Review Article

用于细胞凋亡分子成像的放射性标记肽

卷 27, 期 41, 2020

页: [7064 - 7089] 页: 26

弟呕挨: 10.2174/0929867327666200612152655

价格: $65

Open Access Journals Promotions 2
摘要

凋亡是由外源性和内在性兴奋剂诱导的受调节的细胞死亡。 追踪细胞凋亡为评估心血管疾病和神经退行性疾病以及早期监测癌症治疗提供了机会。 凋亡级联反应中有一些关键介体,可以将其视为传递成像或治疗剂的特定靶标。 靶向的基于放射性同位素的成像剂能够灵敏地检测生理信号通路,这使其适合于单细胞水平的细胞凋亡成像。 放射性肽既利用核成像方式的高灵敏度又利用肽支架的有利特征。 这项研究的目的是审查以不同机制靶向细胞凋亡的那些放射性肽的特征。

关键词: 分子成像,细胞凋亡,磷脂,活化的胱天蛋白酶,单光子发射计算机断层扫描(SPECT),正电子发射断层扫描(PET)。

[1]
Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[2]
Kerr, J.F. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J. Pathol. Bacteriol., 1965, 90(2), 419-435.
[http://dx.doi.org/10.1002/path.1700900210] [PMID: 5849603]
[3]
Vanden Berghe, T.; Grootjans, S.; Goossens, V.; Dondelinger, Y.; Krysko, D.V.; Takahashi, N.; Vandenabeele, P. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61(2), 117-129.
[http://dx.doi.org/10.1016/j.ymeth.2013.02.011] [PMID: 23473780]
[4]
Fiers, W.; Beyaert, R.; Declercq, W.; Vandenabeele, P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999, 18(54), 7719-7730.
[http://dx.doi.org/10.1038/sj.onc.1203249] [PMID: 10618712]
[5]
Zeiss, C.J. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet. Pathol., 2003, 40(5), 481-495.
[http://dx.doi.org/10.1354/vp.40-5-481] [PMID: 12949404]
[6]
Nicotera, P.; Leist, M.; Ferrando-May, E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol. Lett., 1998, 102-103(8), 139-142.
[http://dx.doi.org/10.1016/S0378-4274(98)00298-7] [PMID: 10022245]
[7]
Denecker, G.; Vercammen, D.; Declercq, W.; Vandenabeele, P. Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci., 2001, 58(3), 356-370.
[http://dx.doi.org/10.1007/pl00000863] [PMID: 11315185]
[8]
Susan, E. Apoptosis: a reveiw of programmed cell death. Toxicol. Pathol., 2007, 35(4), 496-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483 ]
[9]
Emoto, K.; Toyama-Sorimachi, N.; Karasuyama, H.; Inoue, K.; Umeda, M. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res., 1997, 232(2), 430-434.
[http://dx.doi.org/10.1006/excr.1997.3521] [PMID: 9168822]
[10]
Kagan, V.E.; Borisenko, G.G.; Serinkan, B.F.; Tyurina, Y.Y.; Tyurin, V.A.; Jiang, J.; Liu, S.X.; Shvedova, A.A.; Fabisiak, J.P.; Uthaisang, W.; Fadeel, B. Appetizing rancidity of apoptotic cells for macrophages: oxidation, externalization, and recognition of phosphatidylserine. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(1), L1-L17.
[http://dx.doi.org/10.1152/ajplung.00365.2002] [PMID: 12788785]
[11]
Lemasters, J.J.; Nieminen, A.L.; Qian, T.; Trost, L.C.; Elmore, S.P.; Nishimura, Y.; Crowe, R.A.; Cascio, W.E.; Bradham, C.A.; Brenner, D.A.; Herman, B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1998, 1366(1-2), 177-196.
[http://dx.doi.org/10.1016/S0005-2728(98)00112-1] [PMID: 9714796]
[12]
Tedeschi, H. The mitochondrial membrane potential. Biol. Rev. Camb. Philos. Soc., 1980, 55(2), 171-206.
[http://dx.doi.org/10.1111/j.1469-185X.1980.tb00692.x] [PMID: 6250649]
[13]
Sadowski-Debbing, K.; Coy, J.F.; Mier, W.; Hug, H.; Los, M. Caspases--their role in apoptosis and other physiological processes as revealed by knock-out studies. Arch. Immunol. Ther. Exp. (Warsz.), 2002, 50(1), 19-34.
[PMID: 11916306]
[14]
Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene, 2008, 27(48), 6194-6206.
[http://dx.doi.org/10.1038/onc.2008.297] [PMID: 18931687]
[15]
Mcilwain, D.R.; Berger, T.; Mak, T.W.; Baehrecke, E.H.; Green, D.R.; Kornbluth, S.; Salvesen, G.S. Additional perspectives on cell survival and cell death. Cold Spring Harb. Perspect. Biol., 2013, 5(4), 8656-8657.
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[16]
Elvas, F.; Vanden Berghe, T.; Adriaenssens, Y.; Vandenabeele, P.; Augustyns, K.; Staelens, S.; Stroobants, S.; Van der Veken, P.; Wyffels, L. Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Org. Biomol. Chem., 2019, 17(19), 4801-4824.
[http://dx.doi.org/10.1039/C9OB00657E] [PMID: 31033991]
[17]
Lee, S.; Xie, J.; Chen, X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev., 2010, 110(5), 3087-3111.
[http://dx.doi.org/10.1021/cr900361p] [PMID: 20225899]
[18]
Lee, S.; Xie, J.; Chen, X. Peptide-based probes for targeted molecular imaging. Biochemistry, 2010, 49(7), 1364-1376.
[http://dx.doi.org/10.1021/bi901135x] [PMID: 20102226]
[19]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[20]
Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev., 2003, 24(4), 389-427.
[http://dx.doi.org/10.1210/er.2002-0007] [PMID: 12920149]
[21]
Perreault, A.; Richter, S.; Bergman, C.; Wuest, M.; Wuest, F. Targeting phosphatidylserine with a 64Cu-Labeled peptide for molecular imaging of apoptosis. Mol. Pharm., 2016, 13(10), 3564-3577.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00666] [PMID: 27608290]
[22]
Ostapchenko, V.G.; Snir, J.; Suchy, M.; Fan, J.; Cobb, M.R.; Chronik, B.A.; Kovacs, M.; Prado, V.F.; Hudson, R.H.E.; Pasternak, S.H.; Prado, M.A.M.; Bartha, R. Detection of active caspase-3 in mouse models of stroke and alzheimer’s disease with a novel dual positron emission tomography/fluorescent tracer [68Ga]Ga-TC3-OGDOTA. Contrast Media Mol. Imaging, 2019, 20196403274
[http://dx.doi.org/10.1155/2019/6403274] [PMID: 30755766]
[23]
Ben Azzouna, R.; Guez, A.; Benali, K.; Al-Shoukr, F.; Gonzalez, W.; Karoyan, P.; Rouzet, F.; Le Guludec, D. Synthesis, gallium labelling and characterization of P04087, a functionalized phosphatidylserine-binding peptide. EJNMMI Radiopharm Chem., 2017, 2(1), 3.
[http://dx.doi.org/10.1186/s41181-016-0021-5] [PMID: 29527564]
[24]
Lawrence, C.P.; Chow, S.C. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties. Toxicol. Appl. Pharmacol., 2012, 265(1), 103-112.
[http://dx.doi.org/10.1016/j.taap.2012.09.002] [PMID: 22982538]
[25]
Haberkorn, U.; Kinscherf, R.; Krammer, P.H.; Mier, W.; Eisenhut, M. Investigation of a potential scintigraphic marker of apoptosis: radioiodinated Z-Val-Ala-DL-Asp(O-methyl)-fluoromethyl ketone. Nucl. Med. Biol., 2001, 28(7), 793-798.
[http://dx.doi.org/10.1016/S0969-8051(01)00247-5] [PMID: 11578900]
[26]
Hong, H-Y.Y.; Choi, J.S.; Kim, Y.J.; Lee, H.Y.; Kwak, W.; Yoo, J.; Lee, J-T.T.; Kwon, T-H.H.; Kim, I-S.S.; Han, H-S.S.; Lee, B.H. Detection of apoptosis in a rat model of focal cerebral ischemia using a homing peptide selected from in vivo phage display. J. Control. Release, 2008, 131(3), 167-172.
[http://dx.doi.org/10.1016/j.jconrel.2008.07.020] [PMID: 18692101]
[27]
Zhang, L.; Ren, X.; Alt, E.; Bai, X.; Huang, S.; Xu, Z.; Lynch, P.M.; Moyer, M.P.; Wen, X-F.; Wu, X. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature, 2010, 464(7291), 1058-1061.
[http://dx.doi.org/10.1038/nature08871] [PMID: 20348907]
[28]
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[29]
Fukami, T.; Nakasu, S.; Baba, K.; Nakajima, M.; Matsuda, M. Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines. J. Neurooncol., 2004, 70(3), 319-331.
[http://dx.doi.org/10.1007/s11060-004-9168-0] [PMID: 15662973]
[30]
Starkey, J.R.; Rebane, A.K.; Drobizhev, M.A.; Meng, F.; Gong, A.; Elliott, A.; McInnerney, K.; Spangler, C.W. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin. Cancer Res., 2008, 14(20), 6564-6573.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4162] [PMID: 18927297]
[31]
Vangestel, C.; Peeters, M.; Mees, G.; Oltenfreiter, R.; Boersma, H.H.; Elsinga, P.H.; Reutelingsperger, C.; Van Damme, N.; De Spie-geleer, B.; Van de Wiele, C. In vivo imaging of apoptosis in oncology: an update. Mol. Imaging, 2011, 10(5), 340-358.
[http://dx.doi.org/10.2310/7290.2010.00058] [PMID: 21521554]
[32]
Forner, A.; Ayuso, C.; Varela, M.; Rimola, J.; Hessheimer, A.J.; de Lope, C.R.; Reig, M.; Bianchi, L.; Llovet, J.M.; Bruix, J. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer, 2009, 115(3), 616-623.
[http://dx.doi.org/10.1002/cncr.24050] [PMID: 19117042]
[33]
Palner, M.; Shen, B.; Jeon, J.; Lin, J.; Chin, F.T.; Rao, J. Preclinical kinetic analysis of the caspase-3/7 PET Tracer 18F-C-SNAT: quantifying the changes in blood flow and tumor retention after chemotherapy. J. Nucl. Med., 2015, 56(9), 1415-1421.
[http://dx.doi.org/10.2967/jnumed.115.155259] [PMID: 26045308]
[34]
Wang, X.; Feng, H.; Zhao, S.; Xu, J.; Wu, X.; Cui, J.; Zhang, Y.; Qin, Y.; Liu, Z.; Gao, T.; Gao, Y.; Zeng, W. SPECT and PET radio-pharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget, 2017, 8(12), 20476-20495.
[http://dx.doi.org/10.18632/oncotarget.14730] [PMID: 28108738]
[35]
Bauer, C.; Bauder-Wuest, U.; Mier, W.; Haberkorn, U.; Eisenhut, M. 131I-labeled peptides as caspase substrates for apoptosis imaging. J. Nucl. Med., 2005, 46(6), 1066-1074.
[PMID: 15937321]
[36]
Oborski, M.J.; Laymon, C.M.; Qian, Y.; Lieberman, F.S.; Nelson, A.D.; Mountz, J.M. challenges and approaches to quantitative therapy response assessment in glioblastoma multiforme using the novel apoptosis positron emission tomography Tracer F-18 ML-10. Transl. Oncol., 2014, 7(1), 111-119.
[http://dx.doi.org/10.1593/tlo.13868] [PMID: 24772214]
[37]
Su, H.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Liang, Q.; Mu, F.; Mocharla, V.P.; Szardenings, A.K.; Walsh, J.C.; Xia, C-F.; Yu, C.; Kolb, H.C. Evaluation of [(18)F]-CP18 as a PET imaging tracer for apoptosis. Mol. Imaging Biol., 2013, 15(6), 739-747.
[http://dx.doi.org/10.1007/s11307-013-0644-9] [PMID: 23681757]
[38]
Damianovich, M.; Ziv, I.; Heyman, S.N.; Rosen, S.; Shina, A.; Kidron, D.; Aloya, T.; Grimberg, H.; Levin, G.; Reshef, A.; Bentolila, A.; Cohen, A.; Shirvan, A. ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur. J. Nucl. Med. Mol. Imaging, 2006, 33(3), 281-291.
[http://dx.doi.org/10.1007/s00259-005-1905-x] [PMID: 16317537]
[39]
Allen, A.M.; Ben-Ami, M.; Reshef, A.; Steinmetz, A.; Kundel, Y.; Inbar, E.; Djaldetti, R.; Davidson, T.; Fenig, E.; Ziv, I. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(9), 1400-1408.
[http://dx.doi.org/10.1007/s00259-012-2150-8] [PMID: 22699524]
[40]
Aloya, R.; Shirvan, A.; Grimberg, H.; Reshef, A.; Levin, G.; Kidron, D.; Cohen, A.; Ziv, I. Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis, 2006, 11(12), 2089-2101.
[http://dx.doi.org/10.1007/s10495-006-0282-7] [PMID: 17051335]
[41]
Shirvan, A.; Reshef, A.; Yogev-Falach, M.; Ziv, I. Molecular imaging of neurodegeneration by a novel cross-disease biomarker. Exp. Neurol., 2009, 219(1), 274-283.
[http://dx.doi.org/10.1016/j.expneurol.2009.05.032] [PMID: 19500576]
[42]
Martí-Bonmatí, L.; Sopena, R.; Bartumeus, P.; Sopena, P. Multimodality imaging techniques. Contrast Media Mol. Imaging, 2010, 5(4), 180-189.
[http://dx.doi.org/10.1002/cmmi.393] [PMID: 20812286]
[43]
Lee, S.Y.; Jeon, S.I.; Jung, S.; Chung, I.J.; Ahn, C.H. Targeted multimodal imaging modalities. Adv. Drug Deliv. Rev., 2014, 76(1), 60-78.
[http://dx.doi.org/10.1016/j.addr.2014.07.009] [PMID: 25064554]
[44]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[45]
Bretscher, M.S. Asymmetrical lipid bilayer structure for biological membranes. Nat. New Biol., 1972, 236(61), 11-12.
[http://dx.doi.org/10.1038/newbio236011a0] [PMID: 4502419]
[46]
Vance, J.E.; Steenbergen, R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res., 2005, 44(4), 207-234.
[http://dx.doi.org/10.1016/j.plipres.2005.05.001] [PMID: 15979148]
[47]
Coupland, L.; Gardiner, E.E.; Enders, A.; Br, S. Calpain cleaves phospholipid Fl ippase ATP8A1 during apoptosis in platelets. Blood Adv., 2019, 3(3), 219-229.
[http://dx.doi.org/10.1182/bloodadvances.2018023473] [PMID: 30674456]
[48]
Fischer, K.; Voelkl, S.; Berger, J.; Andreesen, R.; Pomorski, T.; Mackensen, A. Antigen recognition induces phosphatidylserine expo-sure on the cell surface of human CD8+ T cells. Blood, 2006, 108(13), 4094-4101.
[http://dx.doi.org/10.1182/blood-2006-03-011742] [PMID: 16912227]
[49]
Ehlen, H.W.A.; Chinenkova, M.; Moser, M.; Munter, H.M.; Krause, Y.; Gross, S.; Brachvogel, B.; Wuelling, M.; Kornak, U.; Vort-kamp, A. Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res., 2013, 28(2), 246-259.
[http://dx.doi.org/10.1002/jbmr.1751] [PMID: 22936354]
[50]
Ravichandran, K.S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med., 2010, 207(9), 1807-1817.
[http://dx.doi.org/10.1084/jem.20101157] [PMID: 20805564]
[51]
Segawa, K.; Nagata, S.; Nagata, S.; If, T.D. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol., 2015, 25(11), 639-650.
[http://dx.doi.org/10.1016/j.tcb.2015.08.003] [PMID: 26437594]
[52]
Wuest, M.; Perreault, A.; Kapty, J.; Richter, S.; Foerster, C.; Bergman, C.; Way, J.; Mercer, J.; Wuest, F. Radiopharmacological eval-uation of (18)F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis. Nucl. Med. Biol., 2015, 42(11), 864-874.
[http://dx.doi.org/10.1016/j.nucmedbio.2015.06.011] [PMID: 26205076]
[53]
Hu, S.; Kiesewetter, D.O.; Zhu, L.; Guo, N.; Gao, H.; Liu, G.; Hida, N.; Lang, L.; Niu, G.; Chen, X. Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol. Imaging Biol., 2012, 14(6), 762-770.
[http://dx.doi.org/10.1007/s11307-012-0551-5] [PMID: 22392643]
[54]
Kartachova, M.S.; Verheij, M.; van Eck, B.L.; Hoefnagel, C.A.; Olmos, R.A.V. Radionuclide imaging of apoptosis in malignancies: promise and pitfalls of Tc-Hynic-rh-annexin v imaging. Clin. Med. Oncol., 2008, 2, 319-325.
[http://dx.doi.org/10.4137/CMO.S349] [PMID: 21892293]
[55]
Cheng, Q.; Lu, L.; Grafström, J.; Hägg, M.; Thorell, J.; Samén, E.; Johansson, K.; Ahlzén, H.; Linder, S.; Arnér, E.S.J. Biochimica et Biophysica acta site-specifically 11 C-labeled sel-tagged annexin A5 and a size-matched control for dynamic in vivo PET imaging of protein distribution in tissues prior to and after induced cell death. Biochim. Biophys. Acta, 2013, 1830, 2562-2573.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.007] [PMID: 23262140]
[56]
Wang, F.; Fang, W.; Zhao, M.; Wang, Z.; Ji, S.; Li, Y.; Zheng, Y. Imaging paclitaxel (chemotherapy)-induced tumor apoptosis with 99mTc C2A, a domain of synaptotagmin I: a preliminary study. Nucl. Med. Biol., 2008, 35(3), 359-364.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.12.007] [PMID: 18355692]
[57]
Poulsen, R.H.; Rasmussen, J.T.; Erik, H.; Waehrens, L.S.; Falborg, L.; Heegaard, C.W.; Rehling, M. Imaging the myocardium at risk with reperfusion in a porcine model ☆ Tc-lactadherin administered after. Nucl. Med. Biol., 2014, 41(1), 114-119.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.09.004] [PMID: 24267057]
[58]
Poulsen, R.H.; Rasmussen, J.T.; Ejlersen, J.A.; Flø, C.; Falborg, L.; Heegaard, C.W.; Rehling, M. Pharmacokinetics of the Phosphati-dylserine Tracers 99m Tc-Lactadherin and 99mTc-Annexin V in Pigs. EJNMMI Res., 2013, 3(1), 1.
[http://dx.doi.org/10.1186/2191-219X-3-15] [PMID: 23281702]
[59]
Laforest, R.; Dehdashti, F.; Liu, Y.; Frye, J.; Frye, S.; Luehmann, H.; Sultan, D.; Shan, J.S.; Freimark, B.D.; Siegel, B.A. First-in-Man Evaluation of 124I-PGN650: A PET tracer for detecting phosphatidylserine as a biomarker of the solid tumor microenvironment. Mol. Imaging, 2017.161536012117733349
[http://dx.doi.org/10.1177/1536012117733349] [PMID: 29037107]
[60]
Ogasawara, A.; Tinianow, J.N.; Vanderbilt, A.N.; Gill, H.S.; Yee, S.; Flores, J.E.; Williams, S.P.; Ashkenazi, A.; Marik, J. ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models. Nucl. Med. Biol., 2013, 40(1), 15-22.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.09.001] [PMID: 23062948]
[61]
Gerber, D.E.; Hao, G.; Watkins, L.; Stafford, J.H.; Anderson, J.; Holbein, B.; Öz, O.K.; Mathews, D.; Thorpe, P.E.; Hassan, G.; Kumar, A.; Brekken, R.A.; Sun, X. Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts. Am. J. Nucl. Med. Mol. Imaging, 2015, 5(5), 493-503.
[PMID: 26550540]
[62]
Song, S.; Xiong, C.; Lu, W.; Ku, G.; Huang, G.; Li, C. Apoptosis imaging probe predicts early chemotherapy response in preclinical models: A comparative study with 18F-FDG PET. J. Nucl. Med., 2013, 54(1), 104-110.
[http://dx.doi.org/10.2967/jnumed.112.109397] [PMID: 23283564]
[63]
Igarashi, K.; Kaneda, M.; Yamaji, A.; Saido, T.C.; Kikkawa, U.; Inoue, K.; Umeda, M. A Novel phosphatidylserine- binding peptide motif defined by an anti-idiotypic monoclonal specific binding sites on protein kinase C. J. Biol. Chem., 1995, 270(49), 29075-29079.
[http://dx.doi.org/10.1074/jbc.270.49.29075] [PMID: 7493929]
[64]
Orr, J.W.; Newton, A.C. Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry, 1992, 31(19), 4667-4673.
[http://dx.doi.org/10.1021/bi00134a019] [PMID: 1581317]
[65]
Xiong, C.; Brewer, K.; Song, S.; Zhang, R.; Lu, W.; Wen, X.; Li, C. Peptide-based imaging agents targeting phosphatidylserine for the detection of apoptosis. J. Med. Chem., 2011, 54(6), 1825-1835.
[http://dx.doi.org/10.1021/jm101477d] [PMID: 21348464]
[66]
Burtea, C.; Laurent, S.; Lancelot, E.; Ballet, S.; Murariu, O.; Rousseaux, O.; Port, M.; Vander Elst, L.; Corot, C.; Muller, R.N. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol. Pharm., 2009, 6(6), 1903-1919.
[http://dx.doi.org/10.1021/mp900106m] [PMID: 19743879]
[67]
Kapty, J.; Kniess, T.; Wuest, F.; Mercer, J.R. Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl] maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]flu-orobenzoate ([18F]SFB). Appl. Radiat. Isot., 2011, 69(9), 1218-1225.
[http://dx.doi.org/10.1016/j.apradiso.2011.05.012] [PMID: 21571539]
[68]
Khoshbakht, S.; Beiki, D.; Geramifar, P.; Kobarfard, F.; Sabzevari, O.; Amini, M.; Mehrnejad, F.; Shahhosseini, S. Synthesis, radio-labeling, and biological evaluation of peptide LIKKPF functionalized with HYNIC as apoptosis imaging agent. Iran. J. Pharm. Res., 2016, 15(2), 415-424.
[PMID: 27642312]
[69]
Khoshbakht, S.; Kobarfard, F.; Beiki, D.; Sabzevari, O.; Amini, M.; Mehrnejad, F.; Tabib, K.; Shahhosseini, S. HYNIC a bifunctional prosthetic group for the labelling of peptides with 99mTc And 18FDG. J. Radioanal. Nucl. Chem., 2016, 307(2), 1125-1134.
[http://dx.doi.org/10.1007/s10967-015-4259-2]
[70]
Khoshbakht, S.; Beiki, D.; Geramifar, P.; Kobarfard, F.; Sabzevari, O.; Amini, M.; Shahhosseini, S. 18FDG-labeled LIKKPF: a PET tracer for apoptosis imaging. J. Radioanal. Nucl. Chem., 2016, 310(1), 413-421.
[http://dx.doi.org/10.1007/s10967-016-4793-6]
[71]
Witney, T.H.; Hoehne, A.; Reeves, R.E.; Ilovich, O.; Namavari, M.; Shen, B.; Chin, F.T.; Rao, J.; Gambhir, S.S. A systematic com-parison of 18F-C-SNAT to established radiotracer imaging agents for the detection of tumor response to treatment. Clin. Cancer Res., 2015, 21(17), 3896-3905.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3176] [PMID: 25972517]
[72]
Birner, R.; Bürgermeister, M.; Schneiter, R.; Daum, G. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol. Biol. Cell, 2001, 12(4), 997-1007.
[http://dx.doi.org/10.1091/mbc.12.4.997] [PMID: 11294902]
[73]
Calzada, E.; Onguka, O.; Claypool, S.M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol., 2016, 321, 29-88.
[http://dx.doi.org/10.1016/bs.ircmb.2015.10.001] [PMID: 26811286]
[74]
Kawai, H.; Chaudhry, F.; Shekhar, A.; Petrov, A.; Nakahara, T.; Tanimoto, T.; Kim, D.; Chen, J.; Lebeche, D.; Blankenberg, F.G.; Pak, K.Y.; Kolodgie, F.D.; Virmani, R.; Sengupta, P.; Narula, N.; Hajjar, R.J.; Strauss, H.W.; Narula, J. Molecular imaging of apoptosis in ischemia reperfusion injury with radiolabeled duramycin targeting phosphatidylethanolamine: effective target uptake and reduced nontarget organ radiation burden. JACC Cardiovasc. Imaging, 2018, 11(12), 1823-1833.
[http://dx.doi.org/10.1016/j.jcmg.2017.11.037] [PMID: 29454770]
[75]
Irie, A.; Yamamoto, K.; Miki, Y.; Murakami, M. Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci. Rep., 2017, 7, 46715.
[http://dx.doi.org/10.1038/srep46715] [PMID: 28436434]
[76]
Rockenfeller, P.; Koska, M.; Pietrocola, F.; Minois, N.; Knittelfelder, O.; Sica, V.; Franz, J.; Carmona-Gutierrez, D.; Kroemer, G.; Madeo, F. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ., 2015, 22(3), 499-508.
[http://dx.doi.org/10.1038/cdd.2014.219] [PMID: 25571976]
[77]
Shotwell, odette L.; Stodola, F. H.; Michael, W. R.; Lindenfelser, L. A.; Dworschack, R. G.; Pridham, T. G. Antibiotics Against Plant Disease. 111. Duramycin, a new antibiotic from Azacoluta. J. Am. Chem. Soc., 1958, 80, 3912-3915.
[http://dx.doi.org/10.1021/ja01548a029]
[78]
Huo, L.; Ökesli, A.; Zhao, M.; van der Donk, W.A. Insights into the biosynthesis of duramycin. Appl. Environ. Microbiol., 2017, 83(3), 1-12.
[http://dx.doi.org/10.1128/AEM.02698-16] [PMID: 27864176]
[79]
Iwamoto, K.; Hayakawa, T.; Murate, M.; Makino, A.; Ito, K.; Fujisawa, T.; Kobayashi, T. Curvature-dependent recognition of ethano-lamine phospholipids by duramycin and cinnamycin. Biophys. J., 2007, 93(5), 1608-1619.
[http://dx.doi.org/10.1529/biophysj.106.101584] [PMID: 17483159]
[80]
Rafeeq, M.M.; Murad, H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J. Transl. Med., 2017, 15(1), 84.
[http://dx.doi.org/10.1186/s12967-017-1193-9] [PMID: 28449677]
[81]
Dischinger, J.; Basi Chipalu, S.; Bierbaum, G. Lantibiotics: promising candidates for future applications in health care. Int. J. Med. Microbiol., 2014, 304(1), 51-62.
[http://dx.doi.org/10.1016/j.ijmm.2013.09.003] [PMID: 24210177]
[82]
Richard, A.S.; Zhang, A.; Park, S.J.; Farzan, M.; Zong, M.; Choe, H. Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14682-14687.
[http://dx.doi.org/10.1073/pnas.1508095112] [PMID: 26575624]
[83]
Zhao, M. Lantibiotics as probes for phosphatidylethanolamine. Amino Acids, 2011, 41(5), 1071-1079.
[http://dx.doi.org/10.1007/s00726-009-0386-9] [PMID: 21573677]
[84]
Zhao, M.; Li, Z.; Bugenhagen, S. 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J. Nucl. Med., 2008, 49(8), 1345-1352.
[http://dx.doi.org/10.2967/jnumed.107.048603] [PMID: 18632826]
[85]
Yao, S.; Hu, K.; Tang, G.; Liang, X.; Du, K.; Nie, D.; Jiang, S.; Zang, L. Positron emission tomography imaging of cell death with [(18)F]FPDuramycin. Apoptosis, 2014, 19(5), 841-850.
[http://dx.doi.org/10.1007/s10495-013-0964-x] [PMID: 24464510]
[86]
Machaidze, G.; Ziegler, A.; Seelig, J. Specific binding of Ro 09-0198 (cinnamycin) to phosphatidylethanolamine: a thermodynamic analysis. Biochemistry, 2002, 41(6), 1965-1971.
[http://dx.doi.org/10.1021/bi015841c] [PMID: 11827543]
[87]
Hu, Y.; Liu, G.; Zhang, H.; Li, Y.; Gray, B.D.; Pak, K.Y.; Choi, H.S.; Cheng, D.; Shi, H. A comparison of [99mTc]Duramycin and [99mTc]Annexin V in SPECT/CT imaging atherosclerotic plaques. Mol. Imaging Biol., 2018, 20(2), 249-259.
[http://dx.doi.org/10.1007/s11307-017-1111-9] [PMID: 28785938]
[88]
Rix, A.; Drude, N.I.; Mrugalla, A.; Baskaya, F.; Pak, K.Y.; Gray, B.; Kaiser, H.J.; Tolba, R.H.; Fiegle, E.; Lederle, W.; Mottaghy, F.M.; Kiessling, F. Assessment of chemotherapy-induced organ damage with Ga-68 labeled duramycin. Mol. Imaging Biol., 2019, 3, 623-633.
[http://dx.doi.org/10.1007/s11307-019-01417-3] [PMID: 31396770]
[89]
Elvas, F.; Vangestel, C.; Rapic, S.; Verhaeghe, J.; Gray, B.; Pak, K.; Stroobants, S.; Staelens, S.; Wyffels, L. Characterization of [(99m)Tc]duramycin as a SPECT imaging agent for early assessment of tumor apoptosis. Mol. Imaging Biol., 2015, 17(6), 838-847.
[http://dx.doi.org/10.1007/s11307-015-0852-6] [PMID: 25896815]
[90]
Audi, S.; Li, Z.; Capacete, J.; Liu, Y.; Fang, W.; Shu, L.G.; Zhao, M. Understanding the in vivo uptake kinetics of a phosphatidyleth-anolamine-binding agent (99m)Tc-Duramycin. Nucl. Med. Biol., 2012, 39(6), 821-825.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.02.004] [PMID: 22534031]
[91]
Zhang, Y.; Stevenson, G.D.; Barber, C.; Furenlid, L.R.; Barrett, H.H.; Woolfenden, J.M.; Zhao, M.; Liu, Z. Imaging of rat cerebral ischemia-reperfusion injury using(99m)Tc-labeled duramycin. Nucl. Med. Biol., 2013, 40(1), 80-88.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.09.004] [PMID: 23123139]
[92]
Johnson, S.E.; Li, Z.; Liu, Y.; Moulder, J.E.; Zhao, M. Whole-body imaging of high-dose ionizing irradiation-induced tissue injuries using 99mTc-duramycin. J. Nucl. Med., 2013, 54(8), 1397-1403.
[http://dx.doi.org/10.2967/jnumed.112.112490] [PMID: 23804327]
[93]
Nakahara, T.; Petrov, A.; Tanimoto, T.; Chaudhry, F.; Narula, N.; Seshan, S.V.; Mattis, J.A.; Pak, K.Y.; Sahni, G.; Bhardwaj, A.; Sengupta, P.P.; Tiersten, A.; Strauss, H.W.; Narula, J. Molecular imaging of apoptosis in cancer therapy-related cardiac dysfunction before LVEF reduction. JACC Cardiovasc. Imaging, 2018, 11(8), 1203-1205.
[http://dx.doi.org/10.1016/j.jcmg.2017.12.012] [PMID: 29454766]
[94]
Elvas, F.; Boddaert, J.; Vangestel, C.; Pak, K.; Gray, B.; Kumar-Singh, S.; Staelens, S.; Stroobants, S.; Wyffels, L. 99mTc-Duramycin SPECT imaging of early tumor response to targeted therapy: a comparison with 18F-FDG PET. J. Nucl. Med., 2017, 58(4), 665-670.
[http://dx.doi.org/10.2967/jnumed.116.182014] [PMID: 27879368]
[95]
Palmieri, L.; Elvas, F.; Vangestel, C.; Pak, K.; Gray, B.; Stroobants, S.; Staelens, S.; Wyffels, L. [99mTc]duramycin for cell death im-aging: impact of kit formulation, purification and species difference. Nucl. Med. Biol., 2018, 56, 1-9.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.08.005] [PMID: 29031229]
[96]
Xing, Y.; Zhu, J.; Zhao, L.; Xiong, Z.; Li, Y.; Wu, S.; Shi, X.; Zhao, J. SPECT/CT Imaging of chemotherapy-induced tumor apoptosis using entrapped gold nanoparticles. Drug Deliv., 2018, 25(1), 1384-1393.
[http://dx.doi.org/10.1080/10717544.2018.1474968] [PMID: 29869521]
[97]
Audi, S.H.; Jacobs, E.R.; Zhao, M.; Roerig, D.L.; Haworth, S.T.; Clough, A.V. In vivo detection of hyperoxia-induced pulmonary endothelial cell death using (99m)Tc-duramycin. Nucl. Med. Biol., 2015, 42(1), 46-52.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.08.010] [PMID: 25218023]
[98]
Meetha, M.; Haworth, S.T.; Liu, Y.; Narayanan, J.; Gao, F.; Zhao, M.; Audi, S.; Jacobs, E.R.; Fish, B.L.; Clough, A.V. Biomarkers for radiation pneumonitis using non-invasive molecular imaging. J. Nucl. Med., 2016, 57(8), 1296-1301.
[http://dx.doi.org/10.2967/jnumed.115.160291] [PMID: 27033892]
[99]
Liu, Z.; Larsen, B.T.; Lerman, L.O.; Gray, B.D.; Barber, C.; Hedayat, A.F.; Zhao, M.; Furenlid, L.R.; Pak, K.Y.; Woolfenden, J.M. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin. Nucl. Med. Biol., 2016, 43(8), 496-505.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.05.007] [PMID: 27236285]
[100]
Elvas, F.; Vangestel, C.; Pak, K.; Vermeulen, P.; Gray, B.; Stroobants, S.; Staelens, S.; Wyffels, L. Early prediction of tumor response to treatment: preclinical validation of 99mTc-duramycin. J. Nucl. Med., 2016, 57(5), 805-811.
[http://dx.doi.org/10.2967/jnumed.115.168344] [PMID: 26837335]
[101]
Li, Y.; Liu, C.; Xu, X.; Lu, X.; Luo, J.; Gray, B.; Pak, K.Y.; Cheng, J.; Zhang, Y. [99mTc]Tc-duramycin, a potential molecular probe for early prediction of tumor response after chemotherapy. Nucl. Med. Biol., 2018, 66, 18-25.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.07.003] [PMID: 30170197]
[102]
Delvaeye, T.; Wyffels, L.; Deleye, S.; Lemeire, K.; Gonçalves, A.; Decrock, E.; Staelens, S.; Leybaert, L.; Vandenabeele, P.; Krysko, D.V. Noninvasive whole-body imaging of phosphatidylethanolamine as a cell death marker using 99mTc-duramycin during TNF-induced SIRS. J. Nucl. Med., 2018, 59(7), 1140-1145.
[http://dx.doi.org/10.2967/jnumed.117.205815] [PMID: 29419481]
[103]
Hu, C.; Tan, H.; Lin, Q.; Abudupataer, M.; Zhao, Y.; Li, J.; Gu, J.; Cheng, D.; Wang, C.; Zhu, K.; Lai, H. SPECT/CT imaging of apoptosis in aortic aneurysm with radiolabeled duramycin. Apoptosis, 2019, 24(9-10), 745-755.
[http://dx.doi.org/10.1007/s10495-019-01554-8] [PMID: 31227933]
[104]
Thornberry, N.A.; Bull, H.G.; Calaycay, J.R.; Chapman, K.T.; Howard, A.D.; Kostura, M.J.; Miller, D.K.; Molineaux, S.M.; Weidner, J.R.; Aunins, J. A novel heterodimeric cysteine protease is required for interleukin-1 β processing in monocytes. Nature, 1992, 356(6372), 768-774.
[http://dx.doi.org/10.1038/356768a0] [PMID: 1574116]
[105]
Alnemri, E.S.; Livingston, D.J.; Nicholson, D.W.; Salvesen, G.; Thornberry, N.A.; Wong, W.W.; Yuan, J. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2), 171.
[http://dx.doi.org/10.1016/S0092-8674(00)81334-3] [PMID: 8861900]
[106]
Rozman-Pungerčar, J.; Kopitar-Jerala, N.; Bogyo, M.; Turk, D.; Vasiljeva, O.; Stefe, I.; Vandenabeele, P.; Brömme, D.; Puizdar, V.; Fonović, M.; Trstenjak-Prebanda, M.; Dolenc, I.; Turk, V.; Turk, B. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ., 2003, 10(8), 881-888.
[http://dx.doi.org/10.1038/sj.cdd.4401247] [PMID: 12867995]
[107]
Portela, M.; Richardson, H.E. Death takes a holiday--non-apoptotic role for caspases in cell migration and invasion. EMBO Rep., 2013, 14(2), 107-108.
[http://dx.doi.org/10.1038/embor.2012.224] [PMID: 23318627]
[108]
Lamkanfi, M.; Festjens, N.; Declercq, W.; Vanden Berghe, T.; Vandenabeele, P. Caspases in cell survival, proliferation and differenti-ation. Cell Death Differ., 2007, 14(1), 44-55.
[http://dx.doi.org/10.1038/sj.cdd.4402047] [PMID: 17053807]
[109]
Svandova, E.; Vesela, B.; Tucker, A.S.; Matalova, E. Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol., 2018, 9(MAR), 174.
[http://dx.doi.org/10.3389/fphys.2018.00174] [PMID: 29563882]
[110]
Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[111]
Krijnen, P A J.; Nijmeijer, R.; Meijer, C.J.; Visser, C.A.; Hack, C.E.; Niessen, H.W. Apoptosis in myocardial ischaemia and infarction. J. Clin. Pathol., 2002, 55(11), 801-811.
[http://dx.doi.org/10.1136/jcp.55.11.801] [PMID: 12401816]
[112]
Hotchkiss, R.S.; Tinsley, K.W.; Karl, I.E. Role of apoptotic cell death in sepsis. Scand. J. Infect. Dis., 2003, 35(9), 585-592.
[http://dx.doi.org/10.1080/00365540310015692] [PMID: 14620139]
[113]
Kerr, J.F.; Winterford, C.M.; Harmon, B.V. Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994, 73(8), 2013-2026.
[http://dx.doi.org/10.1002/1097-0142(19940415)73: 8<2013:AID-CNCR2820730802>3.0.CO;2-J] [PMID: 8156506]
[114]
Seimon, T.; Tabas, I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res., 2009, 50(Suppl.), S382-S387.
[http://dx.doi.org/10.1194/jlr.R800032-JLR200] [PMID: 18953058]
[115]
Green, D.R. Apoptotic pathways: ten minutes to dead. Cell, 2005, 121(5), 671-674.
[http://dx.doi.org/10.1016/j.cell.2005.05.019] [PMID: 15935754]
[116]
Nicholson, D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 1999, 6(11), 1028-1042.
[http://dx.doi.org/10.1038/sj.cdd.4400598] [PMID: 10578171]
[117]
Xia, C-F.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Liang, Q.; Mu, F.; Mocharla, V.P.; Su, H.; Szardenings, A.K.; Walsh, J.C.; Zhao, T.; Kolb, H.C. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer [(18)F]-CP18 for PET imaging of apoptosis in tumors. Mol. Imaging Biol., 2013, 15(6), 748-757.
[http://dx.doi.org/10.1007/s11307-013-0646-7] [PMID: 23689985]
[118]
Rybczynska, A.A.; Boersma, H.H.; de Jong, S.; Gietema, J.A.; Noordzij, W.; Dierckx, R.A.J.O.; Elsinga, P.H.; van Waarde, A. Ave-nues to molecular imaging of dying cells: Focus on cancer. Med. Res. Rev., 2018, 38(6), 1713-1768.
[http://dx.doi.org/10.1002/med.21495] [PMID: 29528513]
[119]
Lakhani, S.A. Masud, Ali.; Kuida, K.; Porter Jr, G.A.; Booth, C. J.; Mehal, W.Z.; Inayat, Irteza.; Flavell, R.A. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science, 2006, 311(5762), 847-851.
[http://dx.doi.org/10.1126/science.1115035 ] [PMID: 16469926]
[120]
Méthot, N.; Vaillancourt, J.P.; Huang, J.; Colucci, J.; Han, Y.; Ménard, S.; Zamboni, R.; Toulmond, S.; Nicholson, D.W.; Roy, S. A caspase active site probe reveals high fractional inhibition needed to block DNA fragmentation. J. Biol. Chem., 2004, 279(27), 27905-27914.
[http://dx.doi.org/10.1074/jbc.M400247200] [PMID: 15067000]
[121]
Fuentes-Prior, P.; Salvesen, G.S. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J., 2004, 384(Pt 2), 201-232.
[http://dx.doi.org/10.1042/BJ20041142] [PMID: 15450003]
[122]
Shen, B. Jongho Jeon, Mikael Palner, Deju Ye, Adam Shuhendler, Frederick T. Chin, and J. R. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nano-aggregation probe. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10511-10514.
[http://dx.doi.org/10.1002/anie.201303422] [PMID: 23881906]
[123]
Poreba, M.; Kasperkiewicz, P.; Snipas, S.J.; Fasci, D.; Salvesen, G.S.; Drag, M. Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ., 2014, 21(9), 1482-1492.
[http://dx.doi.org/10.1038/cdd.2014.64] [PMID: 24832467]
[124]
Schotte, P.; Declercq, W.; Van Huffel, S.; Vandenabeele, P.; Beyaert, R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett., 1999, 442(1), 117-121.
[http://dx.doi.org/10.1016/S0014-5793(98)01640-8] [PMID: 9923616]
[125]
Challapalli, A.; Kenny, L.M.; Hallett, W.A.; Kozlowski, K.; Tomasi, G.; Gudi, M.; Al-Nahhas, A.; Coombes, R.C.; Aboagye, E.O. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry. J. Nucl. Med., 2013, 54(9), 1551-1556.
[http://dx.doi.org/10.2967/jnumed.112.118760] [PMID: 23949910]
[126]
Zhou, D.; Chu, W.; Chen, D.L.; Wang, Q.; Reichert, D.E.; Rothfuss, J.; D’Avignon, A.; Welch, M.J.; Mach, R.H. [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org. Biomol. Chem., 2009, 7(7), 1337-1348.
[http://dx.doi.org/10.1039/b819024k] [PMID: 19300818]
[127]
Chen, D.L.; Zhou, D.; Chu, W.; Herrbrich, P.E.; Jones, L.A.; Rothfuss, J.M.; Engle, J.T.; Geraci, M.; Welch, M.J.; Mach, R.H. Com-parison of radiolabeled isatin analogs for imaging apoptosis with positron emission tomography. Nucl. Med. Biol., 2009, 36(6), 651-658.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.03.008] [PMID: 19647171]
[128]
Lee, D.; Long, S.A.; Adams, J.L.; Chan, G.; Vaidya, K.S.; Francis, T.A.; Kikly, K.; Winkler, J.D.; Sung, C.M.; Debouck, C.; Richard-son, S.; Levy, M.A.; DeWolf, W.E., Jr; Keller, P.M.; Tomaszek, T.; Head, M.S.; Ryan, M.D.; Haltiwanger, R.C.; Liang, P.H.; Janson, C.A.; McDevitt, P.J.; Johanson, K.; Concha, N.O.; Chan, W.; Abdel-Meguid, S.S.; Badger, A.M.; Lark, M.W.; Nadeau, D.P.; Suva, L.J.; Gowen, M.; Nuttall, M.E. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell func-tionality. J. Biol. Chem., 2000, 275(21), 16007-16014.
[http://dx.doi.org/10.1074/jbc.275.21.16007] [PMID: 10821855]
[129]
Thukkani, A.K.; Shoghi, K.I.; Zhou, D.; Xu, J.; Chu, W.; Novak, E.; Chen, D.L.; Gropler, R.J.; Mach, R.H. PET imaging of in vivo caspase-3/7 activity following myocardial ischemia-reperfusion injury with the radiolabeled isatin sulfonamide analogue [(18)F]WC-4-116. Am. J. Nucl. Med. Mol. Imaging, 2016, 6(2), 110-119.
[PMID: 27186438]
[130]
Faust, A.; Wagner, S.; Law, M.P.; Hermann, S.; Schnöckel, U.; Keul, P.; Schober, O.; Schäfers, M.; Levkau, B.; Kopka, K. The non-peptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrroli-dinyl)sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q. J. Nucl. Med. Mol. Imaging, 2007, 51(1), 67-73.
[PMID: 17372575]
[131]
Zhou, D.; Chu, W.; Rothfuss, J.; Zeng, C.; Xu, J.; Jones, L.; Welch, M.J.; Mach, R.H. Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg. Med. Chem. Lett., 2006, 16(19), 5041-5046.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.045] [PMID: 16891117]
[132]
Garcia-Calvo, M.; Peterson, E.P.; Leiting, B.; Ruel, R.; Nicholson, D.W.; Thornberry, N.A. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem., 1998, 273(49), 32608-32613.
[http://dx.doi.org/10.1074/jbc.273.49.32608] [PMID: 9829999]
[133]
Rapic, S.; Vangestel, C.; Elvas, F.; Verhaeghe, J.; den Wyngaert, T.V.; Wyffels, L.; Pauwels, P.; Staelens, S.; Stroobants, S. Evaluation of [18F]CP18 as a substrate-based apoptosis imaging agent for the assessment of early treatment response in oncology. Mol. Imaging Biol., 2017, 19(4), 560-569.
[http://dx.doi.org/10.1007/s11307-016-1037-7] [PMID: 28050749]
[134]
Doss, M.; Kolb, H.C.; Walsh, J.C.; Mocharla, V.; Fan, H.; Chaudhary, A.; Zhu, Z.; Alpaugh, R.K.; Lango, M.N.; Yu, J.Q. Biodistribu-tion and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J. Nucl. Med., 2013, 54(12), 2087-2092.
[http://dx.doi.org/10.2967/jnumed.113.119800] [PMID: 24136934]
[135]
Lee, H.; Akers, W.J.; Cheney, P.P.W. Barry Edwards, K. L.; Joseph P. Culver, and S. A. Complementary optical and nuclear imaging of Caspase-3 activity using combined activatable and radiolabeled multimodality molecular probe. J. Biomed. Opt., 2009, 14(4)040507
[http://dx.doi.org/10.1117/1.3207156] [PMID: 19725712]
[136]
Ye, D.; Shuhendler, A.J.; Pandit, P.; Brewer, K.D.; Tee, S.S.; Cui, L.; Tikhomirov, G.; Rutt, B.; Rao, J. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem. Sci. (Camb.), 2014, 4(10), 3845-3852.
[http://dx.doi.org/10.1039/C4SC01392A] [PMID: 25429349]
[137]
Slee, E.A.; Zhu, H.; Chow, S.C.; MacFarlane, M.; Nicholson, D.W.; Cohen, G.M. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoro-methylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem. J., 1996, 315(Pt 1), 21-24.
[http://dx.doi.org/10.1042/bj3150021] [PMID: 8670109]
[138]
Van Noorden, C.J.F. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem., 2001, 103(3), 241-251.
[http://dx.doi.org/10.1078/0065-1281-00601] [PMID: 11482370]
[139]
Gregoli, P.A.; Bondurant, M.C. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progeni-tors. J. Cell. Physiol., 1999, 178(2), 133-143.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199902)178:2< 133:AID-JCP2>3.0.CO;2-5] [PMID: 10048577]
[140]
Hight, M.R.; Cheung, Y.Y.; Nickels, M.L.; Dawson, E.S.; Zhao, P.; Saleh, S.; Buck, J.R.; Tang, D.; Washington, M.K.; Coffey, R.J.; Manning, H.C. A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin. Cancer Res., 2014, 20(8), 2126-2135.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2444] [PMID: 24573549]
[141]
Chauvier, D.; Ankri, S.; Charriaut-Marlangue, C.; Casimir, R.; Jacotot, E. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ., 2007, 14(2), 387-391.
[http://dx.doi.org/10.1038/sj.cdd.4402044] [PMID: 17008913]
[142]
Engel, B.J.; Gammon, S.T.; Chaudhari, R.; Lu, Z.; Pisaneschi, F.; Yang, H.; Ornelas, A.; Yan, V.; Kelderhouse, L.; Najjar, A.M.; Tong, W.P.; Zhang, S.; Piwnica-Worms, D.; Bast, R.C., Jr; Millward, S.W. Caspase-3 substrates for noninvasive pharmacodynamic imaging of apoptosis by pet/ct. Bioconjug. Chem., 2018, 29(9), 3180-3195.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00514] [PMID: 30168713]
[143]
Hong, H.Y.; Lee, H.Y.; Kwak, W.; Yoo, J.; Na, M.H.; So, I.S.; Kwon, T.H.; Park, H.S.; Huh, S.; Oh, G.T.; Kwon, I.C.; Kim, I.S.; Lee, B.H. Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis. J. Cell. Mol. Med., 2008, 12(5B), 2003-2014.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00189.x] [PMID: 19012727]
[144]
Lee, Y.W.; Kühn, H.; Hennig, B.; Toborek, M. IL-4 induces apoptosis of endothelial cells through the caspase-3-dependent pathway. FEBS Lett., 2000, 485(2-3), 122-126.
[http://dx.doi.org/10.1016/S0014-5793(00)02208-0] [PMID: 11094153]
[145]
Edgington, L.E.; Berger, A.B.; Blum, G.; Albrow, V.E.; Paulick, M.G.; Lineberry, N.; Bogyo, M. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat. Med., 2009, 15(8), 967-973.
[http://dx.doi.org/10.1038/nm.1938] [PMID: 19597506]
[146]
Staderini, M.; Megia-Fernandez, A.; Dhaliwal, K.; Bradley, M. Peptides for optical medical imaging and steps towards therapy. Bioorg. Med. Chem., 2018, 26(10), 2816-2826.
[http://dx.doi.org/10.1016/j.bmc.2017.09.039] [PMID: 29042225]
[147]
Hergeth, S.P.; Schneider, R. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep., 2015, 16(11), 1439-1453.
[http://dx.doi.org/10.15252/embr.201540749] [PMID: 26474902]
[148]
Kim, S.; Kim, D.; Lee, Y.; Jeon, H.; Lee, B.H.; Jon, S. Conversion of low-affinity peptides to high-affinity peptide binders by using a β-hairpin scaffold-assisted approach. ChemBioChem, 2015, 16(1), 43-46.
[http://dx.doi.org/10.1002/cbic.201402450] [PMID: 25371172]
[149]
Kwak, W.; Ha, Y.S.; Soni, N.; Lee, W.; Park, S.I.; Ahn, H.; An, G.I.; Kim, I.S.; Lee, B.H.; Yoo, J. Apoptosis imaging studies in various animal models using radio-iodinated peptide. Apoptosis, 2015, 20(1), 110-121.
[http://dx.doi.org/10.1007/s10495-014-1059-z] [PMID: 25430587]
[150]
Jung, H.K.; Wang, K.; Jung, M.K.; Kim, I.S.; Lee, B.H. In vivo near-infrared fluorescence imaging of apoptosis using histone H1-targeting peptide probe after anti-cancer treatment with cisplatin and cetuximab for early decision on tumor response. PLoS One, 2014, 9(6)e100341
[http://dx.doi.org/10.1371/journal.pone.0100341] [PMID: 24949860]
[151]
Madar, I.; Ravert, H.T.; Du, Y.; Hilton, J.; Volokh, L.; Dannals, R.F.; Frost, J.J.; Hare, J.M. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J. Nucl. Med., 2006, 47(8), 1359-1366.
[PMID: 16883017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy