Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Naldemedine: Peripherally Acting Opioid Receptor Antagonist for Treating Opioid-induced Adverse Effects

Author(s): Masanao Inagaki*, Toshiyuki Kanemasa and Takaaki Yokota

Volume 20, Issue 31, 2020

Page: [2830 - 2842] Pages: 13

DOI: 10.2174/1568026620666200710105953

Price: $65

Abstract

Opioids are widely used for pain management in moderate-to-severe pain. However, opioids are associated with adverse events, such as constipation and emesis/vomiting. To reduce these undesired effects, a structure–activity relationship study of morphinan derivatives was conducted, and a promising lead compound with inhibitory effects on opioid receptors was obtained. Further improvement in the potency and pharmacokinetic profiles of the lead compound led to the discovery of naldemedine, which showed anti-constipation and anti-emetic effects against these adverse events that were induced by morphine without influencing morphine’s analgesic effect. Naldemedine was launched in Japan and the USA in 2017 and in the EU in 2019, for treating opioid-induced constipation.

Keywords: Opioid receptor, Dual antagonist, OIC, OINV, Naldemedine, Peripherally-acting.

Graphical Abstract
[1]
Pappagallo, M. Incidence, prevalence, and management of opioid bowel dysfunction. Am. J. Surg., 2001, 182(5A)(Suppl.), 11S-18S.
[http://dx.doi.org/10.1016/S0002-9610(01)00782-6] [PMID: 11755892]
[2]
Opioids for persistent pain: good practice; The British Pain Society: London, 2010.
[3]
Bowdle, T.A. Adverse effects of opioid agonists and agonist-antagonists in anaesthesia. Drug Saf., 1998, 19(3), 173-189.
[http://dx.doi.org/10.2165/00002018-199819030-00002] [PMID: 9747665]
[4]
Moss, J.; Rosow, C.E. Development of peripheral opioid antagonists’ new insights into opioid effects. Mayo Clin. Proc., 2008, 83(10), 1116-1130.
[http://dx.doi.org/10.4065/83.10.1116] [PMID: 18828971]
[5]
(a)Diego, L.; Atayee, R.; Helmons, P. Novel opioid antagonists for opioid-induced bowel dysfunction. Expert Opin. Investig. Drugs, 2011, 20, 1047-1056.
(b)Suzuki, T.; Sawada, T.; Ishihara, Y. Therapeutic agent for constipation. WO 2006/064780, 2006.
[6]
(a)Iasnetsov, W.; Drozd, IuV.; Shashkov, V.S. Opioid-induced nausea and vomiting. Biull. Eksp. Biol. Med., 1987, 103, 586-588.
(b)Suzuki, T.; Sawada, T. Therapeutic agent for nausea and/or vomiting. WO 2007/043518 2017.
(c)Smith, H.S.; Laufer, A. Opioid induced nausea and vomiting. Eur. J. Pharmacol., 2014, 722, 67-78.
(d)Smith, H.S.; Smith, J.M.; Seidner, P. Opioid-induced nausea and vomiting. Ann. Palliat. Med., 2012, 1, 121-129.
[7]
Armstrong, S.R.; Campbell, C.B.; Richardson, C.L.; Vickery, R.G.; Tsuruda, P.R.; Long, D.D.; Hegde, S.S.; Beattie, D.T. The in vivo pharmacodynamics of the novel opioid receptor antagonist, TD-1211, in models of opioid-induced gastrointestinal and CNS activity. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(6), 471-478.
[http://dx.doi.org/10.1007/s00210-013-0844-5] [PMID: 23512167]
[8]
Wood, M.J.; Hyman, N.H.; Mawe, G.M. The effects of daikenchuto (DKT) on propulsive motility in the colon. J. Surg. Res., 2010, 164(1), 84-90.
[http://dx.doi.org/10.1016/j.jss.2009.03.068] [PMID: 19631346]
[9]
9a) Movantik (naloxegol) tablets [prescribing information Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2016. b) Chey, W. D.; Webster, L.; Sostek, M.; Lappalainen, J.; Barker, P. N.; Tack, J. Naloxegol increases frequency of bowel movements and combats inadequate response to laxatives. N. Engl. J. Med., 2014, 370, 2387-2396.
[10]
Portoghese, P.S.; Sultana, M.; Takemori, A.E. Naltrindole, a highly selective and potent non-peptide δ opioid receptor antagonist. Eur. J. Pharmacol., 1988, 146(1), 185-186.
[http://dx.doi.org/10.1016/0014-2999(88)90502-X] [PMID: 2832195]
[11]
Nagase, H.; Mizusuna, A.; Kawai, K.; Nakatani, I. Preparation of indolomorphinan derivatives as delta opioid antagonists. WO09407896 2018.
[12]
(a)Fridén, M.; Winiwarter, S.; Jerndal, G.; Bengtsson, O.; Wan, H.; Bredberg, U.; Hammarlund-Udenaes, M.; Antonsson, M. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J. Med. Chem., 2009, 52(20), 6233-6243.
[http://dx.doi.org/10.1021/jm901036q] [PMID: 19764786]
(b)Bagal, S.K.; Bungay, P.J. Minimizing drug exposure in the CNS while maintaining good oral absorption. ACS Med. Chem. Lett., 2012, 3(12), 948-950.
[http://dx.doi.org/10.1021/ml300378n] [PMID: 24900411]
(c)Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
(d)van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J.R.; Raevsky, O.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target., 1998, 6(2), 151-165.
[http://dx.doi.org/10.3109/10611869808997889] [PMID: 9886238]
[13]
Nagase, H.; Portogheese, P.S. Facile intramolecular oxygen-14 → carbon-7 acetyl transfer in opiate 14-acetate esters. J. Org. Chem., 1990, 55, 365-367.
[http://dx.doi.org/10.1021/jo00288a068]
[14]
(a)Reese, C.E.; Trentham, D.R. Acyl migration in ribonucleoside derivatives. Tetrahedron Lett., 1965, 29, 2467-2472.
(b)Cockman, S.J.; Joll, C.A.; Mortimer, B.C.; Redgrave, T.G.; Stick, R.V. The synthesis of some esters of glycerol with special attention to the problem of acyl migration. Aust. J. Chem., 1990, 43, 2093-2097.
(c)Skwarczynski, M.; Kiso, Y. Application of the ON intramolecular acyl migration reaction in medicinal chemistry. Curr. Med. Chem., 2007, 14, 2813-2823.
(d)Camilleri, P.; Buch, A.; Soldo, B.; Hutt, A.J. The influence of physicochemical properties on the reactivity and stability of acyl glucuronides. Xenobiotica, 2018, 48, 958-972.
[15]
Hayashida, K.; Fujii, H.; Hirayama, S.; Nemoto, T.; Nagase, H. Rearrangement of 4,5α-epoxymorphinan derivatives with carbamoylepoxy rings provid e novel oxazatricyclodecane structures. Tetrahedron, 2011, 67, 6682-6688.
[http://dx.doi.org/10.1016/j.tet.2011.04.097]
[16]
Fujii, H.; Hirano, N.; Uchiro, H.; Kawamura, K.; Nagase, H. The first example of the stereoselective synthesis of 7 β-carbamoyl-4,5α-epoxymorphinan via a novel and reactive γ-lactone. Chem. Pharm. Bull. (Tokyo), 2004, 52(6), 747-750.
[http://dx.doi.org/10.1248/cpb.52.747] [PMID: 15187399]
[17]
Inagaki, M.; Kume, M.; Tamura, Y.; Hara, S.; Goto, Y.; Haga, N.; Hasegawa, T.; Nakamura, T.; Koike, K.; Oonishi, S.; Kanemasa, T.; Kai, H. Discovery of naldemedine: A potent and orally available opioid receptor antagonist for treatment of opioid-induced adverse effects. Bioorg. Med. Chem. Lett., 2019, 29(1), 73-77.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.007] [PMID: 30446313]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy