Title:A Review of Drug Side Effect Identification Methods
Volume: 26
Issue: 26
Author(s): Shuai Deng, Yige Sun, Tianyi Zhao, Yang Hu and Tianyi Zang*
Affiliation:
- School of Life Science and Technology, Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001,China
Keywords:
Drug side effect, machine learning, biological experiment, text mining, drug database, experimental.
Abstract: Drug side effects have become an important indicator for evaluating the safety of drugs. There are two
main factors in the frequent occurrence of drug safety problems; on the one hand, the clinical understanding of drug
side effects is insufficient, leading to frequent adverse drug reactions, while on the other hand, due to the long-term
period and complexity of clinical trials, side effects of approved drugs on the market cannot be reported in a timely
manner. Therefore, many researchers have focused on developing methods to identify drug side effects. In this review,
we summarize the methods of identifying drug side effects and common databases in this field. We classified
methods of identifying side effects into four categories: biological experimental, machine learning, text mining and
network methods. We point out the key points of each kind of method. In addition, we also explain the advantages
and disadvantages of each method. Finally, we propose future research directions.