Nanopart. Res., 2013, 15(12)
[http://dx.doi.org/10.1007/s11051-013-2086-3]
[40]
Uppal, M.A.; Kafizas, A.; Ewing, M.B.; Parkin, I.P. The room temperature formation of gold nanoparticles from the reaction of cyclohexanone and auric acid; a transition from dendritic particles to compact shapes and nanoplates. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(25), 7351-7359.
[http://dx.doi.org/10.1039/c3ta11546a]
[41]
Ali, M.; Lin, I.N. Controlling morphology-structure of gold tiny particles, nanoparticles and particles at different pulse rates and pulse polarity. Adv. Nat. Sci.-Nanosci. Nanotechnol.,, 2019, 10(2)
[http://dx.doi.org/10.1088/2043-6254/ab2868]
[42]
Khlebtsov, B.N.; Tumskiy, R.S.; Burov, A.M.; Pylaev, T.E.; Khlebtsov, N.G. Quantifying the numbers of gold nanoparticles in the test zone of lateral flow immunoassay strips. ACS Appl. Nano Mater., 2019, 2(8), 5020-5028.
[http://dx.doi.org/10.1021/acsanm.9b00956]
[43]
Liu, A.; Li, M.M.; Wang, J.X.; Feng, F.; Zhang, Y.; Qiu, Z.W.; Chen, Y.Z.; Meteku, B.E.; Wen, C.Y.; Yan, Z.F.; Zeng, J.B. Ag@au core/shell triangular nanoplates with dual enzyme-like properties for the colorimetric sensing of glucose. Chin. Chem. Lett., 2020, 31(5), 1133-1136.
[http://dx.doi.org/10.1016/j.cclet.2019.10.011]
[44]
Shang, Y.; Liu, F.; Wang, Y.; Li, N.; Ding, B. Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem, 2020, 21(17), 2408-2418.
[http://dx.doi.org/10.1002/cbic.202000123] [PMID: 32227615]
[45]
Deng, H.H.; Huang, K.Y.; Zhang, M.J.; Zou, Z.Y.; Xu, Y.Y.; Peng, H.P.; Chen, W.; Hong, G.L. Sensitive and selective nitrite assay based on fluorescent gold nanoclusters and Fe2+/Fe3+ redox reaction. Food Chem., 2020, 317126456
[http://dx.doi.org/10.1016/j.foodchem.2020.126456 ] [PMID: 32109661]
[46]
Lu, J.; Hu, Y.H.; Wang, P.X.; Liu, P.Q.; Chen, Z.G.; Sun, D.P. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of h2o2 released from h9c2 cardiac cells; Sens. Actuator B-Chem, 2020, p. 311127909.
[http://dx.doi.org/10.1016/j.snb.2020.127909]
[47]
Song, C.Y.; Li, J.X.; Sun, Y.Z.; Jiang, X.Y.; Zhang, J.J.; Dong, C.; Wang, L.H. Colorimetric/sers dual-mode detection of mercury ion via sers-active peroxidase-like au@agpt nps. Sens. Actuator B-Chem., 2020, 310127849
[http://dx.doi.org/10.1016/j.snb.2020.127849]
[48]
Fricker, S.P. Medical uses of gold compounds past, present and future. Gold Bull., 1996, 29(2), 53-60.
[http://dx.doi.org/10.1007/BF03215464]
[49]
Tepperman, K.; Finer, R.; Donovan, S.; Elder, R.C.; Doi, J.; Ratliff, D.; Ng, K. Intestinal uptake and metabolism of auranofin, a new oral gold-based antiarthritis drug. Science, 1984, 225(4660), 430-432.
[http://dx.doi.org/10.1126/science.6429854] [PMID: 6429854]
[50]
Onodera, T.; Momose, I.; Kawada, M. Potential anticancer activity of auranofin. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 186-191.
[http://dx.doi.org/10.1248/cpb.c18-00767] [PMID: 30827998]
[51]
Mirzadeh, N.; Reddy, T.S.; Bhargava, S.K. Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord. Chem. Rev., 2019, 388, 343-359.
[http://dx.doi.org/10.1016/j.ccr.2019.02.027]
[52]
Loseva, O.V.; Rodina, T.A.; Ivanov, A.V. Individual forms of gold(iii) binding from solutions with zinc N,N-cyclo-hexamethy-lenedithiocarbamate: Structural self-organization and thermal behavior of gold complexes of composition Au{s2cn(ch2)(6)}(2) AuCl4 and (Au{S2CN(CH2)(6)}(2) (3) AuCl4 AuCl2 (2)) (n). Russ. J. Inorg. Chem., 2015, 60(3), 307-317.
[http://dx.doi.org/10.1134/S0036023615030134]
[53]
Velasco-Aguirre, C.; Morales-Zavala, F.; Salas-Huenuleo, E.; Gallardo-Toledo, E.; Andonie, O.; Muñoz, L.; Rojas, X.; Acosta, G.; Sánchez-Navarro, M.; Giralt, E.; Araya, E.; Albericio, F.; Kogan, M.J. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomed (Lond.), 2017, 12(20), 2503-2517.
[http://dx.doi.org/10.2217/nnm-2017-0181] [PMID: 28882086]
[54]
Abd El-Mageed, H.R.; Mustafa, F.M.; Abdel-Latif, M.K. The ability of gold nanoclusters as a new nanocarrier for d-penicillamine anticancer drug: A computational chemistry study. Struct. Chem., 2020, 31(2), 781-793.
[http://dx.doi.org/10.1007/s11224-019-01462-2]
[55]
Yang, Y.S.; Moynihan, K.D.; Bekdemir, A.; Dichwalkar, T.M.; Noh, M.M.; Watson, N.; Melo, M.; Ingram, J.; Suh, H.; Ploegh, H.; Stellacci, F.R.; Irvine, D.J. Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater. Sci., 2018, 7(1), 113-124.
[http://dx.doi.org/10.1039/C8BM01208C] [PMID: 30444251]
[56]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomed, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[57]
Wang, H.; Zhou, Y.; Xu, X.; Li, H.; Sun, H. Metalloproteomics in conjunction with other omics for uncovering the mechanism of action of metallodrugs: Mechanism-driven new therapy development. Curr. Opin. Chem. Biol., 2020, 55, 171-179.
[http://dx.doi.org/10.1016/j.cbpa.2020.02.006] [PMID: 32200302]
[58]
De Matteis, V.; Rizzello, L. Noble metals and soft bio-inspired nanoparticles in retinal diseases treatment: A perspective. Cells, 2020, 9(3)E679
[http://dx.doi.org/10.3390/cells9030679] [PMID: 32164376]
[59]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3)126905
[http://dx.doi.org/10.1016/j.bmcl.2019.126905] [PMID: 31874823]
[60]
Tian, Y.; Qiang, S.; Wang, L. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy. Front. Bioeng. Biotechnol., 2019, 7(398), 398.
[http://dx.doi.org/10.3389/fbioe.2019.00398] [PMID: 31867323]
[61]
Darweesh, R.S.; Ayoub, N.M.; Nazzal, S. Gold nanoparticles and angiogenesis: Molecular mechanisms and biomedical applications. Int. J. Nanomed, 2019, 14, 7643-7663.
[http://dx.doi.org/10.2147/IJN.S223941] [PMID: 31571869]
[62]
Yougbare, S.; Chang, T.K.; Tan, S.H.; Kuo, J.C.; Hsu, P.H.; Su, C.Y.; Kuo, T.R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci., 2019, 20(12)E2924
[http://dx.doi.org/10.3390/ijms20122924] [PMID: 31208013]
[63]
Venditti, I. Engineered gold-based nanomaterials: Morphologies and functionalities in biomedical applications. A mini review. Bioengineering (Basel), 2019, 6(2)E53
[http://dx.doi.org/10.3390/bioengineering6020053] [PMID: 31185667]
[64]
Zuber, G.; Weiss, E.; Chiper, M. Biocompatible gold nanoclusters: Synthetic strategies and biomedical prospects. Nanotechnology, 2019, 30(35)352001
[http://dx.doi.org/10.1088/1361-6528/ab2088] [PMID: 31071693]
[65]
Vines, J.B.; Yoon, J.H.; Ryu, N.E.; Lim, D.J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front Chem., 2019, 7(167), 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[66]
Kim, H.S.; Lee, D.Y. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers (Basel), 2018, 10(9)E961
[http://dx.doi.org/10.3390/polym10090961] [PMID: 30960886]
[67]
Matczuk, M.; Ruzik, L.; Aleksenko, S.S.; Keppler, B.K.; Jarosz, M.; Timerbaev, A.R. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal. Chim. Acta, 2019, 1052, 1-9.
[http://dx.doi.org/10.1016/j.aca.2018.10.027] [PMID: 30685026]
[68]
Kang, C.; Kim, D. Nanoconfinement-mediated cancer theranostics. Arch. Pharm. Res., 2020, 43(1), 110-117.
[http://dx.doi.org/10.1007/s12272-020-01217-2] [PMID: 31989481]
[69]
Del Solar, V.; Contel, M. Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. J. Inorg. Biochem., 2019, 199110780
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110780 ] [PMID: 31434020]
[70]
Liyanage, P.Y.; Hettiarachchi, S.D.; Zhou, Y.; Ouhtit, A.; Seven, E.S.; Oztan, C.Y.; Celik, E.; Leblanc, R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 419-433.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006] [PMID: 31034927]
[71]
Chien, Y.H.; Chan, K.K.; Anderson, T.; Kong, K.V.; Ng, B.K.; Yong, K.T. Advanced near-infrared light-responsive nanomaterials as therapeutic platforms for cancer therapy.Adv. Therap.,, 2019, 2(3)
[http://dx.doi.org/10.1002/adtp.201800090]
[72]
Artiga, Á.; Serrano-Sevilla, I.; De Matteis, L.; Mitchell, S.G.; de la Fuente, J.M. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(6), 876-896.
[http://dx.doi.org/10.1039/C8TB02484G] [PMID: 32255093]
[73]
Mioc, A.; Mioc, M.; Ghiulai, R.; Voicu, M.; Racoviceanu, R.; Trandafirescu, C.; Dehelean, C.; Coricovac, D.; Soica, C. Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy. Curr. Med. Chem., 2019, 26(35), 6493-6513.
[http://dx.doi.org/10.2174/0929867326666190506123721] [PMID: 31057102]
[74]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[75]
Dykman, L.A.; Khlebtsov, N.G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials, 2016, 108, 13-34.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.040 ] [PMID: 27614818]
[76]
Shevtsov, M.; Zhou, Y.; Khachatryan, W.; Multhoff, G.; Gao, H. Recent advances in gold nanoformulations for cancer therapy. Curr. Drug Metab., 2018, 19(9), 768-780.
[http://dx.doi.org/10.2174/1389200219666180611080736 ] [PMID: 29886825]
[77]
Kim, M.W.; Lee, G.; Niidome, T.; Komohara, Y.; Lee, R.; Park, Y.I. Platelet-like gold nanostars for cancer therapy: The ability to treat cancer and evade immune reactions. Front. Bioeng. Biotechnol., 2020, 8(133), 133.
[http://dx.doi.org/10.3389/fbioe.2020.00133] [PMID: 32158752]
[78]
Cui, L.; Her, S.; Borst, G.R.; Bristow, R.G.; Jaffray, D.A.; Allen, C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother. Oncol., 2017, 124(3), 344-356.
[http://dx.doi.org/10.1016/j.radonc.2017.07.007] [PMID: 28784439]
[79]
Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 2017, 109, 84-101.
[http://dx.doi.org/10.1016/j.addr.2015.12.012] [PMID: 26712711]
[80]
Cui, L.; Her, S.; Dunne, M.; Borst, G.R.; De Souza, R.; Bristow, R.G.; Jaffray, D.A.; Allen, C. Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts. Radiat. Res., 2017, 187(2), 147-160.
[http://dx.doi.org/10.1667/RR14578.1] [PMID: 28085639]
[81]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[82]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810 ] [PMID: 30452861]
[83]
Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine.Artif. Cells Nanomed. Biotechnol.,, 2018, 46(sup1), 1210-1220.
[http://dx.doi.org/10.1080/21691401.2018.1449118]
[84]
Surendran, S.P.; Moon, M.J.; Park, R.; Jeong, Y.Y. Bioactive nanoparticles for cancer immunotherapy. Int. J. Mol. Sci., 2018, 19(12)E3877
[http://dx.doi.org/10.3390/ijms19123877] [PMID: 30518139]
[85]
Taghizadeh, S.; Alimardani, V.; Roudbali, P.L.; Ghasemi, Y.; Kaviani, E. Gold nanoparticles application in liver cancer. Photodiagn. Photodyn. Ther., 2019, 25, 389-400.
[http://dx.doi.org/10.1016/j.pdpdt.2019.01.027] [PMID: 30684673]
[86]
Peng, J.; Liang, X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 2019, 98(18)e15311
[http://dx.doi.org/10.1097/MD.0000000000015311] [PMID: 31045767]
[87]
Błaszkiewicz, P.; Kotkowiak, M. Gold-based nanoparticles systems in phototherapy - current strategies. Curr. Med. Chem., 2018, 25(42), 5914-5929.
[http://dx.doi.org/10.2174/0929867325666181031120757 ] [PMID: 30378476]
[88]
Cancino-Bernardi, J.; Marangoni, V.S.; Besson, J.C.F.; Cancino, M.E.C.; Natali, M.R.M.; Zucolotto, V. Gold-based nanospheres and nanorods particles used as theranostic agents: An in vitro and in vivo toxicology studies. Chemosphere, 2018, 213, 41-52.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.012 ] [PMID: 30212718]
[89]
Hatoyama, K.; Kitamura, N.; Takano-Kasuya, M.; Tokunaga, M.; Oikawa, T.; Ohta, M.; Hamada, Y.; Tada, H.; Kobayashi, Y.; Kamei, T.; Gonda, K. Quantitative analyses of amount and localization of radiosensitizer gold nanoparticles interacting with cancer cells to optimize radiation therapy. Biochem. Biophys. Res. Commun., 2019, 508(4), 1093-1100.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.016] [PMID: 30551875]
[90]
Fathy, M.M.; Mohamed, F.S.; Elbialy, N.; Elshemey, W.M. Multifunctional chitosan-capped gold nanoparticles for enhanced cancer chemo-radiotherapy: An in vitro study. Phys. Med., 2018, 48, 76-83.
[http://dx.doi.org/10.1016/j.ejmp.2018.04.002] [PMID: 29728233]
[91]
Agarwalla, P.; Mukherjee, S.; Sreedhar, B.; Banerjee, R. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomed (Lond.), 2016, 11(19), 2529-2546.
[http://dx.doi.org/10.2217/nnm-2016-0224] [PMID: 27622735]
[92]
Ghosh, S.; Dasgupta, S.C.; Dasgupta, A.K.; Gomes, A.; Gomes, A. Gold nanoparticles (aunps) conjugated with andrographolide ameliorated viper (daboia russellii russellii) venom-induced toxicities in animal model. J. Nanosci. Nanotechnol., 2020, 20(6), 3404-3414.
[http://dx.doi.org/10.1166/jnn.2020.17421] [PMID: 31748033]
[93]
Kim, H.J.; Lee, S.M.; Park, K.H.; Mun, C.H.; Park, Y.B.; Yoo, K.H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials, 2015, 61, 95-102.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.018 ] [PMID: 26001074]
[94]
Zhao, Y.; He, Z.; Wang, R.; Cai, P.; Zhang, X.; Yuan, Q.; Zhang, J.; Gao, F.; Gao, X. Comparison of the therapeutic effects of gold nanoclusters and gold nanoparticles on rheumatoid arthritis. J. Biomed. Nanotechnol., 2019, 15(11), 2281-2290.
[http://dx.doi.org/10.1166/jbn.2019.2848] [PMID: 31847942]
[95]
Veigas, B.; Matias, A.; Calmeiro, T.; Fortunato, E.; Fernandes, A.R.; Baptista, P.V. Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis. Analyst (Lond.), 2019, 144(11), 3613-3619.
[http://dx.doi.org/10.1039/C9AN00319C] [PMID: 31070614]
[96]
Dykman, L.A.; Khlebtsov, N.G. Biomedical applications of multifunctional gold-based nanocomposites. Biochemistry (Mosc.), 2016, 81(13), 1771-1789.
[http://dx.doi.org/10.1134/S0006297916130125] [PMID: 28260496]
[97]
Guo, J.; Rahme, K.; He, Y.; Li, L.L.; Holmes, J.D.; O’Driscoll, C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomed, 2017, 12, 6131-6152.
[http://dx.doi.org/10.2147/IJN.S140772] [PMID: 28883725]
[98]
Trouiller, A.J.; Hebié, S.; El Bahhaj, F.; Napporn, T.W.; Bertrand, P. Chemistry for oncotheranostic gold nanoparticles. Eur. J. Med. Chem., 2015, 99, 92-112.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.024] [PMID: 26057706]
[99]
Norouzi, M. Gold nanoparticles in glioma theranostics. Pharmacol. Res., 2020, 156(104753)104753
[http://dx.doi.org/10.1016/j.phrs.2020.104753] [PMID: 32209363]
[100]
Efremova, M.V.; Nalench, Y.A.; Myrovali, E.; Garanina, A.S.; Grebennikov, I.S.; Gifer, P.K.; Abakumov, M.A.; Spasova, M.; Angelakeris, M.; Savchenko, A.G.; Farle, M.; Klyachko, N.L.; Majouga, A.G.; Wiedwald, U. Size-selected Fe3O4-Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein J. Nanotechnol., 2018, 9, 2684-2699.
[http://dx.doi.org/10.3762/bjnano.9.251] [PMID: 30416920]
[101]
Abedin, M.R.; Umapathi, S.; Mahendrakar, H.; Laemthong, T.; Coleman, H.; Muchangi, D.; Santra, S.; Nath, M.; Barua, S. Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J. Nanobiotechnol., 2018, 16(1), 018- 0405..
[102]
Suvarna, S.; Das, U.; Kc, S.; Mishra, S.; Sudarshan, M.; Saha, K.D.; Dey, S.; Chakraborty, A.; Narayana, Y. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate. PLoS One, 2017, 12(6)e0178202
[http://dx.doi.org/10.1371/journal.pone.0178202] [PMID: 28582426]
[103]
Shanavas, A.; Rengan, A.K.; Chauhan, D.; George, L.; Vats, M.; Kaur, N.; Yadav, P.; Mathur, P.; Chakraborty, S.; Tejaswini, A.; De, A.; Srivastava, R. Glycol chitosan assisted in situ reduction of gold on polymeric template for anti-cancer theranostics. Int. J. Biol. Macromol., 2018, 110, 392-398.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.127] [PMID: 29174361]
[104]
Grabowska-Jadach, I.; Kalinowska, D.; Drozd, M.; Pietrzak, M. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-New particles for theranostics. Biomed. Pharmacother., 2019, 111, 1147-1155.
[http://dx.doi.org/10.1016/j.biopha.2019.01.037] [PMID: 30841428]
[105]
Wang, J.; Zhang, J.; Liu, K.; He, J.; Zhang, Y.; Chen, S.; Ma, G.; Cui, Y.; Wang, L.; Gao, D. Synthesis of gold nanoflowers stabilized with amphiphilic daptomycin for enhanced photothermal antitumor and antibacterial effects. Int. J. Pharm., 2020, 580119231
[http://dx.doi.org/10.1016/j.ijpharm.2020.119231 ] [PMID: 32194207]
[106]
Falahati, M.; Attar, F.; Sharifi, M.; Saboury, A.A.; Salihi, A.; Aziz, F.M.; Kostova, I.; Burda, C.; Priecel, P.; Lopez-Sanchez, J.A.; Laurent, S.; Hooshmand, N.; El-Sayed, M.A. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1)129435
[http://dx.doi.org/10.1016/j.bbagen.2019.129435] [PMID: 31526869]
[107]
Elegbede, J.A.; Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Oladipo, I.C.; Aina, D.A.; Beukes, L.S.; Gueguim-Kana, E.B. Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: Antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valoriz., 2020, 11(3), 781-791.
[http://dx.doi.org/10.1007/s12649-018-0540-2]
[108]
Rajchakit, U.; Sarojini, V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug. Chem., 2017, 28(11), 2673-2686.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00368 ] [PMID: 28892365]
[109]
Tao, C. Antimicrobial activity and toxicity of gold nanoparticles: Research progress, challenges and prospects. Lett. Appl. Microbiol., 2018, 67(6), 537-543.
[http://dx.doi.org/10.1111/lam.13082] [PMID: 30269338]
[110]
Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol., 2020, 20(6), 3303-3339.
[http://dx.doi.org/10.1166/jnn.2020.17677] [PMID: 31748024]
[111]
Zhang, J.J.; Mou, L.; Jiang, X.Y. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. (Camb.), 2020, 11(4), 923-936.
[http://dx.doi.org/10.1039/C9SC06497D]
[112]
Mishra, R.; Jogwar, G.; Bajhal, S.; Agrawal, K.; Upadhyay, A. Antibacterial efficacy of biogenic copper nanoparticles synthesized from Ocimum sanctum leaf extract. Int. J. Pharm. Sci. Res., 2020, 11(3), 1176-1182.
[113]
Naqvi, S.; Anwer, H.; Ahmed, S.W.; Siddiqui, A.; Shah, M.R.; Khaliq, S.; Ahmed, A.; Ali, S.A. Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine. Molec. Biomolec. Spectr., 2020, 229118002
[114]
Al-Hakkani, M.F. Biogenic copper nanoparticles and their applications: A review. SN Appl. Sci., 2020, 2(3), 1-20.
[115]
Tahir, H.M.; Saleem, F.; Ali, S. Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity. J. Basic Microbiol., 2020, 60(5), 458-467.
[116]
Ali, S.; Perveen, S.; Ali, M.; Jiao, T.; Sharma, A.S.; Hassan, H.; Devaraj, S.; Li, H.; Chen, Q. Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Mater. Sci. Eng. C, 2020, 108110421
[http://dx.doi.org/10.1016/j.msec.2019.110421] [PMID: 31923969]
[117]
Tao, Y.; Ju, E.; Ren, J.; Qu, X. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater., 2015, 27(6), 1097-1104.
[http://dx.doi.org/10.1002/adma.201405105] [PMID: 25655182]
[118]
Kumar, S.; Majhi, R.K.; Singh, A.; Mishra, M.; Tiwari, A.; Chawla, S.; Guha, P.; Satpati, B.; Mohapatra, H.; Goswami, L.; Goswami, C. Carbohydrate-coated gold-silver nanoparticles for efficient elimination of multidrug resistant bacteria and in vivo wound healing. ACS Appl. Mater. Interfaces, 2019, 11(46), 42998-43017.
[http://dx.doi.org/10.1021/acsami.9b17086] [PMID: 31664808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy