Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Developmental Strategies of Curcumin Solid Dispersions for Enhancing Bioavailability

Author(s): Phuong H.L. Tran and Thao T.D. Tran*

Volume 20, Issue 16, 2020

Page: [1874 - 1882] Pages: 9

DOI: 10.2174/1871520620666200708103845

Price: $65

Abstract

Background: Although curcumin has been demonstrated to be beneficial in treating various diseases, its low solubility, chemical stability and bioavailability limit its application, especially in cancer therapy.

Methods: Solid dispersions have been utilized in the last few decades to improve the bioavailability and stability of curcumin.

Results: However, there is a lack of summaries and classifications of the methods for preparing curcumin with this technology. The current review aims to overview the strategies used to develop solid dispersions containing curcumin for improving drug delivery. The classification of techniques for creating solid dispersions for curcumin was summarized, including systems for protecting curcumin degradation despite its chemical stability. The applications of advanced nanotechnologies in recent studies of solid dispersions were also discussed to explain the roles of nanoparticles in formulations.

Conclusion: This overview of recent developments in formulating solid dispersions for improving curcumin bioavailability will contribute to future studies of curcumin for clinical development.

Keywords: Solid dispersion, drug delivery, poorly water-soluble drug, nanoparticle, chemical stability, bioavailability.

Graphical Abstract
[1]
Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; Chellappan, D.K.; Dua, K.; Satija, S. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact., 2019, 309108720
[http://dx.doi.org/10.1016/j.cbi.2019.06.033] [PMID: 31226287]
[2]
Feng, Z-Q.; Yan, K.; Li, J.; Xu, X.; Yuan, T.; Wang, T.; Zheng, J. Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. Mater. Sci. Eng. C, 2019, 104110001
[http://dx.doi.org/10.1016/j.msec.2019.110001] [PMID: 31500023]
[3]
Cote, B.; Rao, D.; Alany, R.G.; Kwon, G.S.; Alani, A.W.G. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv. Drug Deliv. Rev., 2019, 144, 16-34.
[http://dx.doi.org/10.1016/j.addr.2019.08.009 ] [PMID: 31461662]
[4]
Ruiyi, L.; Zaijun, L.; Xiulan, S.; Jan, J.; Lin, L.; Zhiguo, G.; Guangli, W. Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics. Chem. Eng. J., 2020, 382,122992
[5]
Vinothini, K.; Rajendran, N.K.; Munusamy, M.A.; Alarfaj, A.A.; Rajan, M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater. Sci. Eng. C, 2019, 100, 676-687.
[http://dx.doi.org/10.1016/j.msec.2019.03.011 ] [PMID: 30948104]
[6]
Panda, J.; Satapathy, B.S.; Majumder, S.; Sarkar, R.; Mukherjee, B.; Tudu, B. Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J. Magn. Magn. Mater., 2019, 485, 165-173.
[http://dx.doi.org/10.1016/j.jmmm.2019.04.058]
[7]
Han, H.J.; Ekweremadu, C.; Patel, N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 1051-1060.
[http://dx.doi.org/10.1016/j.jddst.2019.05.024]
[8]
Guo, X.; Wei, X.; Chen, Z.; Zhang, X.; Yang, G.; Zhou, S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Prog. Mater. Sci., 2020, 107,100599.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100599]]
[9]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005 ] [PMID: 30581608]
[10]
Bu, L-L.; Yan, J.; Wang, Z.; Ruan, H.; Chen, Q.; Gunadhi, V.; Bell, R.B.; Gu, Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials, 2019, 219,119182.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.027] [PMID: 31415954]
[11]
Li, X.; Wu, X.; Yang, H.; Li, L.; Ye, Z.; Rao, Y. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed. Pharmacother., 2019, 117,109072.
[http://dx.doi.org/10.1016/j.biopha.2019.109072] [PMID: 31202169]
[12]
Wang, X.; Chen, H.; Zeng, X.; Guo, W.; Jin, Y.; Wang, S.; Tian, R.; Han, Y.; Guo, L.; Han, J.; Wu, Y.; Mei, L. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm. Sin. B, 2019, 9(1), 167-176.
[http://dx.doi.org/10.1016/j.apsb.2018.08.006 ] [PMID: 30766788]
[13]
Dheer, D.; Nicolas, J.; Shankar, R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv. Drug Deliv. Rev., 2019, 151-152, 130-151.
[http://dx.doi.org/10.1016/j.addr.2019.01.010 ] [PMID: 30690054]
[14]
Liu, G.; Tsai, H-I.; Zeng, X.; Qi, J.; Luo, M.; Wang, X.; Mei, L.; Deng, W. Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chem. Eng. J., 2019, 375,121917.
[http://dx.doi.org/10.1016/j.cej.2019.121917]]
[15]
Liyanage, P.Y.; Hettiarachchi, S.D.; Zhou, Y.; Ouhtit, A.; Seven, E.S.; Oztan, C.Y.; Celik, E.; Leblanc, R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 419-433.
[http://dx.doi.org/10.1016/j.bbcan.2019.04.006 ] [PMID: 31034927]
[16]
Kesharwani, S.S.; Dachineni, R.; Bhat, G.J.; Tummala, H. Hydrophobically modified inulin-based micelles: Transport mechanisms and drug delivery applications for breast cancer. J. Drug Deliv. Sci. Technol., 2019, 54,101254.
[http://dx.doi.org/10.1016/j.jddst.2019.101254]]
[17]
Dong, K.; Zhang, Y.; Zhang, L.; Wang, Z.; Ren, J.; Qu, X. Facile preparation of metal-organic frameworks-based hydrophobic anticancer drug delivery nanoplatform for targeted and enhanced cancer treatment. Talanta, 2019, 194, 703-708.
[http://dx.doi.org/10.1016/j.talanta.2018.10.101 ] [PMID: 30609594]
[18]
Zhao, Z.; Zhao, Y.; Xie, C.; Chen, C.; Lin, D.; Wang, S.; Lin, D.; Cui, X.; Guo, Z.; Zhou, J. Dual-active targeting liposomes drug delivery system for bone metastatic breast cancer: Synthesis and biological evaluation. Chem. Phys. Lipids, 2019, 223,104785.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.104785] [PMID: 31194968]
[19]
Tang, M.; Svirskis, D.; Leung, E.; Kanamala, M.; Wang, H.; Wu, Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J. Control. Release, 2019, 305, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.018 ] [PMID: 31096017]
[20]
Ha-Lien Tran, P.; Wang, T.; Yang, C.; Tran, T.T.D.; Duan, W. Development of conjugate-by-conjugate structured nanoparticles for oral delivery of docetaxel. Mater. Sci. Eng. C, 2020, 107,110346.
[http://dx.doi.org/10.1016/j.msec.2019.110346] [PMID: 31761193]
[21]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Fucoidan-based nanostructures: A focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int. J. Pharm., 2020, 575,118956.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118956] [PMID: 31838176]
[22]
Sagbas Suner, S.; Ari, B.; Onder, F.C.; Ozpolat, B.; Ay, M.; Sahiner, N. Hyaluronic acid and hyaluronic acid: Sucrose nanogels for hydrophobic cancer drug delivery. Int. J. Biol. Macromol., 2019, 126, 1150-1157.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.021 ] [PMID: 30625351]
[23]
Xue, P.; Wang, J.; Han, X.; Wang, Y. Hydrophobic drug self-delivery systems as a versatile nanoplatform for cancer therapy: A review. Colloids Surf. B Biointerfaces, 2019, 180, 202-211.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.050 ] [PMID: 31054460]
[24]
Phan, N.H.; Ly, T.T.; Pham, M.N.; Luu, T.D.; Vo, T.V.; Tran, P.H.L.; Tran, T.T.D. A comparison of fucoidan conjugated to paclitaxel and curcumin for the dual delivery of cancer therapeutic agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1349-1355.
[http://dx.doi.org/10.2174/1871520617666171121125845 ] [PMID: 29173183]
[25]
Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7), 325.
[http://dx.doi.org/10.3390/pharmaceutics11070325 ] [PMID: 31295947]
[26]
Fiorica, C.; Ventura, C.A.; Pitarresi, G.; Giammona, G. Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. React. Funct. Polym., 2019, 138, 9-17.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.014]
[27]
Raval, A.; Pillai, S.A.; Bahadur, A.; Bahadur, P. Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J. Mol. Liq., 2017, 230, 473-481.
[http://dx.doi.org/10.1016/j.molliq.2017.01.065]
[28]
Abandansari, H.S.; Nabid, M.R.; Rezaei, S.J.T.; Niknejad, H. pH-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer (Guildf.), 2014, 55(16), 3579-3590.
[http://dx.doi.org/10.1016/j.polymer.2014.06.037]
[29]
Bawa, R.; Fung, S-Y.; Shiozaki, A.; Yang, H.; Zheng, G.; Keshavjee, S.; Liu, M. Self-assembling peptide-based nanoparticles enhance cellular delivery of the hydrophobic anticancer drug ellipticine through caveolae-dependent endocytosis. Nanomedicine (Lond.), 2012, 8(5), 647-654.
[http://dx.doi.org/10.1016/j.nano.2011.08.007 ] [PMID: 21889478]
[30]
Zhang, Y.; Huo, M.; Zhou, J.; Yu, D.; Wu, Y. Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: Synthesis, characterization, micellization and cytotoxicity evaluation. Carbohydr. Polym., 2009, 77(2), 231-238.
[http://dx.doi.org/10.1016/j.carbpol.2008.12.034]
[31]
Phan, U.T.; Nguyen, K.T.; Vo, T.V.; Duan, W.; Tran, P.H.; Tran, T.D. Investigation of fucoidan-oleic acid conjugate for delivery of curcumin and paclitaxel. Anticancer. Agents Med. Chem., 2016, 16(10), 1281-1287.
[http://dx.doi.org/10.2174/1567201810666131124140259 ] [PMID: 27237629]
[32]
Tran, T.T.D.; Tran, K.A.; Tran, P.H.L. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug. Ultrason. Sonochem., 2015, 24, 256-263.
[http://dx.doi.org/10.1016/j.ultsonch.2014.11.020 ] [PMID: 25500098]
[33]
Nguyen, T.N-G.; Tran, P.H-L.; Tran, T.V.; Vo, T.V. Truong-DinhTran, T. Development of a modified - solid dispersion in an uncommon approach of melting method facilitating properties of a swellable polymer to enhance drug dissolution. Int. J. Pharm., 2015, 484(1-2), 228-234.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.064 ] [PMID: 25735669]
[34]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091 ] [PMID: 25470276]
[35]
Seo, S-W.; Han, H-K.; Chun, M-K.; Choi, H-K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm., 2012, 424(1-2), 18-25.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.051 ] [PMID: 22226878]
[36]
Tønnesen, H.H.; Karlsen, J. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z. Lebensm. Unters. Forsch., 1985, 180(5), 402-404.
[PMID: 4013525]
[37]
Park, H.R.; Rho, S-J.; Kim, Y-R. Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocoll., 2019, 95, 19-32.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.012]
[38]
Mohammadian, M.; Salami, M.; Momen, S.; Alavi, F.; Emam-Djomeh, Z.; Moosavi-Movahedi, A.A. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll., 2019, 87, 902-914.
[http://dx.doi.org/10.1016/j.foodhyd.2018.09.001]
[39]
Liu, Y.; Cai, Y.; Ying, D.; Fu, Y.; Xiong, Y.; Le, X. Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. Int. J. Biol. Macromol., 2018, 116, 893-900.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.089 ] [PMID: 29775716]
[40]
Arango-Ruiz, Á.; Martin, Á.; Cosero, M.J.; Jiménez, C.; Londoño, J. Encapsulation of curcumin using Supercritical Antisolvent (SAS) technology to improve its stability and solubility in water. Food Chem., 2018, 258, 156-163.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.088 ] [PMID: 29655717]
[41]
Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Ramazani, A.; Amanlou, M.; Khoobi, M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr. Polym., 2019, 213, 70-78.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.075 ] [PMID: 30879691]
[42]
Sadeghi, F.; Ashofteh, M.; Homayouni, A.; Abbaspour, M.; Nokhodchi, A.; Garekani, H.A. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement. Colloids Surf. B Biointerfaces, 2016, 147, 258-264.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.004 ] [PMID: 27518458]
[43]
Lim, L.M.; Tran, T-T.; Long Wong, J.J.; Wang, D.; Cheow, W.S.; Hadinoto, K. Amorphous ternary nanoparticle complex of curcumin-chitosan-hypromellose exhibiting built-in solubility enhancement and physical stability of curcumin. Colloids Surf. B Biointerfaces, 2018, 167, 483-491.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.049 ] [PMID: 29727835]
[44]
Wong, J.J.L.; Yu, H.; Hadinoto, K. Examining practical feasibility of amorphous curcumin-chitosan nanoparticle complex as solubility enhancement strategy of curcumin: Scaled-up production, dry powder transformation, and long-term physical stability. Colloids Surf. A Physicochem. Eng. Asp., 2018, 537, 36-43.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.004]
[45]
Landeros, J.M.; Belmont-Bernal, F.; Pérez-González, A.T.; Pérez-Padrón, M.I.; Guevara-Salazar, P.; González-Herrera, I.G.; Guadarrama, P. A two-step synthetic strategy to obtain a water-soluble derivative of curcumin with improved antioxidant capacity and in vitro cytotoxicity in C6 glioma cells. Mater. Sci. Eng. C, 2017, 71, 351-362.
[http://dx.doi.org/10.1016/j.msec.2016.10.015 ] [PMID: 27987718]
[46]
Kumar, S.; Kesharwani, S.S.; Mathur, H.; Tyagi, M.; Bhat, G.J.; Tummala, H. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur. J. Pharm. Sci., 2016, 82, 86-96.
[http://dx.doi.org/10.1016/j.ejps.2015.11.010 ] [PMID: 26588875]
[47]
Liu, W.; Chen, X.D.; Cheng, Z.; Selomulya, C. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. J. Food Eng., 2016, 169, 189-195.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.08.034]
[48]
Allijn, I.E.; Schiffelers, R.M.; Storm, G. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention. Int. J. Pharm., 2016, 506(1-2), 407-413.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.070 ] [PMID: 27139142]
[49]
Sharma, V.; Pathak, K. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology. Acta Pharm. Sin. B, 2016, 6(6), 600-613.
[http://dx.doi.org/10.1016/j.apsb.2016.05.015 ] [PMID: 27818928]
[50]
Wong, J.J.L.; Yu, H.; Lim, L.M.; Hadinoto, K. A trade-off between solubility enhancement and physical stability upon simultaneous amorphization and nanonization of curcumin in comparison to amorphization alone. Eur. J. Pharm. Sci., 2018, 114, 356-363.
[http://dx.doi.org/10.1016/j.ejps.2018.01.010 ] [PMID: 29309874]
[51]
Chen, L.; Bai, G.; Yang, S.; Yang, R.; Zhao, G.; Xu, C.; Leung, W. Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Res. Int., 2014, 62, 1147-1153.
[http://dx.doi.org/10.1016/j.foodres.2014.05.054]
[52]
Le, N.D.T.; Tran, P.H.L.; Lee, B.J.; Tran, T.T.D. Solid lipid particle-based tablets for buccal delivery: The role of solid lipid particles in drug release. J. Drug Deliv. Sci. Technol., 2019, 52, 96-102.
[http://dx.doi.org/10.1016/j.jddst.2019.04.037]
[53]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Modulation of drug crystallization and molecular interactions by additives in solid dispersions for improving drug bioavailability. Curr. Pharm. Des., 2019, 25(18), 2099-2107.
[http://dx.doi.org/10.2174/1381612825666190618102717 ] [PMID: 31244413]
[54]
Pham, D.T.T.; Tran, P.H.L.; Tran, T.T.D. Development of solid dispersion lipid nanoparticles for improving skin delivery. Saudi Pharm. J., 2019, 27(7), 1019-1024.
[http://dx.doi.org/10.1016/j.jsps.2019.08.004 ] [PMID: 31997909]
[55]
Guan, J.; Jin, L.; Liu, Q.; Xu, H.; Wu, H.; Zhang, X.; Mao, S. Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur. J. Pharm. Sci., 2019, 139,105043.
[http://dx.doi.org/10.1016/j.ejps.2019.105043] [PMID: 31415903]
[56]
Costa, B.L.A.; Sauceau, M.; Del Confetto, S.; Sescousse, R.; Ré, M.I. Determination of drug-polymer solubility from supersaturated spray-dried amorphous solid dispersions: A case study with Efavirenz and Soluplus®. Eur. J. Pharm. Biopharm., 2019, 142, 300-306.
[http://dx.doi.org/10.1016/j.ejpb.2019.06.028 ] [PMID: 31247317]
[57]
Kambayashi, A.; Kiyota, T.; Fujiwara, M.; Dressman, J.B. PBPK modeling coupled with biorelevant dissolution to forecast the oral performance of amorphous solid dispersion formulations. Eur. J. Pharm. Sci., 2019, 135, 83-90.
[http://dx.doi.org/10.1016/j.ejps.2019.05.013 ] [PMID: 31125680]
[58]
Casian, T.; Borbás, E.; Ilyés, K.; Démuth, B.; Farkas, A.; Rapi, Z.; Bogdan, C.; Iurian, S.; Toma, V.; Știufiuc, R.; Farkas, B.; Balogh, A.; Marosi, G.; Tomuță, I.; Nagy, Z.K. Electrospun amorphous solid dispersions of meloxicam: Influence of polymer type and downstream processing to orodispersible dosage forms. Int. J. Pharm., 2019, 569,118593.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118593] [PMID: 31398371]
[59]
Takeda, K.; Sekitoh, T.; Fujioka, A.; Yamamoto, K.; Okamoto, T.; Matsuura, T.; Imanaka, H.; Ishida, N.; Imamura, K. Physical stability of an amorphous sugar matrix dried from methanol as an amorphous solid dispersion carrier and the influence of heat treatment. J. Pharm. Sci., 2019, 108(6), 2056-2062.
[http://dx.doi.org/10.1016/j.xphs.2019.01.008 ] [PMID: 30677416]
[60]
Ma, X.; Williams, R.O. Characterization of amorphous solid dispersions: An update. J. Drug Deliv. Sci. Technol., 2019, 50, 113-124.
[http://dx.doi.org/10.1016/j.jddst.2019.01.017]
[61]
Chavan, R.B.; Rathi, S.; Jyothi, V.G.S.S.; Shastri, N.R. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci, 2019, 14(3), 248-264.
[http://dx.doi.org/10.1016/j.ajps.2018.09.003 ] [PMID: 32104456]
[62]
Ueda, K.; Higashi, K.; Moribe, K. Mechanistic elucidation of formation of drug-rich amorphous nanodroplets by dissolution of the solid dispersion formulation. Int. J. Pharm., 2019, 561, 82-92.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.034 ] [PMID: 30822504]
[63]
Browne, E.; Charifou, R.; Worku, Z.A.; Babu, R.P.; Healy, A.M. Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. Int. J. Pharm., 2019, 566, 173-184.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.062 ] [PMID: 31132449]
[64]
Smeets, A.; Koekoekx, R.; Clasen, C.; Van den Mooter, G. Amorphous solid dispersions of darunavir: Comparison between spray drying and electrospraying. Eur. J. Pharm. Biopharm., 2018, 130, 96-107.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.021 ] [PMID: 29928980]
[65]
Van den Mooter, G.; Weuts, I.; De Ridder, T.; Blaton, N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm., 2006, 316(1-2), 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.025 ] [PMID: 16563676]
[66]
Boel, E.; Smeets, A.; Vergaelen, M.; De la Rosa, V.R.; Hoogenboom, R.; Van den Mooter, G. Comparative study of the potential of poly(2-ethyl-2-oxazoline) as carrier in the formulation of amorphous solid dispersions of poorly soluble drugs. Eur. J. Pharm. Biopharm., 2019, 144, 79-90.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.005 ] [PMID: 31499162]
[67]
Pas, T.; Vergauwen, B.; Van den Mooter, G. Exploring the feasibility of the use of biopolymers as a carrier in the formulation of amorphous solid dispersions - Part I: Gelatin. Int. J. Pharm., 2018, 535(1-2), 47-58.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.050 ] [PMID: 29097142]
[68]
Ren, F.; Sun, H.; Cui, L.; Si, Y.; Chen, N.; Ren, G.; Jing, Q. Antisolvent recrystallization strategy to screen appropriate carriers to stabilize filgotinib amorphous solid dispersions. J. Pharm. Sci., 2018, 107(6), 1624-1632.
[http://dx.doi.org/10.1016/j.xphs.2018.02.008 ] [PMID: 29454623]
[69]
Hurley, D.; Carter, D.; Foong Ng, L.Y.; Davis, M.; Walker, G.M.; Lyons, J.G.; Higginbotham, C.L. An investigation of the inter-molecular interaction, solid-state properties and dissolution properties of mixed copovidone hot-melt extruded solid dispersions. J. Drug Deliv. Sci. Technol., 2019, 53,101132.
[http://dx.doi.org/10.1016/j.jddst.2019.101132]]
[70]
Vasoya, J.M.; Desai, H.H.; Gumaste, S.G.; Tillotson, J.; Kelemen, D.; Dalrymple, D.M.; Serajuddin, A.T.M. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model. J. Pharm. Sci., 2019, 108(2), 888-896.
[http://dx.doi.org/10.1016/j.xphs.2018.09.019 ] [PMID: 30257196]
[71]
Al-Hamidi, H.; Edwards, A.A.; Mohammad, M.A.; Nokhodchi, A. To enhance dissolution rate of poorly water-soluble drugs: Glucosamine hydrochloride as a potential carrier in solid dispersion formulations. Colloids Surf. B Biointerfaces, 2010, 76(1), 170-178.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.030 ] [PMID: 19945828]
[72]
Han, R.; Xiong, H.; Ye, Z.; Yang, Y.; Huang, T.; Jing, Q.; Lu, J.; Pan, H.; Ren, F.; Ouyang, D. Predicting physical stability of solid dispersions by machine learning techniques. J. Control. Release, 2019, 311-312, 16-25.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.030 ] [PMID: 31465824]
[73]
Xiong, X.; Zhang, M.; Hou, Q.; Tang, P.; Suo, Z.; Zhu, Y.; Li, H. Solid dispersions of telaprevir with improved solubility prepared by co-milling: Formulation, physicochemical characterization, and cytotoxicity evaluation. Mater. Sci. Eng. C, 2019, 105,110012.
[http://dx.doi.org/10.1016/j.msec.2019.110012] [PMID: 31546459]
[74]
Adler, C.; Schönenberger, M.; Teleki, A.; Kuentz, M. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion. Int. J. Pharm., 2016, 499(1-2), 90-100.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.057 ] [PMID: 26721729]
[75]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Current designs of polymer blends in solid dispersions for improving drug bioavailability. Curr. Drug Metab., 2018, 19(13), 1111-1118.
[http://dx.doi.org/10.2174/1389200219666180628171100 ] [PMID: 29956619]
[76]
Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today, 2007, 12(23-24), 1068-1075.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005 ] [PMID: 18061887]
[77]
Solanki, N.G.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T.M. Effects of surfactants on itraconazole-hydroxypropyl methylcellulose acetate succinate solid dispersion prepared by hot melt extrusion. II: Rheological analysis and extrudability testing. J. Pharm. Sci., 2019, 108(9), 3063-3073.
[http://dx.doi.org/10.1016/j.xphs.2019.05.010 ] [PMID: 31103788]
[78]
Hanada, M.; Jermain, S.V.; Williams, R.O., III Enhanced dissolution of a porous carrier-containing ternary amorphous solid dispersion system prepared by a hot melt method. J. Pharm. Sci., 2018, 107(1), 362-371.
[http://dx.doi.org/10.1016/j.xphs.2017.09.025 ] [PMID: 28989021]
[79]
Kumar, V.; Mintoo, M.J.; Mondhe, D.M.; Bharate, S.B.; Vishwakarma, R.A.; Bharate, S.S. Binary and ternary solid dispersions of an anticancer preclinical lead, IIIM-290: In vitro and in vivo studies. Int. J. Pharm., 2019, 570,118683.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118683] [PMID: 31513869]
[80]
Vojinović, T.; Medarević, D.; Vranić, E.; Potpara, Z.; Krstić, M.; Djuriš, J.; Ibrić, S. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi Pharm. J., 2018, 26(5), 725-732.
[http://dx.doi.org/10.1016/j.jsps.2018.02.017 ] [PMID: 29991917]
[81]
Hassouna, F.; Abo El Dahab, M.; Fulem, M.; De Lima Haiek, A.; Laachachi, A.; Kopecký, D.; Šoóš, M. Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles. J. Drug Deliv. Sci. Technol., 2019, 53,101182.
[http://dx.doi.org/10.1016/j.jddst.2019.101182]]
[82]
Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K.R. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int. J. Pharm., 2004, 271(1-2), 281-286.
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.014 ] [PMID: 15129995]
[83]
Wu, R.; Mei, X.; Ye, Y.; Xue, T.; Wang, J.; Sun, W.; Lin, C.; Xue, R.; Zhang, J.; Xu, D. Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis. Pharmacol. Res., 2019, 150,104454.
[http://dx.doi.org/10.1016/j.phrs.2019.104454] [PMID: 31526871]
[84]
Gangurde, A.B.; Kundaikar, H.S.; Javeer, S.D.; Jaiswar, D.R.; Degani, M.S.; Amin, P.D. Enhanced solubility and dissolution of curcumin by a hydrophilic polymer solid dispersion and its insilico molecular modeling studies. J. Drug Deliv. Sci. Technol., 2015, 29, 226-237.
[http://dx.doi.org/10.1016/j.jddst.2015.08.005]
[85]
Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; Das, T.; Shreeram, S. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem., 2014, 156, 227-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.108 ] [PMID: 24629962]
[86]
Meng, F.; Trivino, A.; Prasad, D.; Chauhan, H. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur. J. Pharm. Sci., 2015, 71, 12-24.
[http://dx.doi.org/10.1016/j.ejps.2015.02.003 ] [PMID: 25686597]
[87]
Zhang, Q.; Suntsova, L.; Chistyachenko, Y.S.; Evseenko, V.; Khvostov, M.V.; Polyakov, N.E.; Dushkin, A.V.; Su, W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int. J. Biol. Macromol., 2019, 128, 158-166.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.079 ] [PMID: 30664966]
[88]
Li, J.; Lee, I.W.; Shin, G.H.; Chen, X.; Park, H.J. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur. J. Pharm. Biopharm., 2015, 94, 322-332.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.002 ] [PMID: 26073546]
[89]
Leimann, V.F.; Gonçalves, O.H.; Sorita, G.D.; Rezende, S.; Bona, E.; Fernandes, I.P.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying. Chem. Eng. Sci., 2019, 205, 248-258.
[http://dx.doi.org/10.1016/j.ces.2019.04.044]
[90]
Li, B.; Konecke, S.; Wegiel, L.A.; Taylor, L.S.; Edgar, K.J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr. Polym., 2013, 98(1), 1108-1116.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.017 ] [PMID: 23987452]
[91]
Wang, R.; Han, J.; Jiang, A.; Huang, R.; Fu, T.; Wang, L.; Zheng, Q.; Li, W.; Li, J. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int. J. Pharm., 2019, 561, 9-18.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.027 ] [PMID: 30817985]
[92]
Nguyen, T.N-G.; Tran, P.H-L.; Van Vo, T.; Duan, W.; Truong-Dinh Tran, T. Development of a sustained release solid dispersion using swellable polymer by melting method. Pharm. Res., 2016, 33(1), 102-109.
[http://dx.doi.org/10.1007/s11095-015-1767-2 ] [PMID: 26264511]
[93]
Wegiel, L.A.; Zhao, Y.; Mauer, L.J.; Edgar, K.J.; Taylor, L.S. Curcumin amorphous solid dispersions: The influence of intra and intermolecular bonding on physical stability. Pharm. Dev. Technol., 2014, 19(8), 976-986.
[http://dx.doi.org/10.3109/10837450.2013.846374 ] [PMID: 24192454]
[94]
Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Biopharm., 2015, 94, 513-520.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.024 ] [PMID: 26143367]
[95]
Hu, L.; Shi, Y.; Li, J.H.; Gao, N.; Ji, J.; Niu, F.; Chen, Q.; Yang, X.; Wang, S. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech, 2015, 16(6), 1327-1334.
[http://dx.doi.org/10.1208/s12249-014-0254-0 ] [PMID: 25804949]
[96]
Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J. Pharm. Sci., 2010, 99(4), 1871-1881.
[http://dx.doi.org/10.1002/jps.21964 ] [PMID: 19827133]
[97]
Silva de Sá, I.; Peron, A.P.; Leimann, F.V.; Bressan, G.N.; Krum, B.N.; Fachinetto, R.; Pinela, J.; Calhelha, R.C.; Barreiro, M.F.; Ferreira, I.C.F.R.; Gonçalves, O.H.; Ineu, R.P. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem. Toxicol., 2019, 125, 29-37.
[http://dx.doi.org/10.1016/j.fct.2018.12.037 ] [PMID: 30592967]
[98]
Tran, C.T.M.; Tran, P.H.L.; Tran, T.T.D. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates. Drug Dev. Ind. Pharm., 2019, 45(3), 514-519.
[http://dx.doi.org/10.1080/03639045.2018.1562466 ] [PMID: 30575412]
[99]
Choi, S.; Cui, C.; Luo, Y.; Kim, S-H.; Ko, J-K.; Huo, X.; Ma, J.; Fu, L-W.; Souza, R.F.; Korichneva, I.; Pan, Z. Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J., 2018, 32(1), 404-416.
[http://dx.doi.org/10.1096/fj.201700227RRR ] [PMID: 28928244]
[100]
Habel, N.; Hamidouche, Z.; Girault, I.; Patiño-García, A.; Lecanda, F.; Marie, P.J.; Fromigué, O. Zinc chelation: A metallothionein 2A’s mechanism of action involved in osteosarcoma cell death and chemotherapy resistance. Cell Death Dis., 2013, 4(10),e874.
[http://dx.doi.org/10.1038/cddis.2013.405] [PMID: 24157868]
[101]
Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6, 10.
[http://dx.doi.org/10.3389/fcell.2018.00010 ] [PMID: 29497610]
[102]
Fan, N.; Ma, P.; Wang, X.; Li, C.; Zhang, X.; Zhang, K.; Li, J.; He, Z. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100. Carbohydr. Polym., 2018, 199, 492-498.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.036 ] [PMID: 30143154]
[103]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int. J. Pharm., 2019, 569,118614.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118614] [PMID: 31415877]
[104]
Tran, P.H.L.; Wang, T.; Yin, W.; Tran, T.T.D.; Nguyen, T.N.G.; Lee, B.J.; Duan, W. Aspirin-loaded nanoexosomes as cancer therapeutics. Int. J. Pharm., 2019, 572,118786.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118786] [PMID: 31669214]
[105]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int. J. Pharm., 2019, 571,118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[106]
Zhang, Q.; Polyakov, N.E.; Chistyachenko, Y.S.; Khvostov, M.V.; Frolova, T.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv., 2018, 25(1), 198-209.
[http://dx.doi.org/10.1080/10717544.2017.1422298 ] [PMID: 29302995]
[107]
Hou, Y.; Wang, H.; Zhang, F.; Sun, F.; Xin, M.; Li, M.; Li, J.; Wu, X. Novel self-nanomicellizing solid dispersion based on rebaudioside A: a potential nanoplatform for oral delivery of curcumin. Int. J. Nanomedicine, 2019, 14, 557-571.
[http://dx.doi.org/10.2147/IJN.S191337 ] [PMID: 30666114]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy