Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Current Approaches in Diabetes Treatment and Other Strategies to Reach Normoglycemia

Author(s): Worood Sirhan and Ron Piran*

Volume 20, Issue 32, 2020

Page: [2922 - 2944] Pages: 23

DOI: 10.2174/1568026620666200716113813

Price: $65

Abstract

Cells are mainly dependent on glucose as their energy source. Multicellular organisms need to adequately control individual glucose uptake by the cells, and the insulin-glucagon endocrine system serves as the key glucose regulation mechanism. Insulin allows for effective glucose entry into the cells when blood glucose levels are high, and glucagon acts as its opponent, balancing low blood glucose levels. A lack of insulin will prevent glucose entry to the cells, resulting in glucose accumulation in the bloodstream. Diabetes is a disease which is characterized by elevated blood glucose levels. All diabetes types are characterized by an inefficient insulin signaling mechanism. This could be the result of insufficient insulin secretion, as in the case of type I diabetes and progressive incidents of type II diabetes or due to insufficient response to insulin (known as insulin resistance). We emphasize here, that Diabetes is actually a disease of starved tissues, unable to absorb glucose (and other nutrients), and not a disease of high glucose levels. Indeed, diabetic patients, prior to insulin discovery, suffered from glucose malabsorption.

In this mini-review, we will define diabetes, discuss the current status of diabetes treatments, review the current knowledge of the different hormones that participate in glucose homeostasis and the employment of different modulators of these hormones. As this issue deals with peptide therapeutics, special attention will be given to synthetic peptide analogs, peptide agonists as well as antagonists.

Keywords: Glucose homeostasis, Glycemia, Insulin, Glucagon, Somatostatin, Agonists and Antagonists.

Graphical Abstract
[1]
Banting, F.G.; Best, C.H. The internal secretion of the pancreas. 1922. Indian J. Med. Res., 2007, 125(3), 251-266.
[PMID: 17582843]
[2]
Reichert, M.; Rustgi, A.K. Pancreatic ductal cells in development, regeneration, and neoplasia. J. Clin. Invest., 2011, 121(12), 4572-4578.
[http://dx.doi.org/10.1172/JCI57131] [PMID: 22133881]
[3]
Slack, J.M. Developmental biology of the pancreas. Development, 1995, 121(6), 1569-1580.
[PMID: 7600975]
[4]
Da Silva Xavier, G. The cells of the islets of langerhans. J. Clin. Med., 2018, 7(3), 7.
[http://dx.doi.org/10.3390/jcm7030054] [PMID: 29534517]
[5]
Steiner, D.J.; Kim, A.; Miller, K.; Hara, M. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets, 2010, 2(3), 135-145.
[http://dx.doi.org/10.4161/isl.2.3.11815] [PMID: 20657742]
[6]
Weiss, M.; Steiner, D.F.; Philipson, L.H. Insulin biosynthesis, secretion, structure, and structure-activity relationships. In: Endotext; De Groot, L.J.; Chrousos, G.; Dungan, K.; Feingold, K.R.; Grossman, A.; Hershman, J.M.; Koch, C.; Korbonits, M.; McLachlan, R.; New, M.; Purnell, J.; Rebar, R.; Singer, F. Vinik, Eds.; MDText.com, Inc.: South Dartmouth, 2000.
[7]
Zhang, X-X.; Pan, Y-H.; Huang, Y-M.; Zhao, H-L. Neuroendocrine hormone amylin in diabetes. World J. Diabetes, 2016, 7(9), 189-197.
[http://dx.doi.org/10.4239/wjd.v7.i9.189] [PMID: 27162583]
[8]
Heppner, K.M.; Habegger, K.M.; Day, J.; Pfluger, P.T.; Perez-Tilve, D.; Ward, B.; Gelfanov, V.; Woods, S.C.; DiMarchi, R.; Tschöp, M. Glucagon regulation of energy metabolism. Physiol. Behav., 2010, 100(5), 545-548.
[http://dx.doi.org/10.1016/j.physbeh.2010.03.019] [PMID: 20381509]
[9]
Svendsen, B.; Larsen, O.; Gabe, M.B.N.; Christiansen, C.B.; Rosenkilde, M.M.; Drucker, D.J.; Holst, J.J. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep., 2018, 25(5), 1127-1134.e2.
[http://dx.doi.org/10.1016/j.celrep.2018.10.018] [PMID: 30380405]
[10]
Banarer, S.; McGregor, V.P.; Cryer, P.E. Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes, 2002, 51(4), 958-965.
[http://dx.doi.org/10.2337/diabetes.51.4.958] [PMID: 11916913]
[11]
Hope, K.M.; Tran, P.O.T.; Zhou, H.; Oseid, E.; Leroy, E.; Robertson, R.P. Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis. Diabetes, 2004, 53(6), 1488-1495.
[http://dx.doi.org/10.2337/diabetes.53.6.1488] [PMID: 15161753]
[12]
Meier, J.J.; Kjems, L.L.; Veldhuis, J.D.; Lefèbvre, P.; Butler, P.C. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes, 2006, 55(4), 1051-1056.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1449] [PMID: 16567528]
[13]
Gromada, J.; Franklin, I.; Wollheim, C.B. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev., 2007, 28(1), 84-116.
[http://dx.doi.org/10.1210/er.2006-0007] [PMID: 17261637]
[14]
Lonovics, J.; Devitt, P.; Watson, L.C.; Rayford, P.L.; Thompson, J.C. Pancreatic polypeptide. A review. Arch. Surg., 1981, 116(10), 1256-1264.
[http://dx.doi.org/10.1001/archsurg.1981.01380220010002] [PMID: 7025798]
[15]
Baskin, D.G. A Historical perspective on the identification of cell types in pancreatic islets of langerhans by staining and histochemical techniques. J. Histochem. Cytochem., 2015, 63(8), 543-558.
[http://dx.doi.org/10.1369/0022155415589119] [PMID: 26216133]
[16]
Brereton, M.F.; Vergari, E.; Zhang, Q.; Clark, A. Alpha-, delta- and pp-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem., 2015, 63(8), 575-591.
[http://dx.doi.org/10.1369/0022155415583535] [PMID: 26216135]
[17]
Andralojc, K.M.; Mercalli, A.; Nowak, K.W.; Albarello, L.; Calcagno, R.; Luzi, L.; Bonifacio, E.; Doglioni, C.; Piemonti, L. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia, 2009, 52(3), 486-493.
[http://dx.doi.org/10.1007/s00125-008-1238-y] [PMID: 19096824]
[18]
Bell, G.I.; Pictet, R.L.; Rutter, W.J.; Cordell, B.; Tischer, E.; Goodman, H.M. Sequence of the human insulin gene. Nature, 1980, 284(5751), 26-32.
[http://dx.doi.org/10.1038/284026a0] [PMID: 6243748]
[19]
Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev., 2013, 9(1), 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[20]
Liu, M.; Lara-Lemus, R.; Shan, S.O.; Wright, J.; Haataja, L.; Barbetti, F.; Guo, H.; Larkin, D.; Arvan, P. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes, 2012, 61(4), 828-837.
[http://dx.doi.org/10.2337/db11-0878] [PMID: 22357960]
[21]
Musiol, H-J.; Moroder, L. Two-chain insulin from a single-chain branched depsipeptide precursor: the end of a long journey. Angew. Chem. Int. Ed. Engl., 2010, 49(42), 7624-7626.
[http://dx.doi.org/10.1002/anie.201003018] [PMID: 20715037]
[22]
Rinderknecht, E.; Humbel, R.E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem., 1978, 253(8), 2769-2776.
[PMID: 632300]
[23]
Das, R.; Dobens, L.L. Conservation of gene and tissue networks regulating insulin signalling in flies and vertebrates. Biochem. Soc. Trans., 2015, 43(5), 1057-1062.
[http://dx.doi.org/10.1042/BST20150078] [PMID: 26517923]
[24]
Schwartz, T.S.; Bronikowski, A.M. Evolution and function of the insulin and insulin-like signaling network in ectothermic reptiles: some answers and more questions. Integr. Comp. Biol., 2016, 56(2), 171-184.
[http://dx.doi.org/10.1093/icb/icw046] [PMID: 27252221]
[25]
Kadakia, R.; Ma, M.; Josefson, J.L. Neonatal adiposity increases with rising cord blood IGF-1 levels. Clin. Endocrinol. (Oxf.), 2016, 85(1), 70-75.
[http://dx.doi.org/10.1111/cen.13057] [PMID: 26945928]
[26]
Höppener, J.W.; de Pagter-Holthuizen, P.; Geurts van Kessel, A.H.; Jansen, M.; Kittur, S.D.; Antonarakis, S.E.; Lips, C.J.; Sussenbach, J.S. The human gene encoding insulin-like growth factor I is located on chromosome 12. Hum. Genet., 1985, 69(2), 157-160.
[http://dx.doi.org/10.1007/BF00293288] [PMID: 2982726]
[27]
Jansen, M.; van Schaik, F.M.; Ricker, A.T.; Bullock, B.; Woods, D.E.; Gabbay, K.H.; Nussbaum, A.L.; Sussenbach, J.S.; Van den Brande, J.L. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature, 1983, 306(5943), 609-611.
[http://dx.doi.org/10.1038/306609a0] [PMID: 6358902]
[28]
Qiu, Q.; Jiang, J-Y.; Bell, M.; Tsang, B.K.; Gruslin, A. Activation of endoproteolytic processing of insulin-like growth factor-II in fetal, early postnatal, and pregnant rats and persistence of circulating levels in postnatal life. Endocrinology, 2007, 148(10), 4803-4811.
[http://dx.doi.org/10.1210/en.2007-0535] [PMID: 17628003]
[29]
Engström, W.; Shokrai, A.; Otte, K.; Granérus, M.; Gessbo, A.; Bierke, P.; Madej, A.; Sjölund, M.; Ward, A. Transcriptional regulation and biological significance of the insulin like growth factor II gene. Cell Prolif., 1998, 31(5-6), 173-189.
[http://dx.doi.org/10.1111/j.1365-2184.1998.tb01196.x] [PMID: 9925986]
[30]
Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev., 2009, 30(6), 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[31]
Rinderknecht, E.; Humbel, R.E. Primary structure of human insulin-like growth factor II. FEBS Lett., 1978, 89(2), 283-286.
[http://dx.doi.org/10.1016/0014-5793(78)80237-3] [PMID: 658418]
[32]
Sciacca, L.; Le Moli, R.; Vigneri, R. Insulin analogs and cancer. Front. Endocrinol. (Lausanne), 2012, 3, 21.
[http://dx.doi.org/10.3389/fendo.2012.00021] [PMID: 22649410]
[33]
Andersen, M.; Nørgaard-Pedersen, D.; Brandt, J.; Pettersson, I.; Slaaby, R. IGF1 and IGF2 specificities to the two insulin receptor isoforms are determined by insulin receptor amino acid 718. PLoS One, 2017, 12(6)e0178885
[http://dx.doi.org/10.1371/journal.pone.0178885] [PMID: 28570711]
[34]
Vienberg, S.G.; Bouman, S.D.; Sørensen, H.; Stidsen, C.E.; Kjeldsen, T.; Glendorf, T.; Sørensen, A.R.; Olsen, G.S.; Andersen, B.; Nishimura, E. Receptor-isoform-selective insulin analogues give tissue-preferential effects. Biochem. J., 2011, 440(3), 301-308.
[http://dx.doi.org/10.1042/BJ20110880] [PMID: 21851336]
[35]
Moller, D.E.; Yokota, A.; Caro, J.F.; Flier, J.S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol. Endocrinol., 1989, 3(8), 1263-1269.
[http://dx.doi.org/10.1210/mend-3-8-1263] [PMID: 2779582]
[36]
Seino, S.; Bell, G.I. Alternative splicing of human insulin receptor messenger RNA. Biochem. Biophys. Res. Commun., 1989, 159(1), 312-316.
[http://dx.doi.org/10.1016/0006-291X(89)92439-X] [PMID: 2538124]
[37]
Denley, A.; Bonython, E.R.; Booker, G.W.; Cosgrove, L.J.; Forbes, B.E.; Ward, C.W.; Wallace, J.C. Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol. Endocrinol., 2004, 18(10), 2502-2512.
[http://dx.doi.org/10.1210/me.2004-0183] [PMID: 15205474]
[38]
Benyoucef, S.; Surinya, K.H.; Hadaschik, D.; Siddle, K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem. J., 2007, 403(3), 603-613.
[http://dx.doi.org/10.1042/BJ20061709] [PMID: 17291192]
[39]
Yamaguchi, Y.; Flier, J.S.; Benecke, H.; Ransil, B.J.; Moller, D.E. Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 1993, 132(3), 1132-1138.
[http://dx.doi.org/10.1210/endo.132.3.8440175] [PMID: 8440175]
[40]
Frasca, F.; Pandini, G.; Scalia, P.; Sciacca, L.; Mineo, R.; Costantino, A.; Goldfine, I.D.; Belfiore, A.; Vigneri, R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol., 1999, 19(5), 3278-3288.
[http://dx.doi.org/10.1128/MCB.19.5.3278] [PMID: 10207053]
[41]
Frystyk, J. Free insulin-like growth factors - measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm. IGF Res., 2004, 14(5), 337-375.
[http://dx.doi.org/10.1016/j.ghir.2004.06.001] [PMID: 15336229]
[42]
Mosthaf, L.; Grako, K.; Dull, T.J.; Coussens, L.; Ullrich, A.; McClain, D.A. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J., 1990, 9(8), 2409-2413.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07416.x] [PMID: 2369896]
[43]
White, J.W.; Saunders, G.F. Structure of the human glucagon gene. Nucleic Acids Res., 1986, 14(12), 4719-4730.
[http://dx.doi.org/10.1093/nar/14.12.4719] [PMID: 3725587]
[44]
Pollock, H.G.; Hamilton, J.W.; Rouse, J.B.; Ebner, K.E.; Rawitch, A.B. Isolation of peptide hormones from the pancreas of the bullfrog (Rana catesbeiana). Amino acid sequences of pancreatic polypeptide, oxyntomodulin, and two glucagon-like peptides. J. Biol. Chem., 1988, 263(20), 9746-9751.
[PMID: 3260236]
[45]
Lok, S.; Kuijper, J.L.; Jelinek, L.J.; Kramer, J.M.; Whitmore, T.E.; Sprecher, C.A.; Mathewes, S.; Grant, F.J.; Biggs, S.H.; Rosenberg, G.B.; Sheppard, P.O.; O’Hara, P.J.; Foster, D.C.; Kindsvogel, W. The human glucagon receptor encoding gene: structure, cDNA sequence and chromosomal localization. Gene, 1994, 140(2), 203-209.
[http://dx.doi.org/10.1016/0378-1119(94)90545-2] [PMID: 8144028]
[46]
Brubaker, P.L.; Drucker, D.J. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels, 2002, 8(3-4), 179-188.
[http://dx.doi.org/10.3109/10606820213687] [PMID: 12529935]
[47]
Svoboda, M.; Tastenoy, M.; Vertongen, P.; Robberecht, P. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol. Cell. Endocrinol., 1994, 105(2), 131-137.
[http://dx.doi.org/10.1016/0303-7207(94)90162-7] [PMID: 7859919]
[48]
Iakoubov, R.; Izzo, A.; Yeung, A.; Whiteside, C.I.; Brubaker, P.L. Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology, 2007, 148(3), 1089-1098.
[http://dx.doi.org/10.1210/en.2006-1403] [PMID: 17110421]
[49]
Hsieh, J.; Longuet, C.; Maida, A.; Bahrami, J.; Xu, E.; Baker, C.L.; Brubaker, P.L.; Drucker, D.J.; Adeli, K. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology, 2009, 137, 997-1005.
[http://dx.doi.org/10.1053/j.gastro.2009.05.051]
[50]
Hsieh, J.; Longuet, C.; Baker, C.L.; Qin, B.; Federico, L.M.; Drucker, D.J.; Adeli, K. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia, 2010, 53(3), 552-561.
[http://dx.doi.org/10.1007/s00125-009-1611-5] [PMID: 19957161]
[51]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[52]
Meier, J.J.; Nauck, M.A. Incretins and the development of type 2 diabetes. Curr. Diab. Rep., 2006, 6(3), 194-201.
[http://dx.doi.org/10.1007/s11892-006-0034-7] [PMID: 16898571]
[53]
Deacon, C.F.; Pridal, L.; Klarskov, L.; Olesen, M.; Holst, J.J. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am. J. Physiol., 1996, 271(3 Pt 1), E458-E464.
[PMID: 8843738]
[54]
Hansen, L.; Deacon, C.F.; Orskov, C.; Holst, J.J. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology, 1999, 140(11), 5356-5363.
[http://dx.doi.org/10.1210/endo.140.11.7143] [PMID: 10537167]
[55]
Hansen, L.; Hartmann, B.; Bisgaard, T.; Mineo, H.; Jørgensen, P.N.; Holst, J.J. Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am. J. Physiol. Endocrinol. Metab., 2000, 278(6), E1010-E1018.
[http://dx.doi.org/10.1152/ajpendo.2000.278.6.E1010] [PMID: 10827002]
[56]
Matikainen, N.; Mänttäri, S.; Schweizer, A.; Ulvestad, A.; Mills, D.; Dunning, B.E.; Foley, J.E.; Taskinen, M.R. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia, 2006, 49(9), 2049-2057.
[http://dx.doi.org/10.1007/s00125-006-0340-2] [PMID: 16816950]
[57]
Cheeseman, C.I. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am. J. Physiol., 1997, 273(6), R1965-R1971.
[PMID: 9435650]
[58]
Au, A.; Gupta, A.; Schembri, P.; Cheeseman, C.I. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2. Biochem. J., 2002, 367(Pt 1), 247-254.
[http://dx.doi.org/10.1042/bj20020393] [PMID: 12095416]
[59]
Meier, J.J.; Nauck, M.A.; Pott, A.; Heinze, K.; Goetze, O.; Bulut, K.; Schmidt, W.E.; Gallwitz, B.; Holst, J.J. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology, 2006, 130(1), 44-54.
[http://dx.doi.org/10.1053/j.gastro.2005.10.004] [PMID: 16401467]
[60]
Pocai, A. Action and therapeutic potential of oxyntomodulin. Mol. Metab., 2013, 3(3), 241-251.
[http://dx.doi.org/10.1016/j.molmet.2013.12.001] [PMID: 24749050]
[61]
Landgraf, D.; Tsang, A.H.; Leliavski, A.; Koch, C.E.; Barclay, J.L.; Drucker, D.J.; Oster, H. Oxyntomodulin regulates resetting of the liver circadian clock by food. elife 2015, 4e06253
[62]
Muppidi, A.; Zou, H.; Yang, P.Y.; Chao, E.; Sherwood, L.; Nunez, V.; Woods, A.K.; Schultz, P.G.; Lin, Q.; Shen, W. Design of potent and proteolytically stable oxyntomodulin analogs. ACS Chem. Biol., 2016, 11(2), 324-328.
[http://dx.doi.org/10.1021/acschembio.5b00787] [PMID: 26727558]
[63]
Thim, L.; Moody, A.J. The primary structure of porcine glicentin (proglucagon). Regul. Pept., 1981, 2(2), 139-150.
[http://dx.doi.org/10.1016/0167-0115(81)90007-0] [PMID: 6894800]
[64]
Blache, P.; Kervran, A.; Bataille, D. Oxyntomodulin and glicentin: brain-gut peptides in the rat. Endocrinology, 1988, 123(6), 2782-2787.
[http://dx.doi.org/10.1210/endo-123-6-2782] [PMID: 3197645]
[65]
Ellrichmann, M. Orlistat and the influence on apetite signals.Handbook of Behavior, Food and Nutrition; Preedy, V.R.; Martin, C.R.; Watson, R.R., Eds.; Springer: Berlin, 2011.
[66]
Fujita, Y.; Wideman, R.D.; Asadi, A.; Yang, G.K.; Baker, R.; Webber, T.; Zhang, T.; Wang, R.; Ao, Z.; Warnock, G.L.; Kwok, Y.N.; Kieffer, T.J. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. Gastroenterology, 2010, 138(5), 1966-1975.
[http://dx.doi.org/10.1053/j.gastro.2010.01.049] [PMID: 20138041]
[67]
Buhren, B.A.; Gasis, M.; Thorens, B.; Müller, H.W.; Bosse, F. Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): cellular localization, lesion-affected expression, and impaired regenerative axonal growth. J. Neurosci. Res., 2009, 87(8), 1858-1870.
[http://dx.doi.org/10.1002/jnr.22001] [PMID: 19170165]
[68]
Moffett, R.C.; Naughton, V. Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides, 2020, 125170233
[http://dx.doi.org/10.1016/j.peptides.2019.170233] [PMID: 31935429]
[69]
Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x] [PMID: 8100523]
[70]
Kieffer, T.J.; McIntosh, C.H.; Pederson, R.A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 1995, 136(8), 3585-3596.
[http://dx.doi.org/10.1210/endo.136.8.7628397] [PMID: 7628397]
[71]
Pauly, R.P.; Rosche, F.; Wermann, M.; McIntosh, C.H.; Pederson, R.A.; Demuth, H.U. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A novel kinetic approach. J. Biol. Chem., 1996, 271(38), 23222-23229.
[http://dx.doi.org/10.1074/jbc.271.38.23222] [PMID: 8798518]
[72]
Widenmaier, S.B.; Kim, S-J.; Yang, G.K.; De Los Reyes, T.; Nian, C.; Asadi, A.; Seino, Y.; Kieffer, T.J.; Kwok, Y.N.; McIntosh, C.H.S. A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control. PLoS One, 2010, 5(3)e9590
[http://dx.doi.org/10.1371/journal.pone.0009590] [PMID: 20231880]
[73]
Yip, R.G.; Wolfe, M.M. GIP biology and fat metabolism. Life Sci., 2000, 66(2), 91-103.
[http://dx.doi.org/10.1016/S0024-3205(99)00314-8] [PMID: 10666005]
[74]
Naitoh, R.; Miyawaki, K.; Harada, N.; Mizunoya, W.; Toyoda, K.; Fushiki, T.; Yamada, Y.; Seino, Y.; Inagaki, N. Inhibition of GIP signaling modulates adiponectin levels under high-fat diet in mice. Biochem. Biophys. Res. Commun., 2008, 376(1), 21-25.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.052] [PMID: 18723001]
[75]
Miyawaki, K.; Yamada, Y.; Ban, N.; Ihara, Y.; Tsukiyama, K.; Zhou, H.; Fujimoto, S.; Oku, A.; Tsuda, K.; Toyokuni, S.; Hiai, H.; Mizunoya, W.; Fushiki, T.; Holst, J.J.; Makino, M.; Tashita, A.; Kobara, Y.; Tsubamoto, Y.; Jinnouchi, T.; Jomori, T.; Seino, Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med., 2002, 8(7), 738-742.
[http://dx.doi.org/10.1038/nm727] [PMID: 12068290]
[76]
Strowski, M.Z.; Parmar, R.M.; Blake, A.D.; Schaeffer, J.M. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology, 2000, 141(1), 111-117.
[http://dx.doi.org/10.1210/endo.141.1.7263] [PMID: 10614629]
[77]
Pintér, E.; Helyes, Z.; Szolcsányi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther., 2006, 112(2), 440-456.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.010] [PMID: 16764934]
[78]
Elekes, K.; Helyes, Z.; Kereskai, L.; Sándor, K.; Pintér, E.; Pozsgai, G.; Tékus, V.; Bánvölgyi, A.; Németh, J.; Szuts, T.; Kéri, G.; Szolcsányi, J. Inhibitory effects of synthetic somatostatin receptor subtype 4 agonists on acute and chronic airway inflammation and hyperreactivity in the mouse. Eur. J. Pharmacol., 2008, 578(2-3), 313-322.
[http://dx.doi.org/10.1016/j.ejphar.2007.09.033] [PMID: 17961545]
[79]
Helyes, Z.; Pintér, E.; Németh, J.; Kéri, G.; Thán, M.; Oroszi, G.; Horváth, A.; Szolcsányi, J. Anti-inflammatory effect of synthetic somatostatin analogues in the rat. Br. J. Pharmacol., 2001, 134(7), 1571-1579.
[http://dx.doi.org/10.1038/sj.bjp.0704396] [PMID: 11724765]
[80]
Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol., 1999, 20(3), 157-198.
[http://dx.doi.org/10.1006/frne.1999.0183] [PMID: 10433861]
[81]
Liu, Y.; Lu, D.; Zhang, Y.; Li, S.; Liu, X.; Lin, H. The evolution of somatostatin in vertebrates. Gene, 2010, 463(1-2), 21-28.
[http://dx.doi.org/10.1016/j.gene.2010.04.016] [PMID: 20472043]
[82]
Gahete, M.D.; Cordoba-Chacón, J.; Duran-Prado, M.; Malagón, M.M.; Martinez-Fuentes, A.J.; Gracia-Navarro, F.; Luque, R.M.; Castaño, J.P. Somatostatin and its receptors from fish to mammals. Ann. N. Y. Acad. Sci., 2010, 1200, 43-52.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05511.x] [PMID: 20633132]
[83]
Shen, L.P.; Pictet, R.L.; Rutter, W.J. Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci. USA, 1982, 79(15), 4575-4579.
[http://dx.doi.org/10.1073/pnas.79.15.4575] [PMID: 6126875]
[84]
Shen, L.P.; Rutter, W.J. Sequence of the human somatostatin I gene. Science, 1984, 224(4645), 168-171.
[http://dx.doi.org/10.1126/science.6142531] [PMID: 6142531]
[85]
Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999, 402(6762), 656-660.
[http://dx.doi.org/10.1038/45230] [PMID: 10604470]
[86]
Howard, A.D.; Feighner, S.D.; Cully, D.F.; Arena, J.P.; Liberator, P.A.; Rosenblum, C.I.; Hamelin, M.; Hreniuk, D.L.; Palyha, O.C.; Anderson, J.; Paress, P.S.; Diaz, C.; Chou, M.; Liu, K.K.; McKee, K.K.; Pong, S.S.; Chaung, L.Y.; Elbrecht, A.; Dashkevicz, M.; Heavens, R.; Rigby, M.; Sirinathsinghji, D.J.; Dean, D.C.; Melillo, D.G.; Patchett, A.A.; Nargund, R.; Griffin, P.R.; DeMartino, J.A.; Gupta, S.K.; Schaeffer, J.M.; Smith, R.G.; Van der Ploeg, L.H. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 1996, 273(5277), 974-977.
[http://dx.doi.org/10.1126/science.273.5277.974] [PMID: 8688086]
[87]
Boel, E.; Schwartz, T.W.; Norris, K.E.; Fiil, N.P. A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide. EMBO J., 1984, 3(4), 909-912.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb01904.x] [PMID: 6373251]
[88]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[89]
Olson, A.L.; Pessin, J.E. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu. Rev. Nutr., 1996, 16, 235-256.
[http://dx.doi.org/10.1146/annurev.nu.16.070196.001315] [PMID: 8839927]
[90]
Nishimura, H.; Pallardo, F.V.; Seidner, G.A.; Vannucci, S.; Simpson, I.A.; Birnbaum, M.J. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J. Biol. Chem., 1993, 268(12), 8514-8520.
[PMID: 8473295]
[91]
Uldry, M.; Ibberson, M.; Hosokawa, M.; Thorens, B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett., 2002, 524(1-3), 199-203.
[http://dx.doi.org/10.1016/S0014-5793(02)03058-2] [PMID: 12135767]
[92]
Ghezzi, C.; Loo, D.D.F.; Wright, E.M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia, 2018, 61(10), 2087-2097.
[http://dx.doi.org/10.1007/s00125-018-4656-5] [PMID: 30132032]
[93]
Leino, R.L.; Gerhart, D.Z.; van Bueren, A.M.; McCall, A.L.; Drewes, L.R. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J. Neurosci. Res., 1997, 49(5), 617-626.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970901)49:5<617:AID-JNR12>3.0.CO;2-S] [PMID: 9302083]
[94]
Huang, S.; Czech, M.P. The GLUT4 glucose transporter. Cell Metab., 2007, 5(4), 237-252.
[http://dx.doi.org/10.1016/j.cmet.2007.03.006] [PMID: 17403369]
[95]
James, D.E.; Brown, R.; Navarro, J.; Pilch, P.F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature, 1988, 333(6169), 183-185.
[http://dx.doi.org/10.1038/333183a0] [PMID: 3285221]
[96]
Mather, A.; Pollock, C. Glucose handling by the kidney. Kidney Int. Suppl., 2011, 79(120), S1-S6.
[http://dx.doi.org/10.1038/ki.2010.509] [PMID: 21358696]
[97]
Soták, M.; Marks, J.; Unwin, R.J. Putative tissue location and function of the SLC5 family member SGLT3. Exp. Physiol., 2017, 102(1), 5-13.
[http://dx.doi.org/10.1113/EP086042] [PMID: 27859807]
[98]
Glimcher, L.H.; Lee, A-H. From sugar to fat: How the transcription factor XBP1 regulates hepatic lipogenesis. Ann. N. Y. Acad. Sci., 2009, 1173(Suppl. 1), E2-E9.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04956.x] [PMID: 19751410]
[99]
Rui, L. Energy metabolism in the liver. Compr. Physiol., 2014, 4(1), 177-197.
[http://dx.doi.org/10.1002/cphy.c130024] [PMID: 24692138]
[100]
Scherer, T.; O’Hare, J.; Diggs-Andrews, K.; Schweiger, M.; Cheng, B.; Lindtner, C.; Zielinski, E.; Vempati, P.; Su, K.; Dighe, S.; Milsom, T.; Puchowicz, M.; Scheja, L.; Zechner, R.; Fisher, S.J.; Previs, S.F.; Buettner, C. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab., 2011, 13(2), 183-194.
[http://dx.doi.org/10.1016/j.cmet.2011.01.008] [PMID: 21284985]
[101]
Nordlie, R.C.; Foster, J.D.; Lange, A.J. Regulation of glucose production by the liver. Annu. Rev. Nutr., 1999, 19, 379-406.
[http://dx.doi.org/10.1146/annurev.nutr.19.1.379] [PMID: 10448530]
[102]
Kehlenbrink, S.; Tonelli, J.; Koppaka, S.; Chandramouli, V.; Hawkins, M.; Kishore, P. Inhibiting gluconeogenesis prevents fatty acid-induced increases in endogenous glucose production. Am. J. Physiol. Endocrinol. Metab., 2009, 297(1), E165-E173.
[http://dx.doi.org/10.1152/ajpendo.00001.2009] [PMID: 19417129]
[103]
Bongaerts, G.P.A.; Wagener, D.J.T. Increased hepatic gluconeogenesis: the secret of Lance Armstrong’s success. Med. Hypotheses, 2007, 68(1), 9-11.
[http://dx.doi.org/10.1016/j.mehy.2006.04.054] [PMID: 16797860]
[104]
Ezaki, J.; Matsumoto, N.; Takeda-Ezaki, M.; Komatsu, M.; Takahashi, K.; Hiraoka, Y.; Taka, H.; Fujimura, T.; Takehana, K.; Yoshida, M.; Iwata, J.; Tanida, I.; Furuya, N.; Zheng, D-M.; Tada, N.; Tanaka, K.; Kominami, E.; Ueno, T. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy, 2011, 7(7), 727-736.
[http://dx.doi.org/10.4161/auto.7.7.15371] [PMID: 21471734]
[105]
Vaughan, M.; Steinberg, D. Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J. Lipid Res., 1963, 4, 193-199.
[PMID: 14168151]
[106]
Rodbell, M.; Jones, A.B. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J. Biol. Chem., 1966, 241(1), 140-142.
[PMID: 4285132]
[107]
Prigge, W.F.; Grande, F. Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds. Comp. Biochem. Physiol. B, 1971, 39(1), 69-82.
[http://dx.doi.org/10.1016/0305-0491(71)90254-9] [PMID: 5570026]
[108]
Manganiello, V.; Vaughan, M. Selective loss of adipose cell responsiveness to glucagon with growth in the rat. J. Lipid Res., 1972, 13(1), 12-16.
[PMID: 4333820]
[109]
Lefebvre, P.; Luyckx, A.; Bacq, Z.M. Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats. Horm. Metab. Res., 1973, 5(4), 245-250.
[http://dx.doi.org/10.1055/s-0028-1093959] [PMID: 4731272]
[110]
Livingston, J.N.; Cuatrecasas, P.; Lockwood, D.H. Studies of glucagon resistance in large rat adipocytes: 125I-labeled glucagon binding and lipolytic capacity. J. Lipid Res., 1974, 15(1), 26-32.
[PMID: 4359539]
[111]
Olson, A.L. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN Mol. Biol., 2012, 2012856987
[http://dx.doi.org/10.5402/2012/856987] [PMID: 27335671]
[112]
Isganaitis, E.; Lustig, R.H. Fast food, central nervous system insulin resistance, and obesity. Arterioscler. Thromb. Vasc. Biol., 2005, 25(12), 2451-2462.
[http://dx.doi.org/10.1161/01.ATV.0000186208.06964.91] [PMID: 16166564]
[113]
Atkinson, M.A. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb. Perspect. Med., 2012, 2(11), 2.
[http://dx.doi.org/10.1101/cshperspect.a007641] [PMID: 23125199]
[114]
Fajans, S.S.; Bell, G.I.; Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med., 2001, 345(13), 971-980.
[http://dx.doi.org/10.1056/NEJMra002168] [PMID: 11575290]
[115]
Bell, J.I.; Wainscoat, J.S.; Old, J.M.; Chlouverakis, C.; Keen, H.; Turner, R.C.; Weatherall, D.J. Maturity onset diabetes of the young is not linked to the insulin gene. Br. Med. J. (Clin. Res. Ed.), 1983, 286(6365), 590-592.
[http://dx.doi.org/10.1136/bmj.286.6365.590] [PMID: 6402160]
[116]
Kleinberger, J.W.; Pollin, T.I. Undiagnosed MODY: Time for Action. Curr. Diab. Rep., 2015, 15(12), 110.
[http://dx.doi.org/10.1007/s11892-015-0681-7] [PMID: 26458381]
[117]
Palladino, A.A.; Bennett, M.J.; Stanley, C.A. Hyperinsulinism in infancy and childhood: when an insulin level is not always enough. Ann. Biol. Clin. (Paris), 2009, 67(3), 245-254.
[PMID: 19411227]
[118]
De León, D.D.; Stanley, C.A. Determination of insulin for the diagnosis of hyperinsulinemic hypoglycemia. Best Pract. Res. Clin. Endocrinol. Metab., 2013, 27(6), 763-769.
[http://dx.doi.org/10.1016/j.beem.2013.06.005] [PMID: 24275188]
[119]
Mohnike, K.; Blankenstein, O.; Pfuetzner, A.; Pötzsch, S.; Schober, E.; Steiner, S.; Hardy, O.T.; Grimberg, A.; van Waarde, W.M. Long-term non-surgical therapy of severe persistent congenital hyperinsulinism with glucagon. Horm. Res., 2008, 70(1), 59-64.
[http://dx.doi.org/10.1159/000129680] [PMID: 18493152]
[120]
Neylon, O.M.; Moran, M.M.; Pellicano, A.; Nightingale, M.; O’Connell, M.A. Successful subcutaneous glucagon use for persistent hypoglycaemia in congenital hyperinsulinism. J. Pediatr. Endocrinol. Metab., 2013, 26(11-12), 1157-1161.
[http://dx.doi.org/10.1515/jpem-2013-0115] [PMID: 23813352]
[121]
Yorifuji, T. Congenital hyperinsulinism: current status and future perspectives. Ann. Pediatr. Endocrinol. Metab., 2014, 19(2), 57-68.
[http://dx.doi.org/10.6065/apem.2014.19.2.57] [PMID: 25077087]
[122]
Recombinant DNA technology in the synthesis of human insulin. Available from: http://www.littletree.com.au/dna.htm (Accessed on Sep 23, 2019).
[123]
Kjeldsen, T. Yeast secretory expression of insulin precursors. Appl. Microbiol. Biotechnol., 2000, 54(3), 277-286.
[http://dx.doi.org/10.1007/s002530000402] [PMID: 11030562]
[124]
Weil-Ktorza, O.; Rege, N.; Lansky, S.; Shalev, D.E.; Shoham, G.; Weiss, M.A.; Metanis, N. Substitution of an internal disulfide bridge with a diselenide enhances both foldability and stability of human insulin. Chemistry, 2019, 25(36), 8513-8521.
[http://dx.doi.org/10.1002/chem.201900892] [PMID: 31012517]
[125]
Arai, K.; Takei, T.; Shinozaki, R.; Noguchi, M.; Fujisawa, S.; Katayama, H.; Moroder, L.; Ando, S.; Okumura, M.; Inaba, K.; Hojo, H.; Iwaoka, M. Characterization and optimization of two-chain folding pathways of insulin via native chain assembly. Comm. Chem., 2018, 1, 26.
[http://dx.doi.org/10.1038/s42004-018-0024-0]
[126]
Meienhofer, J.; Schnabel, E.; Bremer, H.; Brinkhoff, O.; Zabel, R.; Sroka, W.; Klostermayer, H.; Brandenburg, D.; Okuda, T.; Zahn, H. Synthesis of insulin chains and their combination to insulin-active preparations. Z. Naturforsch. B, 1963, 18, 1120-1121.
[http://dx.doi.org/10.1515/znb-1963-1223] [PMID: 14117584]
[127]
Katsoyannis, P.G.; Fukuda, K.; Tometsko, A.; Suzuki, K.; Tilak, M. Insulin Peptides. X. The synthesis of the b-chain of insulin and its combination with natural or synthetis a-chin to generate insulin activity. J. Am. Chem. Soc., 1964, 86, 930-932.
[http://dx.doi.org/10.1021/ja01059a043]
[128]
Kung, Y.T.; Du, Y.C.; Huang, W.T.; Chen, C.C.; Ke, L.T. Total synthesis of crystalline bovine insulin. Sci. Sin., 1965, 14(11), 1710-1716.
[PMID: 5881570]
[129]
Akaji, K.; Fujino, K.; Tatsumi, T.; Kiso, Y. Total synthesis of human insulin by regioselective disulfide formation using the silyl chloride-sulfoxide method. J. Am. Chem. Soc., 1993, 115, 11384-11392.
[http://dx.doi.org/10.1021/ja00077a043]
[130]
Sieber, P.; Kamber, B.; Hartmann, A.; Jöhl, A.; Riniker, B.; Rittel, W. Total synthesis of human insulin under directed formation of the disulfide bonds. Helv. Chim. Acta, 1974, 57(8), 2617-2621.
[http://dx.doi.org/10.1002/hlca.19740570839] [PMID: 4443293]
[131]
Adams, M.J.; Blundell, T.L.; Dodson, E.J.; Dodson, G.G.; Vijayan, M.; Baker, E.N.; Harding, M.M.; Hodgkin, D.C.; Rimmer, B.; Sheat, S. Structure of rhombohedral 2 zinc insulin crystals. Nature, 1969, 224, 491-495.
[http://dx.doi.org/10.1038/224491a0]
[132]
Sohma, Y.; Kent, S.B.H. Biomimetic synthesis of lispro insulin via a chemically synthesized “mini-proinsulin” prepared by oxime-forming ligation. J. Am. Chem. Soc., 2009, 131(44), 16313-16318.
[http://dx.doi.org/10.1021/ja9052398] [PMID: 19835355]
[133]
Tofteng, A.P.; Jensen, K.J.; Schäffer, L.; Hoeg-Jensen, T. Total synthesis of desB30 insulin analogues by biomimetic folding of single-chain precursors. ChemBioChem, 2008, 9(18), 2989-2996.
[http://dx.doi.org/10.1002/cbic.200800430] [PMID: 19035371]
[134]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186), 776-779.
[http://dx.doi.org/10.1126/science.7973629] [PMID: 7973629]
[135]
Metanis, N.; Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol., 2014, 22, 27-34.
[http://dx.doi.org/10.1016/j.cbpa.2014.09.010] [PMID: 25261915]
[136]
Arai, K.; Takei, T.; Okumura, M.; Watanabe, S.; Amagai, Y.; Asahina, Y.; Moroder, L.; Hojo, H.; Inaba, K.; Iwaoka, M. Preparation of selenoinsulin as a long-lasting insulin analogue. Angew. Chem. Int. Ed. Engl., 2017, 56(20), 5522-5526.
[http://dx.doi.org/10.1002/anie.201701654] [PMID: 28394477]
[137]
Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 15818-15827.
[http://dx.doi.org/10.1002/anie.201706876] [PMID: 28857389]
[138]
Dhayalan, B.; Chen, Y-S.; Phillips, N.B.; Swain, M.; Rege, N.K.; Mirsalehi, A.; Jarosinski, M.; Ismail-Beigi, F.; Metanis, N.; Weiss, M.A. Reassessment of an innovative insulin analogue excludes protracted action yet highlights the distinction between external and internal diselenide bridges. Chemistry, 2020, 26(21), 4695-4700.
[http://dx.doi.org/10.1002/chem.202000309] [PMID: 31958351]
[139]
Zaykov, A.N.; Mayer, J.P.; Gelfanov, V.M.; DiMarchi, R.D. Chemical synthesis of insulin analogs through a novel precursor. ACS Chem. Biol., 2014, 9(3), 683-691.
[http://dx.doi.org/10.1021/cb400792s] [PMID: 24328449]
[140]
Hilgenfeld, R.; Seipke, G.; Berchtold, H.; Owens, D.R. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs, 2014, 74(8), 911-927.
[http://dx.doi.org/10.1007/s40265-014-0226-4] [PMID: 24866023]
[141]
Brange, J.; Ribel, U.; Hansen, J.F.; Dodson, G.; Hansen, M.T.; Havelund, S.; Melberg, S.G.; Norris, F.; Norris, K.; Snel, L. Monomeric insulins obtained by protein engineering and their medical implications. Nature, 1988, 333(6174), 679-682.
[http://dx.doi.org/10.1038/333679a0] [PMID: 3287182]
[142]
Zaykov, A.N.; Mayer, J.P.; DiMarchi, R.D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov., 2016, 15(6), 425-439.
[http://dx.doi.org/10.1038/nrd.2015.36] [PMID: 26988411]
[143]
Pillutla, R.C.; Hsiao, K.C.; Beasley, J.R.; Brandt, J.; Østergaard, S.; Hansen, P.H.; Spetzler, J.C.; Danielsen, G.M.; Andersen, A.S.; Brissette, R.E.; Lennick, M.; Fletcher, P.W.; Blume, A.J.; Schäffer, L.; Goldstein, N.I. Peptides identify the critical hotspots involved in the biological activation of the insulin receptor. J. Biol. Chem., 2002, 277(25), 22590-22594.
[http://dx.doi.org/10.1074/jbc.M202119200] [PMID: 11964401]
[144]
Schäffer, L.; Brissette, R.E.; Spetzler, J.C.; Pillutla, R.C.; Østergaard, S.; Lennick, M.; Brandt, J.; Fletcher, P.W.; Danielsen, G.M.; Hsiao, K-C.; Andersen, A.S.; Dedova, O.; Ribel, U.; Hoeg-Jensen, T.; Hansen, P.H.; Blume, A.J.; Markussen, J.; Goldstein, N.I. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4435-4439.
[http://dx.doi.org/10.1073/pnas.0830026100] [PMID: 12684539]
[145]
Schäffer, L.; Brand, C.L.; Hansen, B.F.; Ribel, U.; Shaw, A.C.; Slaaby, R.; Sturis, J. A novel high-affinity peptide antagonist to the insulin receptor. Biochem. Biophys. Res. Commun., 2008, 376(2), 380-383.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.151] [PMID: 18782558]
[146]
Jensen, M.; Hansen, B.; De Meyts, P.; Schäffer, L.; Ursø, B. Activation of the insulin receptor by insulin and a synthetic peptide leads to divergent metabolic and mitogenic signaling and responses. J. Biol. Chem., 2007, 282(48), 35179-35186.
[http://dx.doi.org/10.1074/jbc.M704599200] [PMID: 17925406]
[147]
Jensen, M.; Palsgaard, J.; Borup, R.; de Meyts, P.; Schäffer, L. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts. Biochem. J., 2008, 412(3), 435-445.
[http://dx.doi.org/10.1042/BJ20080279] [PMID: 18318661]
[148]
Pullen, R.A.; Lindsay, D.G.; Wood, S.P.; Tickle, I.J.; Blundell, T.L.; Wollmer, A.; Krail, G.; Brandenburg, D.; Zahn, H.; Gliemann, J.; Gammeltoft, S. Receptor-binding region of insulin. Nature, 1976, 259(5542), 369-373.
[http://dx.doi.org/10.1038/259369a0] [PMID: 175286]
[149]
De Meyts, P.; Van Obberghen, E.; Roth, J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature, 1978, 273(5663), 504-509.
[http://dx.doi.org/10.1038/273504a0] [PMID: 661960]
[150]
Schäffer, L. A model for insulin binding to the insulin receptor. Eur. J. Biochem., 1994, 221(3), 1127-1132.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18833.x] [PMID: 8181471]
[151]
Glendorf, T.; Stidsen, C.E.; Norrman, M.; Nishimura, E.; Sørensen, A.R.; Kjeldsen, T. Engineering of insulin receptor isoform-selective insulin analogues. PLoS One, 2011, 6(5)e20288
[http://dx.doi.org/10.1371/journal.pone.0020288] [PMID: 21625452]
[152]
Bhaskar, V.; Goldfine, I.D.; Bedinger, D.H.; Lau, A.; Kuan, H.F.; Gross, L.M.; Handa, M.; Maddux, B.A.; Watson, S.R.; Zhu, S.; Narasimha, A.J.; Levy, R.; Webster, L.; Wijesuriya, S.D.; Liu, N.; Wu, X.; Chemla-Vogel, D.; Tran, C.; Lee, S.R.; Wong, S.; Wilcock, D.; White, M.L.; Corbin, J.A. A fully human, allosteric monoclonal antibody that activates the insulin receptor and improves glycemic control. Diabetes, 2012, 61(5), 1263-1271.
[http://dx.doi.org/10.2337/db11-1578] [PMID: 22403294]
[153]
Corbin, J.A.; Bhaskar, V.; Goldfine, I.D.; Bedinger, D.H.; Lau, A.; Michelson, K.; Gross, L.M.; Maddux, B.A.; Kuan, H.F.; Tran, C.; Lao, L.; Handa, M.; Watson, S.R.; Narasimha, A.J.; Zhu, S.; Levy, R.; Webster, L.; Wijesuriya, S.D.; Liu, N.; Wu, X.; Chemla-Vogel, D.; Lee, S.R.; Wong, S.; Wilcock, D.; White, M.L. Improved glucose metabolism in vitro and in vivo by an allosteric monoclonal antibody that increases insulin receptor binding affinity. PLoS One, 2014, 9(2)e88684
[http://dx.doi.org/10.1371/journal.pone.0088684] [PMID: 24533136]
[154]
Corbin, J.A.; Bhaskar, V.; Goldfine, I.D.; Issafras, H.; Bedinger, D.H.; Lau, A.; Michelson, K.; Gross, L.M.; Maddux, B.A.; Kuan, H.F.; Tran, C.; Lao, L.; Handa, M.; Watson, S.R.; Narasimha, A.J.; Zhu, S.; Levy, R.; Webster, L.; Wijesuriya, S.D.; Liu, N.; Wu, X.; Chemla-Vogel, D.; Lee, S.R.; Wong, S.; Wilcock, D.; Rubin, P.; White, M.L. Inhibition of insulin receptor function by a human, allosteric monoclonal antibody: a potential new approach for the treatment of hyperinsulinemic hypoglycemia. MAbs, 2014, 6(1), 262-272.
[http://dx.doi.org/10.4161/mabs.26871] [PMID: 24423625]
[155]
Cieniewicz, A.M.; Kirchner, T.; Hinke, S.A.; Nanjunda, R.; D’Aquino, K.; Boayke, K.; Cooper, P.R.; Perkinson, R.; Chiu, M.L.; Jarantow, S.; Johnson, D.L.; Whaley, J.M.; Lacy, E.R.; Lingham, R.B.; Liang, Y.; Kihm, A.J. Novel monoclonal antibody is an allosteric insulin receptor antagonist that induces insulin resistance. Diabetes, 2017, 66(1), 206-217.
[http://dx.doi.org/10.2337/db16-0633] [PMID: 27797911]
[156]
Whitehouse, F.; Kruger, D.F.; Fineman, M.; Shen, L.; Ruggles, J.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care, 2002, 25(4), 724-730.
[http://dx.doi.org/10.2337/diacare.25.4.724] [PMID: 11919132]
[157]
Ratner, R.E.; Dickey, R.; Fineman, M.; Maggs, D.G.; Shen, L.; Strobel, S.A.; Weyer, C.; Kolterman, O.G. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diabet. Med., 2004, 21(11), 1204-1212.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01319.x] [PMID: 15498087]
[158]
Johnson, D.G.; Goebel, C.U.; Hruby, V.J.; Bregman, M.D.; Trivedi, D. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science, 1982, 215(4536), 1115-1116.
[http://dx.doi.org/10.1126/science.6278587] [PMID: 6278587]
[159]
Gysin, B.; Trivedi, D.; Johnson, D.G.; Hruby, V.J. Design and synthesis of glucagon partial agonists and antagonists. Biochemistry, 1986, 25(25), 8278-8284.
[http://dx.doi.org/10.1021/bi00373a023] [PMID: 3814583]
[160]
Gysin, B.; Johnson, D.G.; Trivedi, D.; Hruby, V.J. Synthesis of two glucagon antagonists: receptor binding, adenylate cyclase, and effects on blood plasma glucose levels. J. Med. Chem., 1987, 30(8), 1409-1415.
[http://dx.doi.org/10.1021/jm00391a024] [PMID: 3039134]
[161]
Unson, C.G.; Gurzenda, E.M.; Merrifield, R.B. Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist. Peptides, 1989, 10(6), 1171-1177.
[http://dx.doi.org/10.1016/0196-9781(89)90010-7] [PMID: 2560175]
[162]
Madsen, P.; Knudsen, L.B.; Wiberg, F.C.; Carr, R.D. Discovery and structure-activity relationship of the first non-peptide competitive human glucagon receptor antagonists. J. Med. Chem., 1998, 41(26), 5150-5157.
[http://dx.doi.org/10.1021/jm9810304] [PMID: 9857085]
[163]
Qureshi, S.A.; Rios Candelore, M.; Xie, D.; Yang, X.; Tota, L.M.; Ding, V.D-H.; Li, Z.; Bansal, A.; Miller, C.; Cohen, S.M.; Jiang, G.; Brady, E.; Saperstein, R.; Duffy, J.L.; Tata, J.R.; Chapman, K.T.; Moller, D.E.; Zhang, B.B. A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes, 2004, 53(12), 3267-3273.
[http://dx.doi.org/10.2337/diabetes.53.12.3267] [PMID: 15561959]
[164]
Parker, J.C.; McPherson, R.K.; Andrews, K.M.; Levy, C.B.; Dubins, J.S.; Chin, J.E.; Perry, P.V.; Hulin, B.; Perry, D.A.; Inagaki, T.; Dekker, K.A.; Tachikawa, K.; Sugie, Y.; Treadway, J.L. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes, 2000, 49(12), 2079-2086.
[http://dx.doi.org/10.2337/diabetes.49.12.2079] [PMID: 11118010]
[165]
Petersen, K.F.; Sullivan, J.T. Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia, 2001, 44(11), 2018-2024.
[http://dx.doi.org/10.1007/s001250100006] [PMID: 11719833]
[166]
Djuric, S.W.; Grihalde, N.; Lin, C.W. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects. Curr. Opin. Investig. Drugs, 2002, 3(11), 1617-1623.
[PMID: 12476962]
[167]
Kodra, J.T.; Jørgensen, A.S.; Andersen, B.; Behrens, C.; Brand, C.L.; Christensen, I.T.; Guldbrandt, M.; Jeppesen, C.B.; Knudsen, L.B.; Madsen, P.; Nishimura, E.; Sams, C.; Sidelmann, U.G.; Pedersen, R.A.; Lynn, F.C.; Lau, J. Novel glucagon receptor antagonists with improved selectivity over the glucose-dependent insulinotropic polypeptide receptor. J. Med. Chem., 2008, 51(17), 5387-5396.
[http://dx.doi.org/10.1021/jm7015599] [PMID: 18707090]
[168]
Mu, J.; Jiang, G.; Brady, E.; Dallas-Yang, Q.; Liu, F.; Woods, J.; Zycband, E.; Wright, M.; Li, Z.; Lu, K.; Zhu, L.; Shen, X.; Sinharoy, R.; Candelore, M.L.; Qureshi, S.A.; Shen, D.M.; Zhang, F.; Parmee, E.R.; Zhang, B.B. Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice. Diabetologia, 2011, 54(9), 2381-2391.
[http://dx.doi.org/10.1007/s00125-011-2217-2] [PMID: 21695571]
[169]
Sørensen, H.; Brand, C.L.; Neschen, S.; Holst, J.J.; Fosgerau, K.; Nishimura, E.; Shulman, G.I. Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes, 2006, 55(10), 2843-2848.
[http://dx.doi.org/10.2337/db06-0222] [PMID: 17003351]
[170]
Liang, Y.; Osborne, M.C.; Monia, B.P.; Bhanot, S.; Gaarde, W.A.; Reed, C.; She, P.; Jetton, T.L.; Demarest, K.T. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes, 2004, 53(2), 410-417.
[http://dx.doi.org/10.2337/diabetes.53.2.410] [PMID: 14747292]
[171]
Sloop, K.W.; Cao, J.X-C.; Siesky, A.M.; Zhang, H.Y.; Bodenmiller, D.M.; Cox, A.L.; Jacobs, S.J.; Moyers, J.S.; Owens, R.A.; Showalter, A.D.; Brenner, M.B.; Raap, A.; Gromada, J.; Berridge, B.R.; Monteith, D.K.B.; Porksen, N.; McKay, R.A.; Monia, B.P.; Bhanot, S.; Watts, L.M.; Michael, M.D. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest., 2004, 113(11), 1571-1581.
[http://dx.doi.org/10.1172/JCI20911] [PMID: 15173883]
[172]
Longo, M.; Bellastella, G.; Maiorino, M.I.; Meier, J.J.; Esposito, K.; Giugliano, D. Diabetes and aging: from treatment goals to pharmacologic therapy. Front. Endocrinol. (Lausanne), 2019, 10, 45.
[http://dx.doi.org/10.3389/fendo.2019.00045] [PMID: 30833929]
[173]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[174]
Mentlein, R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[175]
Lambeir, A-M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[176]
Zhu, L.; Tamvakopoulos, C.; Xie, D.; Dragovic, J.; Shen, X.; Fenyk-Melody, J.E.; Schmidt, K.; Bagchi, A.; Griffin, P.R.; Thornberry, N.A.; Sinha Roy, R. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J. Biol. Chem., 2003, 278(25), 22418-22423.
[http://dx.doi.org/10.1074/jbc.M212355200] [PMID: 12690116]
[177]
Deacon, C.F. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides, 2018, 100, 150-157.
[http://dx.doi.org/10.1016/j.peptides.2017.10.011] [PMID: 29412814]
[178]
Deacon, C.F.; Hughes, T.E.; Holst, J.J. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes, 1998, 47(5), 764-769.
[http://dx.doi.org/10.2337/diabetes.47.5.764] [PMID: 9588448]
[179]
Pederson, R.A.; White, H.A.; Schlenzig, D.; Pauly, R.P.; McIntosh, C.H.; Demuth, H.U. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes, 1998, 47(8), 1253-1258.
[http://dx.doi.org/10.2337/diab.47.8.1253] [PMID: 9703325]
[180]
Deacon, C.F.; Nauck, M.A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J.J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 1995, 44(9), 1126-1131.
[http://dx.doi.org/10.2337/diab.44.9.1126] [PMID: 7657039]
[181]
Ahrén, B.; Simonsson, E.; Larsson, H.; Landin-Olsson, M.; Torgeirsson, H.; Jansson, P-A.; Sandqvist, M.; Båvenholm, P.; Efendic, S.; Eriksson, J.W.; Dickinson, S.; Holmes, D. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care, 2002, 25(5), 869-875.
[http://dx.doi.org/10.2337/diacare.25.5.869] [PMID: 11978683]
[182]
Ahrén, B.; Landin-Olsson, M.; Jansson, P-A.; Svensson, M.; Holmes, D.; Schweizer, A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J. Clin. Endocrinol. Metab., 2004, 89(5), 2078-2084.
[http://dx.doi.org/10.1210/jc.2003-031907] [PMID: 15126524]
[183]
Ahrén, B.; Gomis, R.; Standl, E.; Mills, D.; Schweizer, A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care, 2004, 27(12), 2874-2880.
[http://dx.doi.org/10.2337/diacare.27.12.2874] [PMID: 15562200]
[184]
Deacon, C.F.; Lebovitz, H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes. Metab., 2016, 18(4), 333-347.
[http://dx.doi.org/10.1111/dom.12610] [PMID: 26597596]
[185]
Deacon, C.F. Physiology and pharmacology of dpp-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. (Lausanne), 2019, 10, 80.
[http://dx.doi.org/10.3389/fendo.2019.00080] [PMID: 30828317]
[186]
Eng, J.; Kleinman, W.A.; Singh, L.; Singh, G.; Raufman, J.P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem., 1992, 267(11), 7402-7405.
[PMID: 1313797]
[187]
DeYoung, M.B.; MacConell, L.; Sarin, V.; Trautmann, M.; Herbert, P. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol. Ther., 2011, 13(11), 1145-1154.
[http://dx.doi.org/10.1089/dia.2011.0050] [PMID: 21751887]
[188]
Nauck, M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes. Metab., 2016, 18(3), 203-216.
[http://dx.doi.org/10.1111/dom.12591] [PMID: 26489970]
[189]
Nakamura, T.; Tanimoto, H.; Mizuno, Y.; Okamoto, M.; Takeuchi, M.; Tsubamoto, Y.; Noda, H. Gastric inhibitory polypeptide receptor antagonist, SKL-14959, suppressed body weight gain on diet-induced obesity mice. Obes. Sci. Pract., 2018, 4(2), 194-203.
[http://dx.doi.org/10.1002/osp4.164] [PMID: 29670757]
[190]
Gasbjerg, L.S.; Christensen, M.B.; Hartmann, B.; Lanng, A.R.; Sparre-Ulrich, A.H.; Gabe, M.B.N.; Dela, F.; Vilsbøll, T.; Holst, J.J.; Rosenkilde, M.M.; Knop, F.K. GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study. Diabetologia, 2018, 61(2), 413-423.
[http://dx.doi.org/10.1007/s00125-017-4447-4] [PMID: 28948296]
[191]
Asmar, M.; Asmar, A.; Simonsen, L.; Gasbjerg, L.S.; Sparre-Ulrich, A.H.; Rosenkilde, M.M.; Hartmann, B.; Dela, F.; Holst, J.J.; Bülow, J. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (gip) are abolished by an antagonist of the human gip receptor. Diabetes, 2017, 66(9), 2363-2371.
[http://dx.doi.org/10.2337/db17-0480] [PMID: 28667118]
[192]
Sparre-Ulrich, A.H.; Gabe, M.N.; Gasbjerg, L.S.; Christiansen, C.B.; Svendsen, B.; Hartmann, B.; Holst, J.J.; Rosenkilde, M.M. GIP(3-30)NH2 is a potent competitive antagonist of the GIP receptor and effectively inhibits GIP-mediated insulin, glucagon, and somatostatin release. Biochem. Pharmacol., 2017, 131, 78-88.
[http://dx.doi.org/10.1016/j.bcp.2017.02.012] [PMID: 28237651]
[193]
Mroz, P.A.; Finan, B.; Gelfanov, V.; Yang, B.; Tschöp, M.H.; DiMarchi, R.D.; Perez-Tilve, D. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol. Metab., 2019, 20, 51-62.
[http://dx.doi.org/10.1016/j.molmet.2018.12.001] [PMID: 30578168]
[194]
Hinke, S.A.; Gelling, R.W.; Pederson, R.A.; Manhart, S.; Nian, C.; Demuth, H-U.; McIntosh, C.H.S. Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes, 2002, 51(3), 652-661.
[http://dx.doi.org/10.2337/diabetes.51.3.652] [PMID: 11872663]
[195]
Knerr, P.J.; Mowery, S.A.; Finan, B.; Perez-Tilve, D.; Tschöp, M.H.; DiMarchi, R.D. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. Peptides, 2020, 125170225
[http://dx.doi.org/10.1016/j.peptides.2019.170225] [PMID: 31786282]
[196]
Petersen, J.; Strømgaard, K.; Frølund, B.; Clemmensen, C. Designing poly-agonists for treatment of metabolic diseases: challenges and opportunities. Drugs, 2019, 79(11), 1187-1197.
[http://dx.doi.org/10.1007/s40265-019-01153-6] [PMID: 31243696]
[197]
Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H-J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H-J.; Culler, M.; Melmed, S.; Schulz, S. International union of basic and clinical pharmacology. cv. somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol. Rev., 2018, 70(4), 763-835.
[http://dx.doi.org/10.1124/pr.117.015388] [PMID: 30232095]
[198]
Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol., 2002, 146(5), 707-716.
[http://dx.doi.org/10.1530/eje.0.1460707] [PMID: 11980628]
[199]
Afargan, M.; Janson, E.T.; Gelerman, G.; Rosenfeld, R.; Ziv, O.; Karpov, O.; Wolf, A.; Bracha, M.; Shohat, D.; Liapakis, G.; Gilon, C.; Hoffman, A.; Stephensky, D.; Oberg, K. Novel long-acting somatostatin analog with endocrine selectivity: potent suppression of growth hormone but not of insulin. Endocrinology, 2001, 142(1), 477-486.
[http://dx.doi.org/10.1210/endo.142.1.7880] [PMID: 11145612]
[200]
Reisine, T.; Bell, G.I. Molecular biology of somatostatin receptors. Endocr. Rev., 1995, 16(4), 427-442.
[PMID: 8521788]
[201]
Shimon, I.; Yan, X.; Taylor, J.E.; Weiss, M.H.; Culler, M.D.; Melmed, S. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J. Clin. Invest., 1997, 100(9), 2386-2392.
[http://dx.doi.org/10.1172/JCI119779] [PMID: 9410919]
[202]
Zatelli, M.C.; Tagliati, F.; Taylor, J.E.; Rossi, R.; Culler, M.D. degli Uberti, E.C. Somatostatin receptor subtypes 2 and 5 differentially affect proliferation in vitro of the human medullary thyroid carcinoma cell line tt. J. Clin. Endocrinol. Metab., 2001, 86(5), 2161-2169.
[http://dx.doi.org/10.1210/jc.86.5.2161] [PMID: 11344221]
[203]
Kaczmarek, P.; Malendowicz, L.K.; Fabis, M.; Ziolkowska, A.; Pruszynska-Oszmalek, E.; Sassek, M.; Wojciechowicz, T.; Szczepankiewicz, D.; Andralojc, K.; Szkudelski, T.; Strowski, M.Z.; Nowak, K.W. Does somatostatin confer insulinostatic effects of neuromedin u in the rat pancreas? Pancreas, 2009, 38(2), 208-212.
[http://dx.doi.org/10.1097/MPA.0b013e31818d9095] [PMID: 18948835]
[204]
Ojelabi, O.A.; Lloyd, K.P.; Simon, A.H.; De Zutter, J.K.; Carruthers, A. WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits glut1-mediated sugar transport by binding reversibly at the exofacial sugar binding Site. J. Biol. Chem., 2016, 291(52), 26762-26772.
[http://dx.doi.org/10.1074/jbc.M116.759175] [PMID: 27836974]
[205]
Adams, D.J.; Ito, D.; Rees, M.G.; Seashore-Ludlow, B.; Puyang, X.; Ramos, A.H.; Cheah, J.H.; Clemons, P.A.; Warmuth, M.; Zhu, P.; Shamji, A.F.; Schreiber, S.L. NAMPT is the cellular target of STF-31-like small-molecule probes. ACS Chem. Biol., 2014, 9(10), 2247-2254.
[http://dx.doi.org/10.1021/cb500347p] [PMID: 25058389]
[206]
Siebeneicher, H.; Cleve, A.; Rehwinkel, H.; Neuhaus, R.; Heisler, I.; Müller, T.; Bauser, M.; Buchmann, B. Identification and optimization of the first highly selective glut1 inhibitor bay-876. ChemMedChem, 2016, 11(20), 2261-2271.
[http://dx.doi.org/10.1002/cmdc.201600276] [PMID: 27552707]
[207]
Ocaña, M.C.; Martínez-Poveda, B.; Marí-Beffa, M.; Quesada, A.R.; Medina, M.Á. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci. Rep., 2020, 10(1), 6132.
[http://dx.doi.org/10.1038/s41598-020-63232-z] [PMID: 32273578]
[208]
Wei, C.; Bajpai, R.; Sharma, H.; Heitmeier, M.; Jain, A.D.; Matulis, S.M.; Nooka, A.K.; Mishra, R.K.; Hruz, P.W.; Schiltz, G.E.; Shanmugam, M. Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur. J. Med. Chem., 2017, 139, 573-586.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.029] [PMID: 28837922]
[209]
Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs, 2019, 79(3), 219-230.
[http://dx.doi.org/10.1007/s40265-019-1057-0] [PMID: 30701480]
[210]
Lundkvist, P.; Sjöström, C.D.; Amini, S.; Pereira, M.J.; Johnsson, E.; Eriksson, J.W. Dapagliflozin once-daily and exenatide once-weekly dual therapy: A 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diabetes Obes. Metab., 2017, 19(1), 49-60.
[http://dx.doi.org/10.1111/dom.12779] [PMID: 27550386]
[211]
Lundkvist, P.; Pereira, M.J.; Katsogiannos, P.; Sjöström, C.D.; Johnsson, E.; Eriksson, J.W. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: Sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes. Metab., 2017, 19(9), 1276-1288.
[http://dx.doi.org/10.1111/dom.12954] [PMID: 28345814]
[212]
Monami, M.; Nardini, C.; Mannucci, E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes. Metab., 2014, 16(5), 457-466.
[http://dx.doi.org/10.1111/dom.12244] [PMID: 24320621]
[213]
Zaccardi, F.; Webb, D.R.; Htike, Z.Z.; Youssef, D.; Khunti, K.; Davies, M.J. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes. Metab., 2016, 18(8), 783-794.
[http://dx.doi.org/10.1111/dom.12670] [PMID: 27059700]
[214]
Liu, X-Y.; Zhang, N.; Chen, R.; Zhao, J-G.; Yu, P. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years. J. Diabetes Complications, 2015, 29(8), 1295-1303.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.07.011] [PMID: 26365905]
[215]
Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med., 2016, 164(11), 740-751.
[http://dx.doi.org/10.7326/M15-2650] [PMID: 27088241]
[216]
Mearns, E.S.; Sobieraj, D.M.; White, C.M.; Saulsberry, W.J.; Kohn, C.G.; Doleh, Y.; Zaccaro, E.; Coleman, C.I. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PLoS One, 2015, 10(4)e0125879
[http://dx.doi.org/10.1371/journal.pone.0125879] [PMID: 25919293]
[217]
Cai, X.; Yang, W.; Gao, X.; Chen, Y.; Zhou, L.; Zhang, S.; Han, X.; Ji, L. the association between the dosage of sglt2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity (Silver Spring), 2018, 26(1), 70-80.
[http://dx.doi.org/10.1002/oby.22066] [PMID: 29165885]
[218]
Bolinder, J.; Ljunggren, Ö.; Johansson, L.; Wilding, J.; Langkilde, A.M.; Sjöström, C.D.; Sugg, J.; Parikh, S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab., 2014, 16(2), 159-169.
[http://dx.doi.org/10.1111/dom.12189] [PMID: 23906445]
[219]
Bailey, C.J.; Morales Villegas, E.C.; Woo, V.; Tang, W.; Ptaszynska, A.; List, J.F. Efficacy and safety of dapagliflozin monotherapy in people with Type 2 diabetes: a randomized double-blind placebo-controlled 102-week trial. Diabet. Med., 2015, 32(4), 531-541.
[http://dx.doi.org/10.1111/dme.12624] [PMID: 25381876]
[220]
Del Prato, S.; Nauck, M.; Durán-Garcia, S.; Maffei, L.; Rohwedder, K.; Theuerkauf, A.; Parikh, S. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes. Metab., 2015, 17(6), 581-590.
[http://dx.doi.org/10.1111/dom.12459] [PMID: 25735400]
[221]
Ferrannini, G.; Hach, T.; Crowe, S.; Sanghvi, A.; Hall, K.D.; Ferrannini, E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care, 2015, 38(9), 1730-1735.
[http://dx.doi.org/10.2337/dc15-0355] [PMID: 26180105]
[222]
Leibel, R.L.; Rosenbaum, M.; Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med., 1995, 332(10), 621-628.
[http://dx.doi.org/10.1056/NEJM199503093321001] [PMID: 7632212]
[223]
Frías, J.P.; Guja, C.; Hardy, E.; Ahmed, A.; Dong, F.; Öhman, P.; Jabbour, S.A. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol., 2016, 4(12), 1004-1016.
[http://dx.doi.org/10.1016/S2213-8587(16)30267-4] [PMID: 27651331]
[224]
Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing m2 macrophages in diet-induced obese mice. EBioMedicine, 2017, 20, 137-149.
[http://dx.doi.org/10.1016/j.ebiom.2017.05.028] [PMID: 28579299]
[225]
Sugizaki, T.; Zhu, S.; Guo, G.; Matsumoto, A.; Zhao, J.; Endo, M.; Horiguchi, H.; Morinaga, J.; Tian, Z.; Kadomatsu, T.; Miyata, K.; Itoh, H.; Oike, Y. Treatment of diabetic mice with the sglt2 inhibitor ta-1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech. Dis., 2017, 3, 12.
[226]
Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr., 2006, 83(2), 461S-465S.
[http://dx.doi.org/10.1093/ajcn/83.2.461S] [PMID: 16470013]
[227]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. CANVAS program collaborative group. canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[228]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. EMPA-REG outcome investigators. empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[229]
Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Ruff, C.T.; Gause-Nilsson, I.A.M.; Fredriksson, M.; Johansson, P.A.; Langkilde, A-M.; Sabatine, M.S. DECLARE-TIMI 58 investigators. dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2019, 380(4), 347-357.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[230]
Busch, R.S.; Kane, M.P. Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of type 2 diabetes. Postgrad. Med., 2017, 129(7), 686-697.
[http://dx.doi.org/10.1080/00325481.2017.1342509] [PMID: 28657399]
[231]
Oliva, R.V.; Bakris, G.L. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens., 2014, 8(5), 330-339.
[http://dx.doi.org/10.1016/j.jash.2014.02.003] [PMID: 24631482]
[232]
Song, P.; Onishi, A.; Koepsell, H.; Vallon, V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets, 2016, 20(9), 1109-1125.
[http://dx.doi.org/10.1517/14728222.2016.1168808] [PMID: 26998950]
[233]
Tsimihodimos, V.; Filippas-Ntekouan, S.; Elisaf, M. SGLT1 inhibition: Pros and cons. Eur. J. Pharmacol., 2018, 838, 153-156.
[http://dx.doi.org/10.1016/j.ejphar.2018.09.019] [PMID: 30240793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy