Review Article

肠道微生物群、肠道高通透性与肥胖的关系

卷 28, 期 4, 2021

发表于: 21 July, 2020

页: [827 - 839] 页: 13

弟呕挨: 10.2174/0929867327666200721160313

价格: $65

Open Access Journals Promotions 2
摘要

肠道高渗透是一个复杂的代谢过程,由多种途径介导,与肠道微生物群密切相关。前期研究表明,肠道菌群参与不同的代谢调节,其失衡与包括肥胖在内的多种代谢性疾病有关。众所周知,肠道高通透性与生态失调有关,这两种情况结合可导致肥胖患者的低级别炎症水平升高,原因是促炎细胞因子水平升高。炎症性肠综合征常伴随这种情况,引起肠道黏膜的改变,从而加强了肠道的生态失调和高通透性。代谢紊乱的发生取决于肠道屏障的完整性被破坏,这是由于肠道通透性增加的结果。由内毒素血症引起的慢性炎症是导致肥胖的原因。代谢紊乱与微生物-肠道-大脑轴的失调以及肠道菌群组成的改变有关。在这篇综述中,我们将讨论高通透性、肠道菌群组成与肥胖之间关系的机制。

关键词: 肠道微生物群,肠道高渗,肥胖,肠道炎症,代谢,代谢调节。

[1]
Cani, P.D. Human gut microbiome: hopes, threats and promises. Gut, 2018, 67(9), 1716-1725.
[http://dx.doi.org/10.1136/gutjnl-2018-316723] [PMID: 29934437]
[2]
Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol., 2013, 6(4), 295-308.
[http://dx.doi.org/10.1177/1756283X13482996] [PMID: 23814609]
[3]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[4]
Yang, S.; Gao, X.; Meng, J.; Zhang, A.; Zhou, Y.; Long, M.; Li, B.; Deng, W.; Jin, L.; Zhao, S.; Wu, D.; He, Y.; Li, C.; Liu, S.; Huang, Y.; Zhang, H.; Zou, L. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Front. Microbiol., 2018, 9, 1717.
[http://dx.doi.org/10.3389/fmicb.2018.01717] [PMID: 30108570]
[5]
Wang, H.; Wei, C-X.; Min, L.; Zhu, L-Y. Good or bad: gut bacteria in human health and diseases. Biotechnol. Biotechnol. Equip., 2018, 32(5), 1075-1080.
[http://dx.doi.org/10.1080/13102818.2018.1481350]
[6]
Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191.
[http://dx.doi.org/10.3402/mehd.v26.26191] [PMID: 25651997]
[7]
Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; Sineok, L.; Lushchak, O.; Vaiserman, A. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol., 2017, 17(1), 120.
[http://dx.doi.org/10.1186/s12866-017-1027-1] [PMID: 28532414]
[8]
Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol., 2014, 14, 189.
[http://dx.doi.org/10.1186/s12876-014-0189-7] [PMID: 25407511]
[9]
Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers, 2017, 5(4)e1373208
[http://dx.doi.org/10.1080/21688370.2017.1373208] [PMID: 28956703]
[10]
Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science, 2012, 336(6086), 1268-1273.
[http://dx.doi.org/10.1126/science.1223490] [PMID: 22674334]
[11]
Bischoff, S.C. ‘Gut health’: a new objective in medicine? BMC Med., 2011, 9, 24.
[http://dx.doi.org/10.1186/1741-7015-9-24] [PMID: 21401922]
[12]
Anderson, J.M.; Van Itallie, C.M. Physiology and function of the tight junction. Cold Spring Harb. Perspect. Biol., 2009, 1(2)a002584
[http://dx.doi.org/10.1101/cshperspect.a002584] [PMID: 20066090]
[13]
de Kort, S.; Keszthelyi, D.; Masclee, A.A. Leaky gut and diabetes mellitus: what is the link? Obes. Rev., 2011, 12(6), 449-458.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00845.x] [PMID: 21382153]
[14]
Fasano, A. Gut permeability, obesity, and metabolic disorders: who is the chicken and who is the egg? Am. J. Clin. Nutr., 2017, 105(1), 3-4.
[http://dx.doi.org/10.3945/ajcn.116.148338] [PMID: 28003208]
[15]
Grün, D.; Zimmer, V.C.; Kauffmann, J.; Spiegel, J.; Dillmann, U.; Schwiertz, A.; Faßbender, K.; Fousse, M.; Unger, M.M. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat. Disord., 2018, 50, 104-107.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.022.] [PMID: 29454662]
[16]
Zhang, D.; Zhang, L.; Zheng, Y.; Yue, F.; Russell, R.D.; Zeng, Y. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res. Clin. Pract., 2014, 106(2), 312-318.
[http://dx.doi.org/10.1016/j.diabres.2014.08.017] [PMID: 25238913]
[17]
Zhang, D.; Zhang, L.; Yue, F.; Zheng, Y.; Russell, R. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur. J. Endocrinol., 2015, 172(1), 29-36.
[http://dx.doi.org/10.1530/EJE-14-0589] [PMID: 25336505]
[18]
Bjarnason, I. The use of fecal calprotectin in inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.), 2017, 13(1), 53-56.
[PMID: 28420947]
[19]
Collins, C.B.; Aherne, C.M.; Ehrentraut, S.F.; Gerich, M.E.; McNamee, E.N.; McManus, M.C.; Lebsack, M.D.; Jedlicka, P.; Azam, T.; de Zoeten, E.F.; Dinarello, C.A.; Rivera-Nieves, J. Alpha-1-antitrypsin therapy ameliorates acute colitis and chronic murine ileitis. Inflamm. Bowel Dis., 2013, 19(9), 1964-1973.
[http://dx.doi.org/10.1097/MIB.0b013e31829292aa] [PMID: 23835442]
[20]
Moreno-Navarrete, J.M.; Sabater, M.; Ortega, F.; Ricart, W.; Fernández-Real, J.M. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One, 2012, 7(5)e37160
[http://dx.doi.org/10.1371/journal.pone.0037160] [PMID: 22629362]
[21]
Frazier, T.H.; DiBaise, J.K.; McClain, C.J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J. Parenter. Enteral Nutr., 2011, 35(5)(Suppl.), 14S-20S.
[http://dx.doi.org/10.1177/0148607111413772] [PMID: 21807932]
[22]
Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008, 57(6), 1470-1481.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[23]
Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; Park, H.S.; Kim, Y.K.; Ryu, S.H. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med., 2018, 50(2)e450
[http://dx.doi.org/10.1038/emm.2017.282] [PMID: 29472701]
[24]
Federico, A.; Dallio, M.D.I.; Sarno, R.; Giorgio, V.; Miele, L. Gut microbiota, obesity and metabolic disorders. Minerva Gastroenterol. Dietol., 2017, 63(4), 337-344.
[http://dx.doi.org/10.23736/S1121-421X.17.02376-5] [PMID: 28927249]
[25]
Murakami, Y.; Tanabe, S.; Suzuki, T. High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice. J. Food Sci., 2016, 81(1), H216-H222.
[http://dx.doi.org/10.1111/1750-3841.13166] [PMID: 26595891]
[26]
Kim, K.A.; Gu, W.; Lee, I.A.; Joh, E.H.; Kim, D.H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One, 2012, 7(10)e47713
[http://dx.doi.org/10.1371/journal.pone.0047713] [PMID: 23091640]
[27]
Mörkl, S.; Lackner, S.; Meinitzer, A.; Mangge, H.; Lehofer, M.; Halwachs, B.; Gorkiewicz, G.; Kashofer, K.; Painold, A.; Holl, A.K.; Bengesser, S.A.; Müller, W.; Holzer, P.; Holasek, S.J. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur. J. Nutr., 2018, 57(8), 2985-2997.
[http://dx.doi.org/10.1007/s00394-018-1784-0] [PMID: 30043185]
[28]
Rainone, V.; Schneider, L.; Saulle, I.; Ricci, C.; Biasin, M.; Al-Daghri, N.M.; Giani, E.; Zuccotti, G.V.; Clerici, M.; Trabattoni, D. Upregulation of inflammasome activity and increased gut permeability are associated with obesity in children and adolescents. Int. J. Obes., 2016, 40(6), 1026-1033.
[http://dx.doi.org/10.1038/ijo.2016.26] [PMID: 26876434]
[29]
Hsiao, W.W.; Metz, C.; Singh, D.P.; Roth, J. The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Endocrinol. Metab. Clin. North Am., 2008, 37(4), 857-871.
[http://dx.doi.org/10.1016/j.ecl.2008.08.006] [PMID: 19026936]
[30]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[31]
Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 1977, 31, 107-133.
[http://dx.doi.org/10.1146/annurev.mi.31.100177.000543] [PMID: 334036]
[32]
Berg, R.D. The indigenous gastrointestinal microflora. Trends Microbiol., 1996, 4(11), 430-435.
[http://dx.doi.org/10.1016/0966-842X(96)10057-3] [PMID: 8950812]
[33]
Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol., 2018, 9, 61.
[http://dx.doi.org/10.3389/fmicb.2018.00061] [PMID: 29441049]
[34]
Gonzalez, A.; Krieg, R.; Massey, H.D.; Carl, D.; Ghosh, S.; Gehr, T.W.B.; Ghosh, S.S. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol. Dial. Transplant., 2019, 34(5), 783-794.
[http://dx.doi.org/10.1093/ndt/gfy238] [PMID: 30085297]
[35]
Mokkala, K.; Röytiö, H.; Munukka, E.; Pietilä, S.; Ekblad, U.; Rönnemaa, T.; Eerola, E.; Laiho, A.; Laitinen, K. Gut microbiota richness and composition and dietary intake of overweight pregnant women are related to serum zonulin concentration, a marker for intestinal permeability. J. Nutr., 2016, 146(9), 1694-1700.
[http://dx.doi.org/10.3945/jn.116.235358] [PMID: 27466607]
[36]
Finnie, I.A.; Dwarakanath, A.D.; Taylor, B.A.; Rhodes, J.M. Colonic mucin synthesis is increased by sodium butyrate. Gut, 1995, 36(1), 93-99.
[http://dx.doi.org/10.1136/gut.36.1.93] [PMID: 7890244]
[37]
Miquel, S.; Martín, R.; Rossi, O.; Bermúdez-Humarán, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol., 2013, 16(3), 255-261.
[http://dx.doi.org/10.1016/j.mib.2013.06.003] [PMID: 23831042]
[38]
Cao, Y.; Shen, J.; Ran, Z.H. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol. Res. Pract., 2014, 2014872725
[http://dx.doi.org/10.1155/2014/872725 ]
[39]
Morris, G.; Berk, M.; Carvalho, A.F.; Caso, J.R.; Sanz, Y.; Maes, M. The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimmune processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. Curr. Pharm. Des., 2016, 22(40), 6058-6075.
[http://dx.doi.org/10.2174/1381612822666160914182822] [PMID: 27634186]
[40]
Benoit, R.; Rowe, S.; Watkins, S.C.; Boyle, P.; Garrett, M.; Alber, S.; Wiener, J.; Rowe, M.I.; Ford, H.R. Pure endotoxin does not pass across the intestinal epithelium in vitro. Shock, 1998, 10(1), 43-48.
[http://dx.doi.org/10.1097/00024382-199807000-00008] [PMID: 9688090]
[41]
Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T.Y. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J. Immunol., 2015, 195(10), 4999-5010.
[http://dx.doi.org/10.4049/jimmunol.1402598] [PMID: 26466961]
[42]
Hayes, C.L.; Dong, J.; Galipeau, H.J.; Jury, J.; McCarville, J.; Huang, X.; Wang, X.Y.; Naidoo, A.; Anbazhagan, A.N.; Libertucci, J.; Sheridan, C.; Dudeja, P.K.; Bowdish, D.M.E.; Surette, M.G.; Verdu, E.F. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep., 2018, 8(1), 14184.
[http://dx.doi.org/10.1038/s41598-018-32366-6] [PMID: 30242285]
[43]
Zhang, F.; Li, Y.; Wang, X. Wang. S.; Bi, D. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. BioMed Res. Int., 2019, 20193921315
[http://dx.doi.org/10.1155/2019/3921315.] [PMID: 30915354]
[44]
Nakata, K.; Sugi, Y.; Narabayashi, H.; Kobayakawa, T.; Nakanishi, Y.; Tsuda, M.; Hosono, A.; Kaminogawa, S.; Hanazawa, S.; Takahashi, K. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. J. Biol. Chem., 2017, 292(37), 15426-15433.
[http://dx.doi.org/10.1074/jbc.M117.788596] [PMID: 28760826]
[45]
Lopez-Siles, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J., 2017, 11(4), 841-852.
[http://dx.doi.org/10.1038/ismej.2016.176] [PMID: 28045459]
[46]
Wang, J.; Ji, H.; Wang, S.; Liu, H.; Zhang, W.; Zhang, D.; Wang, Y. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front. Microbiol., 2018, 9, 1953.
[http://dx.doi.org/10.3389/fmicb.2018.01953] [PMID: 30197632]
[47]
Harbison, J.E.; Roth-Schulze, A.J.; Giles, L.C.; Tran, C.D.; Ngui, K.M.; Penno, M.A.; Thomson, R.L.; Wentworth, J.M.; Colman, P.G.; Craig, M.E.; Morahan, G.; Papenfuss, A.T.; Barry, S.C.; Harrison, L.C.; Couper, J.J. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: a prospective cohort study. Pediatr. Diabetes, 2019, 20(5), 574-583.
[http://dx.doi.org/10.1111/pedi.12865] [PMID: 31081243]
[48]
Feng, Y.; Wang, Y.; Wang, P.; Huang, Y.; Wang, F. Short-Chain Fatty Acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of nlrp3 inflammasome and autophagy. Cell. Physiol. Biochem., 2018, 49(1), 190-205.
[http://dx.doi.org/10.1159/000492853] [PMID: 30138914]
[49]
Cheng, C.; Wei, H.; Xu, C.; Xie, X.; Jiang, S.; Peng, J. Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl. Environ. Microbiol., 2018, 84(17), e01047-e18.
[http://dx.doi.org/10.1128/AEM.01047-18] [PMID: 29959248]
[50]
Dinan, T.G.; Cryan, J.F. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 552-558.
[http://dx.doi.org/10.1097/MCO.0000000000000221] [PMID: 26372511]
[51]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(Pt 1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[52]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[53]
Diaz Heijtz, R.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[54]
Gareau, M.G.; Wine, E.; Rodrigues, D.M.; Cho, J.H.; Whary, M.T.; Philpott, D.J.; Macqueen, G.; Sherman, P.M. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60(3), 307-317.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[55]
Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci., 2014, 34(46), 15490-15496.
[http://dx.doi.org/10.1523/JNEUROSCI.3299-14.2014] [PMID: 25392516]
[56]
Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin. Ther., 2015, 37(5), 984-995.
[http://dx.doi.org/10.1016/j.clinthera.2015.04.002] [PMID: 26046241]
[57]
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci., 2016, 39(11), 763-781.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[58]
Schneiderhan, J.; Master-Hunter, T.; Locke, A. Targeting gut flora to treat and prevent disease. J. Fam. Pract., 2016, 65(1), 34-38.
[PMID: 26845162]
[59]
Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry, 2016, 21(6), 786-796.
[http://dx.doi.org/10.1038/mp.2016.44] [PMID: 27067014]
[60]
Crumeyrolle-Arias, M.; Jaglin, M.; Bruneau, A.; Vancassel, S.; Cardona, A.; Daugé, V.; Naudon, L.; Rabot, S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 2014, 42, 207-217.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.014] [PMID: 24636517]
[61]
Grasset, E.; Puel, A.; Charpentier, J.; Collet, X.; Christensen, J.E.; Tercé, F.; Burcelin, R. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab., 2017, 25(5), 1075-1090.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.04.013] [PMID: 28467926]
[62]
Bjørklund, G.; Semenova, Y.; Pivina, L.; Costea, D.O. Follow-up after bariatric surgery. A review. Nutrition,, 2020, 78110831
[http://dx.doi.org/10.1016/j.nut.2020.110831] [PMID: 32544850]
[63]
Agustí, A.; García-Pardo, M.P.; López-Almela, I.; Campillo, I.; Maes, M.; Romaní-Pérez, M.; Sanz, Y. Interplay between the gut-brain axis, obesity and cognitive function. Front. Neurosci., 2018, 12, 155.
[http://dx.doi.org/10.3389/fnins.2018.00155] [PMID: 29615850]
[64]
Sahoo, K.; Sahoo, B.; Choudhury, A.K.; Sofi, N.Y.; Kumar, R.; Bhadoria, A.S. Childhood obesity: causes and consequences. J. Family Med. Prim. Care, 2015, 4(2), 187-192.
[http://dx.doi.org/10.4103/2249-4863.154628] [PMID: 25949965]
[65]
Hruby, A.; Manson, J.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and consequences of obesity. Am. J. Public Health, 2016, 106(9), 1656-1662.
[http://dx.doi.org/10.2105/AJPH.2016.303326] [PMID: 27459460]
[66]
Big influences on anti-obesity strategies. Lancet Oncol., 2019, 20(2), 165. [Editorial].
[http://dx.doi.org/10.1016/S1470-2045(19)30041-5] [PMID: 30723037]
[67]
Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; Salama, J.S.; Vos, T.; Abate, K.H.; Abbafati, C.; Ahmed, M.B.; Al-Aly, Z.; Alkerwi, A.; Al-Raddadi, R.; Amare, A.T.; Amberbir, A.; Amegah, A.K.; Amini, E.; Amrock, S.M.; Anjana, R.M.; Ärnlöv, J.; Asayesh, H.; Banerjee, A.; Barac, A.; Baye, E.; Bennett, D.A.; Beyene, A.S.; Biadgilign, S.; Biryukov, S.; Bjertness, E.; Boneya, D.J.; Campos-Nonato, I.; Carrero, J.J.; Cecilio, P.; Cercy, K.; Ciobanu, L.G.; Cornaby, L.; Damtew, S.A.; Dandona, L.; Dandona, R.; Dharmaratne, S.D.; Duncan, B.B.; Eshrati, B.; Esteghamati, A.; Feigin, V.L.; Fernandes, J.C.; Fürst, T.; Gebrehiwot, T.T.; Gold, A.; Gona, P.N.; Goto, A.; Habtewold, T.D.; Hadush, K.T.; Hafezi-Nejad, N.; Hay, S.I.; Horino, M.; Islami, F.; Kamal, R.; Kasaeian, A.; Katikireddi, S.V.; Kengne, A.P.; Kesavachandran, C.N.; Khader, Y.S.; Khang, Y.H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kinfu, Y.; Kosen, S.; Ku, T.; Defo, B.K.; Kumar, G.A.; Larson, H.J.; Leinsalu, M.; Liang, X.; Lim, S.S.; Liu, P.; Lopez, A.D.; Lozano, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mazidi, M.; McAlinden, C.; McGarvey, S.T.; Mengistu, D.T.; Mensah, G.A.; Mensink, G.B.M.; Mezgebe, H.B.; Mirrakhimov, E.M.; Mueller, U.O.; Noubiap, J.J.; Obermeyer, C.M.; Ogbo, F.A.; Owolabi, M.O.; Patton, G.C.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rai, R.K.; Ranabhat, C.L.; Reinig, N.; Safiri, S.; Salomon, J.A.; Sanabria, J.R.; Santos, I.S.; Sartorius, B.; Sawhney, M.; Schmidhuber, J.; Schutte, A.E.; Schmidt, M.I.; Sepanlou, S.G.; Shamsizadeh, M.; Sheikhbahaei, S.; Shin, M.J.; Shiri, R.; Shiue, I.; Roba, H.S.; Silva, D.A.S.; Silverberg, J.I.; Singh, J.A.; Stranges, S.; Swaminathan, S.; Tabarés-Seisdedos, R.; Tadese, F.; Tedla, B.A.; Tegegne, B.S.; Terkawi, A.S.; Thakur, J.S.; Tonelli, M.; Topor-Madry, R.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.A.; Vaezghasemi, M.; Vasankari, T.; Vlassov, V.V.; Vollset, S.E.; Weiderpass, E.; Werdecker, A.; Wesana, J.; Westerman, R.; Yano, Y.; Yonemoto, N.; Yonga, G.; Zaidi, Z.; Zenebe, Z.M.; Zipkin, B.; Murray, C.J.L. GBD 2015 obesity collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med., 2017, 377(1), 13-27.
[http://dx.doi.org/10.1056/NEJMoa1614362] [PMID: 28604169]
[68]
Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J., 2016, 92(1087), 286-300.
[http://dx.doi.org/10.1136/postgradmedj-2015-133285] [PMID: 26912499]
[69]
Davis, C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, 51(4), 167-174.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[70]
Kübeck, R.; Bonet-Ripoll, C.; Hoffmann, C.; Walker, A.; Müller, V.M.; Schüppel, V.L.; Lagkouvardos, I.; Scholz, B.; Engel, K.H.; Daniel, H.; Schmitt-Kopplin, P.; Haller, D.; Clavel, T.; Klingenspor, M. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab., 2016, 5(12), 1162-1174.
[http://dx.doi.org/10.1016/j.molmet.2016.10.001] [PMID: 27900259]
[71]
Valsecchi, C.; Tagliacarne, C.S.; Castellazzi, A. Gut microbiota and obesity. J. Clin. Gastroenterol., 2016, 50(Suppl. 2), S157-S158.
[http://dx.doi.org/10.1097/MCG.0000000000000715] [PMID: 27741163]
[72]
Rastelli, M.; Knauf, C.; Cani, P.D. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity (Silver Spring), 2018, 26(5), 792-800.
[http://dx.doi.org/10.1002/oby.22175] [PMID: 29687645]
[73]
Brooks, L.; Viardot, A.; Tsakmaki, A.; Stolarczyk, E.; Howard, J.K.; Cani, P.D.; Everard, A.; Sleeth, M.L.; Psichas, A.; Anastasovskaj, J.; Bell, J.D.; Bell-Anderson, K.; Mackay, C.R.; Ghatei, M.A.; Bloom, S.R.; Frost, G.; Bewick, G.A. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab., 2016, 6(1), 48-60.
[http://dx.doi.org/10.1016/j.molmet.2016.10.011] [PMID: 28123937]
[74]
Remely, M.; Hippe, B.; Geretschlaeger, I.; Stegmayer, S.; Hoefinger, I.; Haslberger, A. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien. Klin. Wochenschr., 2015, 127(9-10), 394-398.
[http://dx.doi.org/10.1007/s00508-015-0755-1] [PMID: 25763563]
[75]
Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.T.E.; Schröder, H. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol., 2018, 20184095789
[http://dx.doi.org/10.1155/2018/4095789] [PMID: 29849617]
[76]
Sun, L.; Ma, L.; Ma, Y.; Zhang, F.; Zhao, C.; Nie, Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell, 2018, 9(5), 397-403.
[http://dx.doi.org/10.1007/s13238-018-0546-3] [PMID: 29725936]
[77]
Sandoval-Salazar, C.; Ramírez-Emiliano, J.; Trejo-Bahena, A.; Oviedo-Solís, C.I.; Solís-Ortiz, M.S. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats. Biol. Res., 2016, 49, 15.
[http://dx.doi.org/10.1186/s40659-016-0075-6] [PMID: 26927389]
[78]
Li, T.; Gao, J.; Du, M.; Mao, X. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food Funct., 2019, 10(6), 3368-3378.
[http://dx.doi.org/10.1039/C8FO01967C] [PMID: 31099356]
[79]
Ohue-Kitano, R.; Taira, S.; Watanabe, K.; Masujima, Y.; Kuboshima, T.; Miyamoto, J.; Nishitani, Y.; Kawakami, H.; Kuwahara, H.; Kimura, I. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid produced from 4-hydroxy-3-methoxycinnamic acid by gut microbiota improves host metabolic condition in diet-induced obese mice. Nutrients, 2019, 11(5), 1036.
[http://dx.doi.org/10.3390/nu11051036 ] [PMID: 31075850]
[80]
Keskitalo, A.; Munukka, E.; Toivonen, R.; Hollmén, M.; Kainulainen, H.; Huovinen, P.; Jalkanen, S.; Pekkala, S. Enterobacter cloacae administration induces hepatic damage and subcutaneous fat accumulation in high-fat diet fed mice. PLoS One, 2018, 13(5)e0198262
[http://dx.doi.org/10.1371/journal.pone.0198262] [PMID: 29847581]
[81]
Choi, W.J.; Dong, H.J.; Jeong, H.U.; Jung, H.H.; Kim, Y.H.; Kim, T.H. Antiobesity effects of lactobacillus plantarum lmt1-48 accompanied by inhibition of enterobacter cloacae in the intestine of diet-induced obese mice. J. Med. Food, 2019, 22(6), 560-566. Epub ahead of print
[http://dx.doi.org/10.1089/jmf.2018.4329] [PMID: 31013456]
[82]
Wollam, J.; Riopel, M.; Xu, Y.J.; Johnson, A.M.F.; Ofrecio, J.M.; Ying, W.; El Ouarrat, D.; Chan, L.S.; Han, A.W.; Mahmood, N.A.; Ryan, C.N.; Lee, Y.S.; Watrous, J.D.; Chordia, M.D.; Pan, D.; Jain, M.; Olefsky, J.M. Microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance. Diabetes, 2019, 68(7), 1415-1426.
[http://dx.doi.org/10.2337/db18-1307] [PMID: 31010956]
[83]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[84]
Fei, N.; Zhao, L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J., 2013, 7(4), 880-884.
[http://dx.doi.org/10.1038/ismej.2012.153] [PMID: 23235292]
[85]
Moreno-Navarrete, J.M.; Ortega, F.; Serino, M.; Luche, E.; Waget, A.; Pardo, G.; Salvador, J.; Ricart, W.; Frühbeck, G.; Burcelin, R.; Fernández-Real, J.M. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int. J. Obes., 2012, 36(11), 1442-1449.
[http://dx.doi.org/10.1038/ijo.2011.256] [PMID: 22184060]
[86]
Dey, P.; Sasaki, G.Y.; Wei, P.; Li, J.; Wang, L.; Zhu, J.; McTigue, D.; Yu, Z.; Bruno, R.S. Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J. Nutr. Biochem., 2019, 67(May), 78-89.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.017] [PMID: 30856467]
[87]
Harakeh, S.M.; Khan, I.; Kumosani, T.; Barbour, E.; Almasaudi, S.B.; Bahijri, S.M.; Alfadul, S.M.; Ajabnoor, G.M.; Azhar, E.I. Gut microbiota: a contributing factor to obesity. Front. Cell. Infect. Microbiol., 2016, 6, 95.
[http://dx.doi.org/10.3389/fcimb.2016.00095] [PMID: 27625997]
[88]
Musso, G.; Gambino, R.; Cassader, M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care, 2010, 33(10), 2277-2284.
[http://dx.doi.org/10.2337/dc10-0556] [PMID: 20876708]
[89]
Dumas, M.E.; Barton, R.H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J.C.; Mitchell, S.C.; Holmes, E.; McCarthy, M.I.; Scott, J.; Gauguier, D.; Nicholson, J.K. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12511-12516.
[http://dx.doi.org/10.1073/pnas.0601056103] [PMID: 16895997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy