[2]
Zhao, Y.; Zhao, Z.; Wang, Y.; Zhou, Y.; Ma, Y.; Zuo, W. Singlecell
RNA expression profiling of ACE2, the putative receptor of
Wuhan 2019-nCov BioRxiv, 2020. (in press)
[5]
Cui, Q.; Huang, C.; Ji, X.; Zhang, W.; Zhang, F.; Wang, L. Possible
Inhibitors of ACE2, the Receptor of 2019-nCoV, 2020. (in press)
[6]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet, 2020, 395(10223), e30-e31.
[8]
Lai, M.M.C.; Holmes, K.V. Coronaviridae: the viruses and their replication. In: Fields virology; Knipe, D.M.; Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, 2001, pp. 1163-1179.
[14]
Xu, X.; Dang, Z. Promising Inhibitor for 2019-nCoV in Drug
Development 2020.
[15]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3, 2020. (in press)
[16]
Al-Gheethi, A.; Noman, E.; Al-Maqtari, Q. A.; Hezam, K.; Mohamed, R.; Talip, B.; Ismail, N. Novel coronavirus (2019-ncov)
outbreak; a systematic review for published papers. A Systematic
Review for Published Papers , 2020.
[17]
Liu, X.; Wang, X.J. Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. bioRxiv, 2020.
[18]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020. (in press).
[21]
Zhavoronkov, A.; Aladinskiy, V.; Zhebrak, A.; Zagribelnyy, B.; Terentiev, V.; Bezrukov, D.S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Orekhov, P.; Yan, Y. Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches. Insilico Medicine Hong Kong Ltd A, 2020, 307, , E1.
[27]
Gebauer, N.; Gastegger, M.; Schütt, K. Symmetry-adapted
generation of 3d point sets for the targeted discovery of molecules. Proceedings of Advances in Neural Information Processing Systems; , 2019, pp. 7566-7578.
[29]
Bjerrum, E.J.; Threlfall, R. Molecular generation with recurrent
neural networks (RNNs) arXiv preprint, 2017. (in press)
[39]
Alsenz, J. The impact of solubility and dissolution assessment on formulation strategy and implications for oral drug disposition Encyclopedia of Drug Metabolism and Interactions; , 2011, pp. 1-70.
[51]
Landrum, G. Rdkit documentation. Release, 2013, 1, 1-79.
[63]
Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and captions. Advances in neural information processing systems, 2006, 2352-2360.
[64]
Dilokthanakul, N.; Mediano, P.A.; Garnelo, M.; Lee, M.C.; Salimbeni, H.; Arulkumaran, K.; Shanahan, M. Deep unsupervised
clustering with gaussian mixture variational autoencoders. arXiv
preprint , 2016. (in press)
[65]
McQueen, J.; Meilă, M.; VanderPlas, J.; Zhang, Z. Megaman: scalable manifold learning in python. J. Mach. Learn. Res., 2016, 17(1), 5176-5180.
[66]
Frydenberg, M.; Xu, J. Easy as py: A first course in python with a taste of data analytics. Inf. Syst. Educ. J., 2019, 17(4), 4.
[70]
Pagnoni, A.; Liu, K.; Li, S. Conditional variational autoencoder for
neural machine translation. arXiv preprint, 2018. (in press)
[71]
Wang, T.; Wan, X. T-CVAE: Transformer-based conditioned variational autoencoder for story completion. IJCAI , 2019, 5233-5239.
[72]
Zhao, T.; Zhao, R.; Eskenazi, M. Learning discourse-level diversity
for neural dialog models using conditional variational autoencoders. arXiv preprint , 2017. (in press)
[75]
Hemmat, H.J.; Bondarev, E.; Dubbelman, G.; de With, P.H. Improved ICP-based pose estimation by distance-aware 3D mapping. 2014 International Conference on Computer Vision Theory and Applications, 2014, 3, pp. 360-367.
[76]
Eid, A.H.; Rashad, S.S.; Farag, A.A. A general-purpose platform for
3-D reconstruction from sequence of images. Proceedings of the
Fifth International Conference on Information Fusion. FUSION, Annapolis, MD, USA. 2002, 1, pp. 425-431.
[82]
Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and captions. Advances in neural information processing systems, 2016. (in press)
[91]
Lu, W.T.; Su, L. transferring the style of homophonic music using
recurrent neural networks and autoregressive model. ISMIR, 2018, pp. 740-746.
[116]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37(2), W623-w633.
[124]
Release, S. 2017-1: Glide XP; Schrodinger, LLC: Ney York, NY, 2017.
[186]
Chandrakar, B.; Jain, A.; Roy, S.; Gutlapalli, V.R.; Saraf, S.; Suppahia, A.; Verma, A.; Tiwari, A.; Yadav, M.; Nayarisseri, A. Molecular modeling of Acetyl-CoA carboxylase (ACC) from Jatropha curcas and virtual screening for identification of inhibitors. J. Pharm. Res., 2013, 6(9), 913-918.
[190]
Nayarisseri, A. Experimental and computational approaches to improve binding affinity in chemical biology and drug discovery. Curr. Top. Med. Chem., 20(19), 1651-1956.
[193]
Ndombera, F.T.; Maiyoh, G.K.; Tuei, V.C. Pharmacokinetic, physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. J. Pharm. Pharmacol., 2019, 7, 165-176.