Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Thieno[2,3-d]pyrimidin-4(3H)-one Derivatives of Benzimidazole as Potential Anti- Breast Cancer (MDA-MB-231, MCF-7) Agents

Author(s): Stefan Dimov, Anelia Ts. Mavrova*, Denitsa Yancheva*, Biliana Nikolova and Iana Tsoneva

Volume 21, Issue 11, 2021

Published on: 21 July, 2020

Page: [1441 - 1450] Pages: 10

DOI: 10.2174/1871520620666200721131431

Price: $65

Abstract

Aims: The purpose of this study was the synthesis of some new thienopyrimidine derivatives of 1,3-disubstituted benzimidazoles and the evaluation of their cytotoxicity against MDA-MB-231, MCF-7, and 3T3 cells lines.

Background: An overexpression or mutational activation of TK receptors EGFR and HER2/neu is characteristic of tumors. It has been found that some thieno[2,3-d]pyrimidines exhibited better inhibitory activity against Epidermal Growth Factor Receptor (EGFR/ErbB-2) tyrosine kinase in comparison to aminoquinazolines. Breast cancer activity towards MDA-MB-231 and MCF-7 cell lines by inhibiting EGFR was revealed by a novel 2-arylbenzimidazole. This motivated the synthesis of new thienopyrimidines possessing benzimidazole fragments in order to evaluate their cytotoxicity to the above-mentioned cell lines.

Objective: The objectives of the study were to design and synthesize a novel series of thieno[2,3-d]pyrimidines bearing biologically active moieties, such as 1,3-disubstituted-benzimidazole heterocycle, structurally similar to diaryl ureas in order to evaluate their cytotoxicity against MDA-MB-231, and MCF-7 breast cancer cell lines.

Methods: N,N-disubstituted benzimidazole-2-one carbonitriles were synthesized by Aza-Michael addition and used as precursors to generate some of the new thieno[2,3-d]pyrimidines in acidic medium The interaction of chloroethyl-2-thienopyrimidines, 2-amino-benzimidazole and benzimidazol-2-one nitriles under solid-liquid transfer catalysis conditions led to new thienopyrimidines. MTT assay for cell survival was performed in order to evaluate the cytotoxicity of the tested compounds. A fluorescence study was conducted to elucidate some aspects of the mechanism of action.

Results: The effects of nine synthesized compounds were investigated towards MDA-MB-231, MCF-7 and 3T3 cell lines. Thieno[2,3-d]pyirimidine-4-one 16 (IC50 - 0.058μM) and 21 (IC50 - 0.029μM) possess high cytotoxicity against MDA-MB-231 cells after 24h. The most cytotoxic compounds against breast cancer MCF-7 cells was compound 21 (IC50 - 0.074μM), revealing lower cytotoxicity against mouse fibroblast 3T3 cells with IC50 - 0.20μM. SAR analysis was performed. Fluorescence study of the treatment of MDA-MB cells with compound 21 was carried out in order to clarify some aspects of the mechanism of action.

Conclusion: The relationship between cytotoxicity of compounds 14 and 20 against MCF-7 and 3T3 cells can suggest a similar mechanism of action. The antitumor potential of the tested compounds proves the necessity for further investigation to estimate the exact inhibition pathway in the cellular processes. The fluorescence study of the treatment of MDA-MB cells with compound 21 showed a rapid process of apoptosis.

Keywords: Thieno[2, 3-d]pyrimidin-4-one, benzimidazole, aza-Michael, MDA-MB-231, MCF-7, 3T3 cells, anticancer activity.

Graphical Abstract
[1]
Wakeling, A.E.; Guy, S.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Barker, A.J.; Gibson, K.H. ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res., 2002, 62(20), 5749-5754.
[PMID: 12384534]
[2]
DeAngelo, D.J.; Stone, R.M.; Heaney, M.L.; Nimer, S.D.; Paquette, R.L.; Klisovic, R.B.; Caligiuri, M.A.; Cooper, M.R.; Lecerf, J-M.; Karol, M.D.; Sheng, S.; Holford, N.; Curtin, P.T.; Druker, B.J.; Heinrich, M.C. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: Safety, pharmacokinetics, and pharmacodynamics. Blood, 2006, 108(12), 3674-3681.
[http://dx.doi.org/10.1182/blood-2006-02-005702] [PMID: 16902153]
[3]
Keating, G.M. Afatinib: A review of its use in the treatment of advanced non-small cell lung cancer. Drugs, 2014, 74(2), 207-221.
[http://dx.doi.org/10.1007/s40265-013-0170-8] [PMID: 24435321]
[4]
Di Maio, M.; Morabito, A.; Piccirillo, M.C.; Daniele, G.; Giordano, P.; Costanzo, R.; Sandomenico, C.; Montanino, A.; Rocco, G.; Perrone, F. Combining anti-Epidermal Growth Factor Receptor (EGFR) and anti-angiogenic strategies in advanced NSCLC: We should have known better. Curr. Pharm. Des., 2014, 20(24), 3901-3913.
[http://dx.doi.org/10.2174/13816128113196660762] [PMID: 24191956]
[5]
Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer, 2006, 6(5), 392-401.
[http://dx.doi.org/10.1038/nrc1877] [PMID: 16572188]
[6]
Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov., 2006, 5(6), 507-521.
[http://dx.doi.org/10.1038/nrd2039] [PMID: 16763661]
[7]
Li, H-F.; Chen, Y.; Rao, S-S.; Chen, X-M.; Liu, H-C.; Qin, J-H.; Tang, W-F. Yue-Wang; Zhou, X.; Lu, T. Recent advances in the research and development of B-Raf inhibitors. Curr. Med. Chem., 2010, 17(16), 1618-1634.
[http://dx.doi.org/10.2174/092986710791111242] [PMID: 20345352]
[8]
Mercer, K.E.; Pritchard, C.A. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta, 2003, 1653(1), 25-40.
[PMID: 12781369]
[9]
Alagarsamy, V.; Vijayakumar, S.; Raja Solomon, V. Synthesis of 2-mercapto-3-substituted-5,6-dimethylthieno[2,3-d] pyrimidin-4(3H)-ones as new analgesic, anti-inflammatory agents. Biomed. Pharmacother., 2007, 61(5), 285-291.
[http://dx.doi.org/10.1016/j.biopha.2007.02.008] [PMID: 17391907]
[10]
Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[11]
Ravez, S.; Arsenlis, S.; Barczyk, A.; Dupont, A.; Frédérick, R.; Hesse, S.; Kirsch, G.; Depreux, P.; Goossens, L. Synthesis and biological evaluation of di-aryl urea derivatives as c-Kit inhibitors. Bioorg. Med. Chem., 2015, 23(22), 7340-7347.
[http://dx.doi.org/10.1016/j.bmc.2015.10.035] [PMID: 26526740]
[12]
Wood, E.R.; Shewchuk, L.M.; Ellis, B.; Brignola, P.; Brashear, R.L.; Caferro, T.R.; Dickerson, S.H.; Dickson, H.D.; Donaldson, K.H.; Gaul, M.; Griffin, R.J.; Hassell, A.M.; Keith, B.; Mullin, R.; Petrov, K.G.; Reno, M.J.; Rusnak, D.W.; Tadepalli, S.M.; Ulrich, J.C.; Wagner, C.D.; Vanderwall, D.E.; Waterson, A.G.; Williams, J.D.; White, W.L.; Uehling, D.E. 6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 2773-2778.
[http://dx.doi.org/10.1073/pnas.0708281105] [PMID: 18287036]
[13]
El-Kashef, H.; Farghaly, A-R.; Al-Hazmi, A.; Terme, T.; Vanelle, P. Pyridine-based heterocycles. Synthesis of new pyrido [4′,3′:4,5]thieno[2,3-d]pyrimidines and related heterocycles. Molecules, 2010, 15(4), 2651-2666.
[http://dx.doi.org/10.3390/molecules15042651] [PMID: 20428071]
[14]
Morris, D.L.; Jourdan, J-L.; Pourgholami, M.H. Pilot study of albendazole in patients with advanced malignancy. Effect on serum tumor markers/high incidence of neutropenia. Oncology, 2001, 61(1), 42-46.
[http://dx.doi.org/10.1159/000055351] [PMID: 11474247]
[15]
Pourgholami, M.H.; Woon, L.; Almajd, R.; Akhter, J.; Bowery, P.; Morris, D.L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett., 2001, 165(1), 43-49.
[http://dx.doi.org/10.1016/S0304-3835(01)00382-2] [PMID: 11248417]
[16]
Chu, B.; Liu, F.; Li, L.; Ding, C.; Chen, K.; Sun, Q.; Shen, Z.; Tan, Y.; Tan, C.; Jiang, Y. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis., 2015, 6, e1686.
[http://dx.doi.org/10.1038/cddis.2015.25] [PMID: 25766325]
[17]
Garuti, L.; Roberti, M.; Bottegoni, G.; Ferraro, M. Diaryl urea: A privileged structure in anticancer agents. Curr. Med. Chem., 2016, 23(15), 1528-1548.
[http://dx.doi.org/10.2174/0929867323666160411142532] [PMID: 27063259]
[18]
Liu, Z.; Wu, S.; Wang, Y.; Li, R.; Wang, J.; Wang, L.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur. J. Med. Chem., 2014, 87, 782-793.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.022] [PMID: 25440879]
[19]
Mavrova, A.T.; Dimov, S.; Yancheva, D.; Rangelov, M.; Wesselinova, D.; Tsenov, J.A. Synthesis, anticancer activity and photostability of novel 3-ethyl-2-mercapto-thieno[2,3-d]pyrimidin-4(3H)-ones. Eur. J. Med. Chem., 2016, 123, 69-79.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.022] [PMID: 27474924]
[20]
Abbas, S.E.; Abdel Gawad, N.M.; George, R.F.; Akar, Y.A. Synthesis, antitumor and antibacterial activities of some novel tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2013, 65, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.055] [PMID: 23708013]
[21]
Song, X-J.; Yang, P.; Gao, H.; Wang, Y.; Dong, X-G.; Tan, X-H. Facile synthesis and antitumor activity of novel 2-trifluoromethylthieno [2, 3-d] pyrimidine derivatives. Chin. Chem. Lett., 2014, 25, 1006-1010.
[http://dx.doi.org/10.1016/j.cclet.2014.05.043]
[22]
Aponte, J.C.; Vaisberg, A.J.; Castillo, D.; Gonzalez, G.; Estevez, Y.; Arevalo, J.; Quiliano, M.; Zimic, M.; Verástegui, M.; Málaga, E.; Gilman, R.H.; Bustamante, J.M.; Tarleton, R.L.; Wang, Y.; Franzblau, S.G.; Pauli, G.F.; Sauvain, M.; Hammond, G.B. Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines. Bioorg. Med. Chem., 2010, 18(8), 2880-2886.
[http://dx.doi.org/10.1016/j.bmc.2010.03.018] [PMID: 20356752]
[23]
Zhao, H.; Tian, W.; Tai, C.; Cohen, D.M. Hypertonic induction of COX-2 expression in renal medullary epithelial cells requires transactivation of the EGFR. Am. J. Physiol. Renal Physiol., 2003, 285(2), F281-F288.
[http://dx.doi.org/10.1152/ajprenal.00030.2003] [PMID: 12670830]
[24]
Gewald, K.; Schinke, E.; Böttcher, H. Heterocycles from CH-acidic nitriles, VIII. 2-amino-thiophenes from methylene-active nitriles, carbonyl compounds and sulfur. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[25]
Gewald, K.; Schinke, E. Heterocycles made from CH & acidic nitriles, X. Note on the reaction of acetone with cyanoacetic ester and sulfur. Chem. Ber., 1966, 99, 2712-2715.
[http://dx.doi.org/10.1002/cber.19660990846]
[26]
Gurrala, S.; Babu, Y.R.; Rao, G.V.; Latha, B.M. Symmetrical coupling of 2-mercapto benzimidazole derivatives and their antimicrobial activity. Int. J. Pharm. Pharm., 2011, 3, 217-220.
[27]
Mavrova, A.T.; Anichina, K.K.; Vuchev, D.I.; Tsenov, J.A.; Kondeva, M.S.; Micheva, M.K. Synthesis and antitrichinellosis activity of some 2-substituted-[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones. Bioorg. Med. Chem., 2005, 13(19), 5550-5559.
[http://dx.doi.org/10.1016/j.bmc.2005.06.046] [PMID: 16084100]
[28]
Kym, O.; Ratrer, L. To know about substituted a-hydroxyl and a-methyl-benzimidazoles. Ber. Dtsch. Chem. Ges., 1912, 425, 3238-3255.
[http://dx.doi.org/10.1002/cber.19120450364]
[29]
Hari, S.; Rinaldi, E.; Somlo, J. Process for the manufacture of benzimidazolones-(2). US Patent 4,138,568, 1979.
[30]
Wright, W.B.N.N ′‐carbonyldiimidazole as a reagent for the preparation of five‐membered heterocycles. J. Heterocycl. Chem., 1965, 2, 41-43.
[http://dx.doi.org/10.1002/jhet.5570020108]
[31]
Mavrova, A.T.; Vuchev, D.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem., 2010, 45(12), 5856-5861.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.050] [PMID: 20950896]
[32]
Mavrova, A.T.; Wesselinova, D.; Vassilev, N.; Tsenov, J.A. Design, synthesis and antiproliferative properties of some new 5-substituted-2-iminobenzimidazole derivatives. Eur. J. Med. Chem., 2013, 63, 696-701.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.010] [PMID: 23567959]
[33]
van Meerloo, J.; Kaspers, G.J.L.; Cloo, J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol., 2011, 731, 237-245.
[34]
Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem., 1997, 62(21), 7512-7515.
[http://dx.doi.org/10.1021/jo971176v] [PMID: 11671879]
[35]
Tsoneva, I.; Iordanov, I.; Berger, A.J.; Tomov, T.; Nikolova, B.; Mudrov, N.; Berger, M.R. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J. Biomed. Biotechnol., 2010, 2010, 4413-4424.
[http://dx.doi.org/10.1155/2010/314213] [PMID: 20706647]
[36]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, 2016, pp. 1-31.
[37]
Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 1993, 303(2), 474-482.
[http://dx.doi.org/10.1006/abbi.1993.1311] [PMID: 8390225]
[38]
Jover, R.; Ponsoda, X.; Castell, J.V.; Gómez-Lechón, M.J. Acute cytotoxicity of ten chemicals in human and rat cultured hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentrations. Toxicol. In Vitro, 1994, 8(1), 47-54.
[http://dx.doi.org/10.1016/0887-2333(94)90207-0] [PMID: 20692888]
[39]
Molinspiration Cheminformatics. 2017.www.molinspiration.com

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy