[1]
Lederberg J, Hamburg MA, Smolinski MS, Eds. Microbial threats to health: emergence, detection, and response. National Academies Press 2003.
[8]
Nabarro D, Wannous C. The potential contribution of Iivestock to food and nutrition security: the application of the One Health approach in livestock policy and practice 2014.
[11]
Roser M, Ritchie H, Dadonaite B. Child & Infant Mortality. Our World in Data 2013.
[19]
Rapoport SK, Smith AJ, Bergman M, Scriven KA, Brook I, Mikula SK. Determining the utility of standard hospital microbiology testing: Comparing standard microbiology cultures with DNA sequence analysis in patients with chronic sinusitis. World J Otorhinolaryngol Head Neck Surg 2019; 5(2): 82-7.
[29]
Dawud AM, Yurtkan K, Oztoprak H. Application of deep learning in neuroradiology: brain haemorrhage classification using transfer learning. Comput Intell Neurosci 2019; 20194629859
[33]
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: a largescale hierarchical image database 2009.
[34]
Sermanet P, Frome A, Real E. 2014.
[35]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012; •••: 1097-105.
[36]
Simonyan K, Zisserman A. 2014.
[37]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition USA. 1-9.
[38]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. USA. 2016; pp. 770-8.
[39]
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition. USA. 2017; pp. 4700-8.
[40]
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition. USA. 2016; pp. 2818-6.
[43]
Aneja N, Aneja S. Transfer Learning using CNN for Handwritten Devanagari Character Recognition arXiv preprint arXiv 2019.
[44]
Flusser J, Suk T. Character recognition by affine moment invariants. International Conference on Computer Analysis of Images and Patterns. 572-7.
[47]
Shahbaz M, Parveen S, Ahmad F, Rabbani M. Detection of Francisella Tularensis Pathogen in Soil using Neural Networks. 20th International Conference on Computer, Electrical, Electronics and Communication Engineering (CEECE-18). May 7-9, 2018; Dubai. 2018; 58-64.
[48]
Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of machine learning in microbiology. Front Microbiol 2019; 10: 827.
[52]
Hiremath P, Bannigidad P. Automated gram-staining characterization of digital bacterial cell images. Proc IEEE Int’l Conf on Signal and Image Processing ICSIP. 209-11.
[53]
Hiremath P, Bannigidad P. Digital microscopic image analysis of spiral bacterial cell groups.
[60]
Hiremath P, Bannigidad P, Yelgond SS. Identification of flagellated or fimbriated bacterial cells using digital image processing techniques. Int J Comput Appl 2012; 59: 12-6.
[64]
Helwan A, Abiyev R. Shape and texture features for the identification of breast cancer. Proceedings of the World Congress on Engineering and Computer Science. vol. 2: 19-21.
[69]
Al-Anazi KA, Abdalhamid B, Alshibani Z, et al. Acinetobacter baumannii septicemia in a recipient of an allogeneic hematopoietic stem cell transplantation. Case Rep Transplant 2012; 2012646195
[72]
Zaki SR, Alves VA, Hale GL. 2017.
[74]
Douglas CI, Naylor K, Phansopa C, Frey AM, Farmilo T, Stafford GP. 2014.
[79]
Uzal FA, Plattner BL, Hostetter JM. Alimentary system. Jubb, Kennedy. Palmer Pathology of Domestic Animals 2015; 2: 1-257.
[80]
Goulas T, Gomis-Ruth F. Fragilysin Rawlings ND. Salvesen GS 2013; pp. 887-91.
[86]
Jain A, Malhotra S, Das A, Madan P, Kaur N. Candida diarrhoea in a patient of nephrotic syndrome. J Case Rep 2015; 4(2): 474-7.
[89]
Marini RP, Wachtman LM, Tardif SD, Mansfield K, Fox JG, Eds. The common marmoset in captivity and biomedical research. Academic Press 2018; p. 570.
[91]
Ramos CP, Santana JA, Morcatti Coura F, et al. Identification and characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile isolates from reptiles in Brazil. BioMed Res Int 2019; 20199530732
[94]
Partoazar A, Talaei N, Bahador A, et al. Antibiofilm activity of natural zeolite supported NanoZnO: inhibition of Esp gene expression of Enterococcus faecalis. Nanomedicine (Lond) 2019; 14(6): 675-87.
[96]
Srinivasan L, Evans JR. Health care-associated infections Avery’s Diseases of the Newborn. Elsevier 2018; pp. 566-80.
[102]
Constable PD, Hinchcliff KW, Done SH, Grünberg W. Diseases of the alimentary tract: Nonruminant Veterinary Medicine. 11th ed. Philadelphia, Pennsylvania: WB Saunders 2017; pp. 175-435.
[106]
Zhang D, Zhang S, Guidesi E, et al. 2017.
[113]
Okoliegbe IL, Solomon L, Dick AA. Exploiting microbial communities associated with marine fish: An indispensable approach to sustainable aquaculture. Nat Sci 2017; 15(4): 84-91.
[117]
Osman AGA. Molecular Detection of Helicobacter pylori GLmM Gene among Gastritis and Duodenitis Patients in Albogaa Specialized Hospital-Omdurman. Sudan University of Science & Technology 2019.
[123]
Alouf JE, Popoff M. Bacterial protein toxins. Bac Tox 2006; p. 1.
[124]
Wu M, Li X. Klebsiella pneumoniae and Pseudomonas aeruginosa Molecular Medical Microbiology. Elsevier 2015; pp. 1547-64.
[127]
Firyal S, Awan AR, Baigh S, et al.
[132]
Sharma A, Vadehra D, Montesano P, Singvi A. Staphylococcus Epidermidis and Hemodialysis: a deadly duo causing native valve endocarditis InC53 critical care case reports: you give me (more) fever-infection and sepsis. Am Thor Soc 2018; pp. A5308-8.
[134]
Sousa VS, da-Silva AP, Sorenson L, et al. Staphylococcus saprophyticus recovered from humans, food, and recreational waters in Rio de Janeiro, Brazil. Int J Microbiol 2017; 20174287547
[138]
Mózsik G, Figler M. Nutrition in Health and Disease-Our Challenges Now and Forthcoming Time 2019.
[140]
Long SS, Prober CG, Fischer M. Principles and practice of pediatric infectious diseases E-Book. Elsevier Health Sciences 2017.
[143]
Mohamed BA, Afify HM. Automated classification of bacterial images extracted from digital microscope via bag of words model.
[150]
de Menezes RS, Magalhaes RM, Maia H. Object Recognition Using Convolutional Neural Networks. 2019.
[152]
Wahid MF, Ahmed T, Habib MA.
[157]
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? 2014.
[159]
Vesal S, Ravikumar N, Davari A, Ellmann S, Maier A. Classification of breast cancer histology images using transfer learning
[160]
Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. 2013.