Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview

Author(s): Damanpreet K. Lang, Rajwinder Kaur*, Rashmi Arora, Balraj Saini and Sandeep Arora

Volume 20, Issue 18, 2020

Page: [2150 - 2168] Pages: 19

DOI: 10.2174/1871520620666200705214917

Price: $65

Abstract

Background: Cancer is spreading all over the world, and it is becoming the leading cause of major deaths. Today’s most difficult task for every researcher is to invent a new drug that can treat cancer with minimal side effects. Many factors, including pollution, modern lifestyle and food habits, exposure to oncogenic agents or radiations, enhanced industrialization, etc. can cause cancer. Treatment of cancer is done by various methods that include chemotherapy, radiotherapy, surgery and immunotherapy in combination or singly along with kinase inhibitors. Most of the anti-cancer drugs use the concept of kinase inhibition.

Objective: The number of drugs being used in chemotherapy has heterocycles as their basic structure in spite of various side effects. Medicinal chemists are focusing on nitrogen-containing heterocyclic compounds like pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimidazole, etc. as the key building blocks to develop active biological compounds. The aim of this study is to attempt to compile a dataset of nitrogen-containing heterocyclic anti-cancer drugs.

Methods: We adopted a structural search on notorious journal publication websites and electronic databases such as Bentham Science, Science Direct, PubMed, Scopus, USFDA, etc. for the collection of peer-reviewed research and review articles for the present review. The quality papers were retrieved, studied, categorized into different sections, analyzed and used for article writing.

Conclusion: As per FDA databases, nitrogen-based heterocycles in the drug design are almost 60% of unique small-molecule drugs. Some of the nitrogen-containing heterocyclic anti-cancer drugs are Axitinib, Bosutinib, Cediranib, Dasatanib (Sprycel®), Erlotinib (Tarceva®), Gefitinib (Iressa®), Imatinib (Gleevec®), Lapatinib (Tykerb ®), Linifanib, Sorafenib (Nexavar®), Sunitinib (Sutent®), Tivozanib, etc. In the present review, we shall focus on the overview of nitrogen-containing heterocyclic active compounds as anti-cancer agents.

Keywords: Anti-cancer, nitrogen heterocycles, tazverik, ayvakit, copiktra, erleada, lorbrena, FDA approved drugs.

Graphical Abstract
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: Burden and trends. Cancer epidemiology. Biomarkers Prevent., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858]
[3]
Rang, H.P.; Dale, M.M.; Ritter, J.M.; Moore, P.K. Pharmacology, 5th ed; Churchill Livingstone: Edinburgh, 2003.
[4]
Williams, D.A.; Lemke, T.L. Foye’s Principle of Medicinal Chemistry, 5th ed; Lippincott Williams & Wilkins: Philadelphia, 2002.
[5]
IUPAC, Gold Book-Heterocyclic Compounds http://goldbook. iupac.org/H02798.html [Accessed on: 26 May 2015]
[6]
Ferreira, P.M.T.; Maia, H.L.S.; Monteiro, L.S. Synthesis of 2,3,5-substituted pyrrole derivatives. Tetrahedron Lett., 2002, 4, 4491-4493.
[http://dx.doi.org/10.1016/S0040-4039(02)00810-9]
[7]
Shukla, P.K.; Verma, A.; Mishra, P. Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. In: New Perspective in Agriculture and Human health; Shukla, R.P.; Mishra, R.S.; Tripathi, A.D.; Yadav, A.K.; Tiwari, M.; Mishra, R.R., Eds.; Bharti Publication: New Delhi, 2017.
[8]
Wierenga, W.; Evans, B.R.; Zurenko, G.E. Benzisoxazolones: Antimicrobial and antileukemic activity. J. Med. Chem., 1984, 27(9), 1212-1215.
[http://dx.doi.org/10.1021/jm00375a022] [PMID: 6471074]
[9]
Wierenga, W.; Bhuyan, B.K.; Kelly, R.C.; Krueger, W.C.; Li, L.H.; McGovren, J.P.; Swenson, D.H.; Warpehoski, M.A. Antitumor activity and biochemistry of novel analogs of the antibiotic, CC-1065. Adv. Enzyme Regul., 1986, 25, 141-155.
[http://dx.doi.org/10.1016/0065-2571(86)90012-9] [PMID: 3812082]
[10]
Warpehoski, M.A. Total synthesis of U-71,184, a potent new antitumor agent modeled on CC-1065. Tetrahedron Lett., 1986, 27, 4103-4106.
[http://dx.doi.org/10.1016/S0040-4039(00)84921-7]
[11]
Warpehoski, M.A.; Gebhard, I.; Kelly, R.C.; Krueger, W.C.; Li, L.H.; McGovren, J.P.; Prairie, M.D.; Wicnienski, N.; Wierenga, W. Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065. J. Med. Chem., 1988, 31(3), 590-603.
[http://dx.doi.org/10.1021/jm00398a017] [PMID: 3346875]
[12]
Kelly, R.C.; Gebhard, I.; Wicnienski, N.; Aristoff, P.A.; Johnson, P.D.; Martin, D.G. Coupling of cyclopropapyrroloindole (CPI) de-rivatives: The preparation of CC-1065, Ent-CC-1065 and analogues. J. Am. Chem. Soc., 1987, 109, 6837-6838.
[http://dx.doi.org/10.1021/ja00256a041]
[13]
Petzold, G.L.; Krueger, W.C.; Swenson, D.H.; Wallace, T.L.; Prairie, M.D.; Li, L.H. Biochemical and cytotoxic effects of CC-1065 analogs. Proc. Am. Assoc. Cancer Res., 1985, 26, 225.
[14]
Moy, B.C.; Petzold, G.L.; Badiner, G.J.; Kelly, R.C.; Aristoff, P.A.; Adams, E.G.; Li, L.H.; Bhuyan, B.K. Characterization of B16 melanoma cells resistant to the CC-1065 analogue U-71,184. Cancer Res., 1990, 50(8), 2485-2492.
[PMID: 2317831]
[15]
Gold, J.S.; Dematteo, R.P. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann. Surg., 2006, 244(2), 176-184.
[http://dx.doi.org/10.1097/01.sla.0000218080.94145.cf] [PMID: 16858179]
[16]
Demetri, G.D. Optimal management of patients with Gastrointestinal Stromal Tumors (GIST): Expansion and update of NCCN Clinical Practice Guidelines. J. Compr. Canc. Netw., 2004, 2, S1-S26.
[17]
Sutherland, M.; Gill, J.H.; Loadman, P.M.; Laye, J.P.; Sheldrake, H.M.; Illingworth, N.A.; Alandas, M.N.; Cooper, P.A.; Searcey, M.; Pors, K.; Shnyder, S.D.; Patterson, L.H. Antitumor activity of a duocarmycin analogue rationalized to be metabolically activated by cytochrome P450 1A1 in human transitional cell carcinoma of the bladder. Mol. Cancer Ther., 2013, 12(1), 27-37.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0405] [PMID: 23033491]
[18]
Blanchet, K.D. Redefining personalized medicine in the postgenomic era: Developing bladder cancer therapeutics with proteomics. BJU Int., 2010, 105(2), i-iii.
[http://dx.doi.org/10.1111/j.1464-410X.2009.09168.x] [PMID: 20078597]
[19]
Konopleva, M.; Watt, J.; Contractor, R.; Tsao, T.; Harris, D.; Estrov, Z.; Bornmann, W.; Kantarjian, H.; Viallet, J.; Samudio, I.; Andreeff, M. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res., 2008, 68(9), 3413-3420.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1919] [PMID: 18451169]
[20]
Schimmer, A.D.; Raza, A.; Carter, T.H.; Claxton, D.; Erba, H.; DeAngelo, D.J.; Tallman, M.S.; Goard, C.; Borthakur, G. A multicenter phase I/II study of obatoclax mesylate administered as a 3- or 24-hour infusion in older patients with previously untreated acute myeloid leukemia. PLoS One, 2014, 9(10)e108694
[http://dx.doi.org/10.1371/journal.pone.0108694] [PMID: 25285531]
[21]
Díaz de Greñu, B.; Iglesias Hernández, P.; Espona, M.; Quiñonero, D.; Light, M.E.; Torroba, T.; Pérez-Tomás, R.; Quesada, R. Synthetic prodiginine obatoclax (GX15-070) and related analogues: Anion binding, transmembrane transport, and cytotoxicity properties. Chemistry, 2011, 17(50), 14074-14083.
[http://dx.doi.org/10.1002/chem.201101547] [PMID: 22069220]
[22]
Cruickshanks, N.; Tang, Y.; Booth, L.; Hamed, H.; Grant, S.; Dent, P. Lapatinib and obatoclax kill breast cancer cells through reactive oxygen species-dependent endoplasmic reticulum stress. Mol. Pharmacol., 2012, 82(6), 1217-1229.
[http://dx.doi.org/10.1124/mol.112.081539] [PMID: 22989520]
[23]
Martin, A.P.; Mitchell, C.; Rahmani, M.; Nephew, K.P.; Grant, S.; Dent, P. Inhibition of MCL-1 enhances lapatinib toxicity and overcomes lapatinib resistance via BAK-dependent autophagy. Cancer Biol. Ther., 2009, 8(21), 2084-2096.
[http://dx.doi.org/10.4161/cbt.8.21.9895] [PMID: 19823038]
[24]
Wei, Y.; Kadia, T.; Tong, W.; Zhang, M.; Jia, Y.; Yang, H.; Hu, Y.; Viallet, J.; O’Brien, S.; Garcia-Manero, G. The combination of a histone deacetylase inhibitor with the BH3-mimetic GX15-070 has synergistic antileukemia activity by activating both apoptosis and autophagy. Autophagy, 2010, 6(7), 976-978.
[http://dx.doi.org/10.4161/auto.6.7.13117] [PMID: 20729640]
[25]
Champa, D.; Russo, M.A.; Liao, X.H.; Refetoff, S.; Ghossein, R.A.; Di Cristofano, A. Obatoclax overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and Mcl1 overexpression. Endocr. Relat. Cancer, 2014, 21(5), 755-767.
[http://dx.doi.org/10.1530/ERC-14-0268] [PMID: 25012986]
[26]
Bennett, J.W.; Bentley, R. Seeing red: The story of prodigiosin. Adv. Appl. Microbiol., 2000, 47, 1-32.
[http://dx.doi.org/10.1016/S0065-2164(00)47000-0] [PMID: 12876793]
[27]
Hassankhani, R.; Sam, M.R.; Esmaeilou, M.; Ahangar, P. Prodigiosin isolated from cell wall of Serratia marcescens alters expression of apoptosis-related genes and increases apoptosis in colorectal cancer cells. Med. Oncol., 2015, 32(1), 366.
[http://dx.doi.org/10.1007/s12032-014-0366-0] [PMID: 25429836]
[28]
Montaner, B.; Pérez-Tomás, R. Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci., 2001, 68(17), 2025-2036.
[http://dx.doi.org/10.1016/S0024-3205(01)01002-5] [PMID: 11388704]
[29]
Cheng, M.F.; Lin, C.S.; Chen, Y.H.; Sung, P.J.; Lin, S.R.; Tong, Y.W.; Weng, C.F. Inhibitory growth of oral squamous cell carcinoma cancer via bacterial prodigiosin. Mar. Drugs, 2017, 15(7), 7.
[http://dx.doi.org/10.3390/md15070224] [PMID: 28714874]
[30]
Yenkejeh, R.A.; Sam, M.R.; Esmaeillou, M. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells. Hum. Exp. Toxicol., 2017, 36(4), 402-411.
[http://dx.doi.org/10.1177/0960327116651122] [PMID: 27334973]
[31]
Serova, M.; Calvo, F.; Lokiec, F.; Koeppel, F.; Poindessous, V.; Larsen, A.K.; Laar, E.S.; Waters, S.J.; Cvitkovic, E.; Raymond, E. Characterizations of irofulven cytotoxicity in combination with cisplatin and oxaliplatin in human colon, breast, and ovarian cancer cells. Cancer Chemother. Pharmacol., 2006, 57(4), 491-499.
[http://dx.doi.org/10.1007/s00280-005-0063-y] [PMID: 16075278]
[32]
Hollis, L.S.; Amundsen, A.R.; Stern, E.W. Chemical and biological properties of a new series of cis-diammineplatinum(II) antitumor agents containing three nitrogen donors: cis-[Pt(NH3)2(N-donor)Cl]+. J. Med. Chem., 1989, 32(1), 128-136.
[http://dx.doi.org/10.1021/jm00121a024] [PMID: 2909724]
[33]
Wang, D.; Zhu, G.; Huang, X.; Lippard, S.J. X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9584-9589.
[http://dx.doi.org/10.1073/pnas.1002565107] [PMID: 20448203]
[34]
Lovejoy, K.S.; Serova, M.; Bieche, I.; Emami, S.; D’Incalci, M.; Broggini, M.; Raymond, E. Anti-cancer activity of pyriplatin, a monofunctional cationic platinum(II) compound, in human cancer cells. Mol. Cancer Ther., 2011, 10(9), 1709-1719.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0250] [PMID: 21750216]
[35]
National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/drugs/trametinib [Accessed on: November 19, 2019]
[36]
Robert, C.; Flaherty, K.T.; Hersey, P.; Nathan, P.D.; Garbe, C.; Milhem, M.M.; Dummer, R. METRIC phase III study: Efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in Progression-Free Survival (PFS) and Overall Survival (OS), compared with Chemotherapy (C) in patients (pts) with BRAFV600E/K mutant advanced or Metastatic Melanoma (MM). J. Clin. Oncol., 2012, 18, 30.
[37]
Flaherty, K.T.; Infante, J.R.; Daud, A.; Gonzalez, R.; Kefford, R.F.; Sosman, J.; Hamid, O.; Schuchter, L.; Cebon, J.; Ibrahim, N.; Kud-chadkar, R.; Burris, H.A., III; Falchook, G.; Algazi, A.; Lewis, K.; Long, G.V.; Puzanov, I.; Lebowitz, P.; Singh, A.; Little, S.; Sun, P.; Allred, A.; Ouellet, D.; Kim, K.B.; Patel, K.; Weber, J. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med., 2012, 367(18), 1694-1703.
[http://dx.doi.org/10.1056/NEJMoa1210093] [PMID: 23020132]
[38]
Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599.
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[39]
Maverakis, E.; Cornelius, L.A.; Bowen, G.M.; Phan, T.; Patel, F.B.; Fitzmaurice, S.; He, Y.; Burrall, B.; Duong, C.; Kloxin, A.M.; Sultani, H.; Wilken, R.; Martinez, S.R.; Patel, F. Metastatic melanoma - a review of current and future treatment options. Acta Derm. Venereol., 2015, 95(5), 516-524.
[http://dx.doi.org/10.2340/00015555-2035] [PMID: 25520039]
[40]
Cobimetinib. http://www.exelixis.com/pipeline/GDC_0973_xl58[Accessed on: November 15, 2019]
[41]
Hematology/Oncology (Cancer) Approvals & Safety Notifications. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm330213.htm [Accessed on: March 15, 2019]
[42]
Cabozantinib(CABOMETYX). https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm497483.htm [Accessed on: November 15, 2019]
[43]
Cabometyx 20mg, 40mg, 60mghttps://www.medicines.org.uk/emc/medicine/32431 [Accessed on: November 15, 2019]
[44]
Koelblinger, P.; Lang, R. New developments in the treatment of basal cell carcinoma: Update on current and emerging treatment options with a focus on vismodegib. OncoTargets Ther., 2018, 11, 8327-8340.
[http://dx.doi.org/10.2147/OTT.S135650] [PMID: 30568456]
[45]
Carpenter, R.L.; Ray, H. Safety and tolerability of sonic hedgehog pathway inhibitors in cancer. Drug Saf., 2019, 42(2), 263-279.
[http://dx.doi.org/10.1007/s40264-018-0777-5] [PMID: 30649745]
[46]
Investigational Therapies. https://www.biooncology.com/pipeline-molecules/vismodegib/index.html [Accessed on: March 15, 2019]
[47]
Zhang, F.; Zhao, Y.; Sun, L.; Ding, L.; Gu, Y.; Gong, P. Synthesis and anti-tumor activity of 2-amino-3-cyano-6-(1H-indol-3-yl)-4-phenylpyridine derivatives in vitro. Eur. J. Med. Chem., 2011, 46(7), 3149-3157.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.055] [PMID: 21514012]
[48]
Tokarski, J.S.; Newitt, J.A.; Chang, C.Y.J.; Cheng, J.D.; Wittekind, M.; Kiefer, S.E.; Kish, K.; Lee, F.Y.; Borzillerri, R.; Lombardo, L.J.; Xie, D.; Zhang, Y.; Klei, H.E. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 2006, 66(11), 5790-5797.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4187] [PMID: 16740718]
[49]
Koreckij, T.; Nguyen, H.; Brown, L.G.; Yu, E.Y.; Vessella, R.L.; Corey, E. Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br. J. Cancer, 2009, 101(2), 263-268.
[http://dx.doi.org/10.1038/sj.bjc.6605178] [PMID: 19603032]
[50]
Zhang, X.H.F.; Wang, Q.; Gerald, W.; Hudis, C.A.; Norton, L.; Smid, M.; Foekens, J.A.; Massagué, J. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell, 2009, 16(1), 67-78.
[http://dx.doi.org/10.1016/j.ccr.2009.05.017] [PMID: 19573813]
[51]
Giles, F.J.; O’Dwyer, M.; Swords, R. Class effects of tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia, 2009, 23(10), 1698-1707.
[http://dx.doi.org/10.1038/leu.2009.111] [PMID: 19474800]
[52]
Keating, G.M. Dasatinib: A review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs, 2017, 77(1), 85-96.
[http://dx.doi.org/10.1007/s40265-016-0677-x] [PMID: 28032244]
[54]
Saglio, G.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Lobo, C.; Pasquini, R.; Clark, R.E.; Hochhaus, A.; Hughes, T.P.; Gallagher, N.; Hoenekopp, A.; Dong, M.; Haque, A.; Larson, R.A.; Kantarjian, H.M. ENESTnd Investigators. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med., 2010, 362(24), 2251-2259.
[http://dx.doi.org/10.1056/NEJMoa0912614] [PMID: 20525993]
[55]
Hochhaus, A.; Saglio, G.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.D.; Etienne, G.; Dorlhiac-Llacer, P.E.; Clark, R.E.; Flinn, I.W.; Nakamae, H.; Donohue, B.; Deng, W.; Dalal, D.; Menssen, H.D.; Kantarjian, H.M. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia, 2016, 30(5), 1044-1054.
[http://dx.doi.org/10.1038/leu.2016.5] [PMID: 26837842]
[56]
Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; Deaton, C.; Ebrahim, S.; Fisher, M.; Germano, G.; Hobbs, R.; Hoes, A.; Karadeniz, S.; Mezzani, A.; Prescott, E.; Ryden, L.; Scherer, M.; Syvänne, M. Scholte op Reimer, W.J.; Vrints, C.; Wood, D.; Zamorano, J.L.; Zannad, F. European Association for Cardiovascular Prevention & Rehabilitation (EACPR); ESC Committee for Practice Guidelines (CPG). European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J., 2012, 33(13), 1635-1701.
[http://dx.doi.org/10.1093/eurheartj/ehs092] [PMID: 22555213]
[57]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.; Eddleman, K.M.; Jarrett, N.M.; LaBresh, K.; Nevo, L.; Wnek, J.; Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Hochman, J.S.; Kovacs, R.J.; Ohman, E.M.; Pressler, S.J.; Sellke, F.W.; Shen, W.K.; Smith, S.C., Jr; Tomaselli, G.F. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 129(25)(Suppl. 2), S1-S45.
[http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a] [PMID: 24222016]
[58]
Hayashi, M.; Yaginuma, S.; Yoshioka, H.; Nakatsu, K. Studies on neplanocin A, new antitumor antibiotic. II. Structure determination. J. Antibiot. (Tokyo), 1981, 34(6), 675-680.
[http://dx.doi.org/10.7164/antibiotics.34.675] [PMID: 7275851]
[59]
Yaginuma, S.; Muto, N.; Tsujino, M.; Sudate, Y.; Hayashi, M.; Otani, M. Studies on neplanocin A, new antitumor antibiotic. I. Producing organism, isolation and characterization. J. Antibiot. (Tokyo), 1981, 34(4), 359-366.
[http://dx.doi.org/10.7164/antibiotics.34.359] [PMID: 7275815]
[60]
Turner, M.A.; Yang, X.; Yin, D.; Kuczera, K.; Borchardt, R.T.; Howell, P.L. Structure and function of S-adenosylhomocysteine hydrolase. Cell Biochem. Biophys., 2000, 33(2), 101-125.
[http://dx.doi.org/10.1385/CBB:33:2:101] [PMID: 11325033]
[61]
Borchardt, R.T.; Creveling, C.R.; Ueland, P.M. Cantoni. G.L. The centrality of S-adenosylhomocysteinase in the regulation of the biological utilization of S-adenosylmethionine.Biological Methylation and Drug Design; Humana Press: USA, 1986, Vol. 12, pp. 227-238.
[62]
Keller, B.T.; Borchardt, R.T. Metabolism and mechanism of action of neplanocin A-A potent inhibitor of S-adenosylhomocysteine hy-drolase.Biological Methylation and Drug Design; Borchardt, R.T.; Creveling, C.R.; Ueland, P.M., Eds.; Humana Press: USA, 1986, Vol. 259, pp. 385-396.
[http://dx.doi.org/10.1007/978-1-4612-5012-8_32]
[63]
Jeong, L.S.; Moon, H.R.; Park, J.G.; Shin, D.H.; Choi, W.J.; Lee, K.M.; Kim, H.O.; Chun, M.W.; Kim, H.D.; Kim, J.H. Synthesis and biological evaluation of halo-neplanocin A as novel mechanism-based inhibitors of S-adenosylhomocysteine hydrolase. Nucleos. Nucleot. Nucleic Acids, 2003, 22(5-8), 589-592.
[http://dx.doi.org/10.1081/NCN-120021961] [PMID: 14565234]
[64]
Jeong, L.S.; Yoo, S.J.; Lee, K.M.; Koo, M.J.; Choi, W.J.; Kim, H.O.; Moon, H.R.; Lee, M.Y.; Park, J.G.; Lee, S.K.; Chun, M.W. Design, synthesis, and biological evaluation of fluoroneplanocin A as the novel mechanism-based inhibitor of S-adenosylhomocysteine hydrolase. J. Med. Chem., 2003, 46(2), 201-203.
[http://dx.doi.org/10.1021/jm025557z] [PMID: 12519056]
[65]
Lee, K.M.; Choi, W.J.; Lee, Y.; Lee, H.J.; Zhao, L.X.; Lee, H.W.; Park, J.G.; Kim, H.O.; Hwang, K.Y.; Heo, Y.S.; Choi, S.; Jeong, L.S. X-ray crystal structure and binding mode analysis of human S-adenosylhomocysteine hydrolase complexed with novel mechanism-based inhibitors, haloneplanocin A analogues. J. Med. Chem., 2011, 54(4), 930-938.
[http://dx.doi.org/10.1021/jm1010836] [PMID: 21226494]
[66]
Chandra, G.; Moon, Y.W.; Lee, Y.; Jang, J.Y.; Song, J.; Nayak, A.; Oh, K.; Mulamoottil, V.A.; Sahu, P.K.; Kim, G.; Chang, T.S.; Noh, M.; Lee, S.K.; Choi, S.; Jeong, L.S. Structure-activity relationships of neplanocin A analogues as S-adenosylhomocysteine hydrolase inhibitors and their antiviral and antitumor activities. J. Med. Chem., 2015, 58(12), 5108-5120.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00553] [PMID: 26010585]
[67]
Nascimento, A.S.F.; Côté, S.; Jeong, L.S.; Yu, J.; Momparler, R.L. Synergistic antineoplastic action of 5-aza-2′-deoxycytidine (decitabine) in combination with different inhibitors of enhancer of zeste homolog 2 (EZH2) on human lung carcinoma cells. J. Cancer Res. Ther., 2016, 4, 42-49.
[http://dx.doi.org/10.14312/2052-4994.2016-8]
[68]
Wu, M.; Akinleye, A.; Zhu, X. Novel agents for chronic lymphocytic leukemia. J. Hematol. Oncol., 2013, 6, 36.
[http://dx.doi.org/10.1186/1756-8722-6-36] [PMID: 23680477]
[69]
Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; Ghia, P.; Eradat, H.; Ervin, T.; Lamanna, N.; Coiffier, B.; Pettitt, A.R.; Ma, S.; Stilgenbauer, S.; Cramer, P.; Aiello, M.; Johnson, D.M.; Miller, L.L.; Li, D.; Jahn, T.M.; Dansey, R.D.; Hallek, M.; O’Brien, S.M. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med., 2014, 370(11), 997-1007.
[http://dx.doi.org/10.1056/NEJMoa1315226] [PMID: 24450857]
[71]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[72]
Ali, N.A.; Dar, B.A.; Pradhan, V.; Farooqui, M.; Farooqui, M. Chemistry and biology of indoles and indazoles: A mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[73]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[74]
Sherer, C.; Snape, T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem., 2015, 97, 552-560.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.007] [PMID: 25466446]
[75]
Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev., 2007, 27(2), 209-238.
[http://dx.doi.org/10.1002/med.20080] [PMID: 16788980]
[76]
Kumar, S.; Mehndiratta, S.; Nepali, K.; Gupta, M.K.; Koul, S.; Sharma, P.R.; Saxena, A.K.; Dhar, K.L. Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors. Org. Med. Chem. Lett., 2013, 3(1), 3.
[http://dx.doi.org/10.1186/2191-2858-3-3] [PMID: 23452433]
[77]
Huang, S.M.; Hsu, P.C.; Chen, M.Y.; Li, W.S.; More, S.V.; Lu, K.T.; Wang, Y.C. The novel indole compound SK228 induces apoptosis and FAK/Paxillin disruption in tumor cell lines and inhibits growth of tumor graft in the nude mouse. Int. J. Cancer, 2012, 131(3), 722-732.
[http://dx.doi.org/10.1002/ijc.26401] [PMID: 22015944]
[78]
Yamamoto, R.; Shimamoto, K.; Ishii, Y.; Kimura, M.; Fujii, Y.; Morita, R.; Suzuki, K.; Shibutani, M.; Mitsumori, K. Involvement of PTEN/Akt signaling and oxidative stress on indole-3-carbinol (I3C)-induced hepatocarcinogenesis in rats. Exp. Toxicol. Pathol., 2013, 65(6), 845-852.
[http://dx.doi.org/10.1016/j.etp.2012.12.003] [PMID: 23290887]
[79]
Souli, E.; Machluf, M.; Morgenstern, A.; Sabo, E.; Yannai, S. Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food Chem. Toxicol., 2008, 46(3), 863-870.
[http://dx.doi.org/10.1016/j.fct.2007.10.026] [PMID: 18063461]
[80]
Megna, B.W.; Carney, P.R.; Nukaya, M.; Geiger, P.; Kennedy, G.D. Indole-3-carbinol induces tumor cell death: Function follows form. J. Surg. Res., 2016, 204(1), 47-54.
[http://dx.doi.org/10.1016/j.jss.2016.04.021] [PMID: 27451867]
[81]
O’Donnell, E.F.; Koch, D.C.; Bisson, W.H.; Jang, H.S.; Kolluri, S.K. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis., 2014, 5e1038
[http://dx.doi.org/10.1038/cddis.2013.549] [PMID: 24481452]
[82]
Rahman, K.M.; Aranha, O.; Glazyrin, A.; Chinni, S.R.; Sarkar, F.H. Translocation of Bax to mitochondria induces apoptotic cell death in indole-3-carbinol (I3C) treated breast cancer cells. Oncogene, 2000, 19(50), 5764-5771.
[http://dx.doi.org/10.1038/sj.onc.1203959] [PMID: 11126363]
[83]
Chinni, S.R.; Li, Y.; Upadhyay, S.; Koppolu, P.K.; Sarkar, F.H. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene, 2001, 20(23), 2927-2936.
[http://dx.doi.org/10.1038/sj.onc.1204365] [PMID: 11420705]
[84]
Lee, C.M.; Lee, J.; Nam, M.J.; Park, S.H. Indole-3-carbinol induces apoptosis in human osteosarcoma MG-63 and U2OS cells. BioMed Res. Int., 2018, 20187970618
[http://dx.doi.org/10.1155/2018/7970618] [PMID: 30627573]
[85]
Greenberger, L.M.; Annable, T.; Collins, K.I.; Komm, B.S.; Lyttle, C.R.; Miller, C.P.; Satyaswaroop, P.G.; Zhang, Y.; Frost, P. A new antiestrogen, 2-(4-hydroxy-phenyl)-3-methyl-1-[4-(2-piperidin-1-yl-ethoxy)-benzyl]-1H-indol-5-ol hydrochloride (ERA-923), inhibits the growth of tamoxifen-sensitive and -resistant tumors and is devoid of uterotropic effects in mice and rats. Clin. Cancer Res., 2001, 7(10), 3166-3177.
[PMID: 11595711]
[86]
Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-Asl, N. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem., 2018, 22(23), 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[87]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Synthesis and Applications, 3rd ed; John Wiley & Sons: USA, 2003.
[http://dx.doi.org/10.1002/352760183X]
[88]
Turner, C.D.; Steven-Liang, H. Recent advances in the assembly of tri-substituted oxazoles. Curr. Org. Chem., 2011, 15(16), 2846-2870.
[http://dx.doi.org/10.2174/138527211796378442]
[89]
Kim, M.Y.; Vankayalapati, H.; Shin-Ya, K.; Wierzba, K.; Hurley, L.H. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc., 2002, 124(10), 2098-2099.
[http://dx.doi.org/10.1021/ja017308q] [PMID: 11878947]
[90]
Temime-Smaali, N.; Guittat, L.; Sidibe, A.; Shin-ya, K.; Trentesaux, C.; Riou, J.F. The G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIalpha to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells. PLoS One, 2009, 4(9)e6919
[http://dx.doi.org/10.1371/journal.pone.0006919] [PMID: 19742304]
[91]
Tauchi, T.; Shin-Ya, K.; Sashida, G.; Sumi, M.; Nakajima, A.; Shimamoto, T.; Ohyashiki, J.H.; Ohyashiki, K. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene, 2003, 22(34), 5338-5347.
[http://dx.doi.org/10.1038/sj.onc.1206833] [PMID: 12917635]
[92]
Binz, N.; Shalaby, T.; Rivera, P.; Shin-ya, K.; Grotzer, M.A. Telomerase inhibition, telomere shortening, cell growth suppression and induction of apoptosis by telomestatin in childhood neuroblastoma cells. Eur. J. Cancer, 2005, 41(18), 2873-2881.
[http://dx.doi.org/10.1016/j.ejca.2005.08.025] [PMID: 16253503]
[93]
Liu, W.; Sun, D.; Hurley, L.H. Binding of G-quadruplex-interactive agents to distinct G-quadruplexes induces different biological effects in MiaPaCa cells. Nucleosides Nucleotides Nucleic Acids, 2005, 24(10-12), 1801-1815.
[http://dx.doi.org/10.1080/15257770500267238] [PMID: 16438049]
[94]
Matsuo, Y.; Kanoh, K.; Yamori, T.; Kasai, H.; Katsuta, A.; Adachi, K.; Shin-Ya, K.; Shizuri, Y. Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J. Antibiot. (Tokyo), 2007, 60(4), 251-255.
[http://dx.doi.org/10.1038/ja.2007.30] [PMID: 17456975]
[95]
Sellers, R.P. Synthesis of macrocyclic anti-cancer agents: Sansalvamide A derivatives and Urukthapelstatin A. Master of Science in Chemistry Thesis, San Diego State University, 2012.
[96]
Islam, M.A.; Zhang, Y.; Wang, Y. Design, synthesis and anti-cancer mechanistic studies of linked azoles. MedChemComm, 2015, 6(2), 300-305.
[http://dx.doi.org/10.1039/C4MD00387J]
[97]
Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. (Tokyo), 1998, 51(3), 275-281.
[http://dx.doi.org/10.7164/antibiotics.51.275] [PMID: 9589062]
[98]
de Souza, M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem., 2005, 26(4-5), 429-449.
[http://dx.doi.org/10.1080/17415990500322792]
[99]
Perez, L.J.; Faulkner, D.J.; Bistratamides, E.J. Modified cyclic hexapeptides from the Philippines ascidian Lissoclinum bistratum. J. Nat. Prod., 2003, 66(2), 247-250.
[http://dx.doi.org/10.1021/np0204601] [PMID: 12608858]
[100]
Davidson, B.S. Ascidians: Producers of amino acid-derived metabolites. Chem. Rev., 1993, 93(5), 1771-1791.
[http://dx.doi.org/10.1021/cr00021a006]
[101]
Wipf, P. Synthetic studies of biologically active marine cyclopeptides - chemical reviews (ACS Publications). Chem. Rev., 1995, 95(6), 2115-2134.
[http://dx.doi.org/10.1021/cr00038a013]
[102]
Degnan, B.M.; Hawkins, C.J.; Lavin, M.F.; McCaffrey, E.J.; Parry, D.L.; Watters, D.J. Novel cytotoxic compounds from the ascidian Lissoclinum bistratum. J. Med. Chem., 1989, 32(6), 1354-1359.
[http://dx.doi.org/10.1021/jm00126a035] [PMID: 2724306]
[103]
Singla, P.; Luxami, V.; Paul, K. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur. J. Med. Chem., 2016, 117, 59-69.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.088] [PMID: 27089212]
[104]
Wu, L.T.; Jiang, Z.; Shen, J.J.; Yi, H.; Zhan, Y.C.; Sha, M.Q.; Wang, Z.; Xue, S.T.; Li, Z.R. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents. Eur. J. Med. Chem., 2016, 114, 328-336.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.029] [PMID: 27017265]
[105]
Van Dort, M.E.; Hong, H.; Wang, H.; Nino, C.A.; Lombardi, R.L.; Blanks, A.E.; Galbán, S.; Ross, B.D. Discovery of bifunctional on-cogenic target inhibitors against allosteric mitogenactivated protein kinase (MEK1) and phosphatidylinositol 3-kinase (PI3K). J. Med. Chem., 2016, 59(6), 2512-2522.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01655] [PMID: 26943489]
[106]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-Activity Relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[107]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[108]
Chao, Q.; Deng, L.; Shih, H.; Leoni, L.M.; Genini, D.; Carson, D.A.; Cottam, H.B. Substituted isoquinolines and quinazolines as potential antiinflammatory agents. Synthesis and biological evaluation of inhibitors of tumor necrosis factor alpha. J. Med. Chem., 1999, 42(19), 3860-3873.
[http://dx.doi.org/10.1021/jm9805900] [PMID: 10508435]
[109]
Alanazi, A.M.; Abdel-Aziz, A.A.; Al-Suwaidan, I.A.; Abdel-Hamide, S.G.; Shawer, T.Z.; El-Azab, A.S. Design, synthesis and biological evaluation of some novel substituted quinazolines as antitumor agents. Eur. J. Med. Chem., 2014, 79, 446-454.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.029] [PMID: 24763265]
[110]
Issa, S.; Prandina, A.; Bedel, N.; Rongved, P.; Yous, S.; Le Borgne, M.; Bouaziz, Z. Carbazole scaffolds in cancer therapy: A review from 2012 to 2018. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1321-1346.
[http://dx.doi.org/10.1080/14756366.2019.1640692] [PMID: 31328585]
[111]
Liu, Y.; Wu, Y.; Sun, L.; Gu, Y.; Hu, L. Synthesis and structure-activity relationship study of water-soluble carbazole sulfonamide derivatives as new anticancer agents. Eur. J. Med. Chem., 2020, 191112181
[http://dx.doi.org/10.1016/j.ejmech.2020.112181] [PMID: 32113125]
[112]
Bonito, M.C.; Cicala, C.; Marcotullio, M.C.; Maione, F.; Mascolo, N. Biological activity of bicyclic and tricyclic diterpenoids from Salvia species of immediate pharmacological and pharmaceutical interest. Nat. Prod. Commun., 2011, 6(8), 1205-1215.
[http://dx.doi.org/10.1177/1934578X1100600839] [PMID: 21922935]
[113]
Devappa, R.K.; Makkar, H.P.; Becker, K. Diterpenes: A review. J. Am. Oil Chem. Soc., 2011, 88, 301-322.
[http://dx.doi.org/10.1007/s11746-010-1720-9]
[114]
Sun, H.D.; Huang, S.X.; Han, Q.B. Diterpenoids from Isodon species and their biological activities. Nat. Prod. Rep., 2006, 23(5), 673-698.
[http://dx.doi.org/10.1039/b604174d] [PMID: 17003905]
[115]
Rao, X.; Huang, X.; He, L.; Song, J.; Song, Z.; Shang, S. Antitumor activity and structure-activity relationship of diterpenoids with a dehydroabietyl skeleton. Comb. Chem. High Throughput Screen., 2012, 15(10), 840-844.
[http://dx.doi.org/10.2174/138620712803901199] [PMID: 22946842]
[116]
Kinouchi, Y.; Ohtsu, H.; Tokuda, H.; Nishino, H.; Matsunaga, S.; Tanaka, R. Potential antitumor-promoting diterpenoids from the stem bark of Picea glehni. J. Nat. Prod., 2000, 63(6), 817-820.
[http://dx.doi.org/10.1021/np0000217] [PMID: 10869208]
[117]
Huang, S.C.; Ho, C.T.; Lin-Shiau, S.Y.; Lin, J.K. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem. Pharmacol., 2005, 69(2), 221-232.
[http://dx.doi.org/10.1016/j.bcp.2004.09.019] [PMID: 15627474]
[118]
Yodsaoue, O.; Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Fun, H.K.; Kanjana-Opas, A. Phanginin A-K, diterpenoids from the seeds of Caesalpinia sappan Linn. Phytochemistry, 2008, 69(5), 1242-1249.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.013] [PMID: 18178229]
[119]
Grace, M.H.; Jin, Y.; Wilson, G.R.; Coates, R.M. Structures, biogenetic relationships, and cytotoxicity of pimarane-derived diterpenes from Petalostigma pubescens. Phytochemistry, 2006, 67(16), 1708-1715.
[http://dx.doi.org/10.1016/j.phytochem.2005.09.026] [PMID: 16298402]
[120]
Huang, X.C.; Wang, M.; Pan, Y.M.; Yao, G.Y.; Wang, H.S.; Tian, X.Y.; Qin, J.K.; Zhang, Y. Synthesis and antitumor activities of novel thiourea α-aminophosphonates from dehydroabietic acid. Eur. J. Med. Chem., 2013, 69, 508-520.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.055] [PMID: 24095745]
[121]
Kumar, D.; Jain, S.K. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem., 2016, 23(38), 4338-4394.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[122]
Ballot, C.; Martoriati, A.; Jendoubi, M.; Buche, S.; Formstecher, P.; Mortier, L.; Kluza, J.; Marchetti, P. Another facet to the anticancer response to lamellarin D: Induction of cellular senescence through inhibition of topoisomerase I and intracellular ROS production. Mar. Drugs, 2014, 12(2), 779-798.
[http://dx.doi.org/10.3390/md12020779] [PMID: 24473175]
[123]
Jiang, J.; Hu, C. Evodiamine: A novel anti-cancer alkaloid from Evodia rutaecarpa. Molecules, 2009, 14(5), 1852-1859.
[http://dx.doi.org/10.3390/molecules14051852] [PMID: 19471205]
[124]
Lin, W.; Wang, Y.; Lin, S.; Li, C.; Zhou, C.; Wang, S.; Huang, H.; Liu, P.; Ye, G.; Shen, X. Induction of cell cycle arrest by the carbazole alkaloid Clauszoline-I from Clausena vestita D. D. Tao via inhibition of the PKCδ phosphorylation. Eur. J. Med. Chem., 2012, 47(1), 214-220.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.047] [PMID: 22093759]
[125]
Karamanou, M.; Tsoucalas, G.; Pantos, K.; Androutsos, G. Isolating Colchicine in 19th Century: An old drug revisited. Curr. Pharm. Des., 2018, 24(6), 654-658.
[http://dx.doi.org/10.2174/1381612824666180115105850] [PMID: 29336251]
[126]
Zhang, T.; Chen, W.; Jiang, X.; Liu, L.; Wei, K.; Du, H.; Wang, H.; Li, J. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines in vitro and in vivo. Biosci. Rep., 2019, 39(1)BSR20181802
[http://dx.doi.org/10.1042/BSR20181802] [PMID: 30429232]
[127]
Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry, 2000, 54(2), 115-120.
[http://dx.doi.org/10.1016/S0031-9422(00)00094-7] [PMID: 10872202]
[128]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294.
[PMID: 28884079]
[129]
Himes, R.H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther., 1991, 51(2), 257-267.
[http://dx.doi.org/10.1016/0163-7258(91)90081-V] [PMID: 1784631]
[130]
Alves, R.C.; Fernandes, R.P.; Eloy, J.O.; Salgado, H.R.N.; Chorilli, M. Characteristics, properties and analytical methods of paclitaxel: A review. Crit. Rev. Anal. Chem., 2018, 48(2), 110-118.
[http://dx.doi.org/10.1080/10408347.2017.1416283] [PMID: 29239659]
[131]
Ma, Z.L.; Yan, X.J.; Zhao, L.; Zhou, J.J.; Pang, W.; Kai, Z.P.; Wu, F.H. Combretastatin A-4 and derivatives: Potential fungicides targeting fungal tubulin. J. Agric. Food Chem., 2016, 64(4), 746-751.
[http://dx.doi.org/10.1021/acs.jafc.5b05119] [PMID: 26711170]
[132]
Hung, D.T.; Chen, J.; Schreiber, S.L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chem. Biol., 1996, 3(4), 287-293.
[http://dx.doi.org/10.1016/S1074-5521(96)90108-8] [PMID: 8807856]
[133]
Liu, J.C.; Narva, S.; Zhou, K.; Zhang, W. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1517-1530.
[http://dx.doi.org/10.2174/1389557519666190312152358 ] [PMID: 30864519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy