Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Association between Gasdermin A, Gasdermin B Polymorphisms and Allergic Rhinitis Amongst Jordanians

Author(s): Malek Zihlif*, Tareq Mahafza, Tawfiq Froukh, Fatima M. AL-Akhras, Rami Alsalman, Margaret Zuriekat and Randa Naffa

Volume 21, Issue 3, 2021

Published on: 04 June, 2020

Page: [472 - 477] Pages: 6

DOI: 10.2174/1871530320666200604161656

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Gasdermin A (GSDMA) and Gasdermin B (GSDMB) have been associated with childhood and to a lesser extent with adult asthma in many populations. In this study, we investigate whether there is an association between GSDMA (rs7212938, T/G) and GSDMB (rs7216389, T/C) at locus 17q21.2 and risk of Allergic Rhinitis among Jordanians. Also, we aimed to determine if there is an association between such polymorphisms and the IgE level.

Methods: The study included 112 rhinitis patients and 111 Healthy controls. Gasdermin A (GSDMA) (rs7212938, T/G) and Gasdermin B (rs7216389, T/C) polymorphisms were genotyped using the PCRRFLP method.

Results: On the genotype level, three analysis models were applied namely co-dominant, dominant and recessive genotypes. GSDMB CC genotype was found to have a significant protective effect against allergic Rhinitis (< 0.05). cc genotype was also significantly associated with higher IgE level among the studied population.

Conclusion: The GSDMB CC of homozygous minor genotype showed a protective effect against Allergic rhinitis. It also was found to be significantly associated with lower IgE level among the studied population. No association was found between GSDMA with the risk of allergic Rhinitis.

Keywords: Gasdermin A, gasdermin B, polymorphisms, allergic rhinitis, Jordanians, IgE.

Graphical Abstract
[1]
Vercelli, D. Genetic regulation of IgE responses: Achilles and the tortoise. J. Allergy Clin. Immunol., 2005, 116(1), 60-64.
[http://dx.doi.org/10.1016/j.jaci.2005.04.031] [PMID: 15990775]
[2]
Holgate, S.T. Genetic and environmental interaction in allergy and asthma. J. Allergy Clin. Immunol., 1999, 104(6), 1139-1146.
[http://dx.doi.org/10.1016/S0091-6749(99)70005-9] [PMID: 10588993]
[3]
Andiappan, A.K.; Wang, Y.; Anantharaman, R.; Parate, P.N.; Suri, B.K.; Low, H.Q.; Li, Y.; Zhao, W.; Castagnoli, P.; Liu, J.; Chew, F.T. Genome-wide association study for atopy and allergic rhinitis in a Singapore Chinese population. PLoS One, 2011, 6(5)e19719
[http://dx.doi.org/10.1371/journal.pone.0019719] [PMID: 21625490]
[4]
Ramasamy, A.; Curjuric, I.; Coin, L.J.; Kumar, A.; McArdle, W.L.; Imboden, M.; Leynaert, B.; Kogevinas, M.; Schmid-Grendelmeier, P.; Pekkanen, J.; Wjst, M.; Bircher, A.J.; Sovio, U.; Rochat, T.; Hartikainen, A.L.; Balding, D.J.; Jarvelin, M.R.; Probst-Hensch, N.; Strachan, D.P.; Jarvis, D.L. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol., 2011, 128(5), 996-1005.
[http://dx.doi.org/10.1016/j.jaci.2011.08.030] [PMID: 22036096]
[5]
Christodoulou, K.; Wiskin, A.E.; Gibson, J.; Tapper, W.; Willis, C.; Afzal, N.A.; Upstill-Goddard, R.; Holloway, J.W.; Simpson, M.A.; Beattie, R.M.; Collins, A.; Ennis, S. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut, 2013, 62(7), 977-984.
[http://dx.doi.org/10.1136/gutjnl-2011-301833] [PMID: 22543157]
[6]
Saleh, N.M.; Raj, S.M.; Smyth, D.J.; Wallace, C.; Howson, J.M.; Bell, L.; Walker, N.M.; Stevens, H.E.; Todd, J.A. Genetic association analyses of atopic illness and proinflammatory cytokine genes with type 1 diabetes. Diabetes Metab. Res. Rev., 2011, 27(8), 838-843.
[http://dx.doi.org/10.1002/dmrr.1259] [PMID: 22069270]
[7]
Tanaka, A.; Invernizzi, P.; Ohira, H.; Kikuchi, K.; Nezu, S.; Kosoy, R.; Seldin, M.F.; Gershwin, M.E.; Takikawa, H. Replicated association of 17q12-21 with susceptibility of primary biliary cirrhosis in a Japanese cohort. Tissue Antigens, 2011, 78(1), 65-68.
[http://dx.doi.org/10.1111/j.1399-0039.2011.01684.x] [PMID: 21506939]
[8]
Kurreeman, F.A.; Stahl, E.A.; Okada, Y.; Liao, K.; Diogo, D.; Raychaudhuri, S.; Freudenberg, J.; Kochi, Y.; Patsopoulos, N.A.; Gupta, N.; Sandor, C.; Bang, S.Y.; Lee, H.S.; Padyukov, L.; Suzuki, A.; Siminovitch, K.; Worthington, J.; Gregersen, P.K.; Hughes, L.B.; Reynolds, R.J.; Bridges, S.L., Jr; Bae, S.C.; Yamamoto, K.; Plenge, R.M. CLEAR investigators. Use of a multiethnic approach to identify rheumatoid- arthritis-susceptibility loci, 1p36 and 17q12. Am. J. Hum. Genet., 2012, 90(3), 524-532.
[http://dx.doi.org/10.1016/j.ajhg.2012.01.010] [PMID: 22365150]
[9]
Bisgaard, H.; Bønnelykke, K.; Sleiman, P.M.; Brasholt, M.; Chawes, B.; Kreiner-Møller, E.; Stage, M.; Kim, C.; Tavendale, R.; Baty, F.; Pipper, C.B.; Palmer, C.N.; Hakonarsson, H. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am. J. Respir. Crit. Care Med., 2009, 179(3), 179-185.
[http://dx.doi.org/10.1164/rccm.200809-1436OC] [PMID: 19029000]
[10]
Bouzigon, E.; Corda, E.; Aschard, H.; Dizier, M.H.; Boland, A.; Bousquet, J.; Chateigner, N.; Gormand, F.; Just, J.; Le Moual, N.; Scheinmann, P.; Siroux, V.; Vervloet, D.; Zelenika, D.; Pin, I.; Kauffmann, F.; Lathrop, M.; Demenais, F. Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med., 2008, 359(19), 1985-1994.
[http://dx.doi.org/10.1056/NEJMoa0806604] [PMID: 18923164]
[11]
Ober, C.; Yao, T.C. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev., 2011, 242(1), 10-30.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01029.x] [PMID: 21682736]
[12]
Fang, Q.; Zhao, H.; Wang, A.; Gong, Y.; Liu, Q. Association of genetic variants in chromosome 17q21 and adult-onset asthma in a Chinese Han population. BMC Med. Genet., 2011, 12, 133.
[http://dx.doi.org/10.1186/1471-2350-12-133] [PMID: 21985515]
[13]
Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M. GABRIEL Consortium. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med., 2010, 363(13), 1211-1221.
[http://dx.doi.org/10.1056/NEJMoa0906312] [PMID: 20860503]
[14]
Zihlif, M.; Obeidat, N.M.; Zihlif, N.; Mahafza, T.; Froukh, T.; Ghanim, M.T.; Beano, H.; Al-Akhras, F.M.; Naffa, R. Association between Gasdermin A and Gasdermin B polymorphisms and susceptibility to adult and childhood asthma among Jordanians. Genet. Test. Mol. Biomarkers, 2016, 20(3), 143-148.
[http://dx.doi.org/10.1089/gtmb.2015.0174] [PMID: 26886240]
[15]
Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: a web tool for the analysis of association studies. Bioinformatics, 2006, 22(15), 1928-1929.
[http://dx.doi.org/10.1093/bioinformatics/btl268] [PMID: 16720584]
[16]
Lewontin, R.C. The interaction of selection and linkage. I. General considerations. Genetics, 1964, 49(1), 49-67.
[PMID: 17248194]
[17]
Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992, 48(2), 361-372.
[http://dx.doi.org/10.2307/2532296] [PMID: 1637966]
[18]
Excoffier, L.; Laval, L.G.; Schneider, S. Arlequin: An integrated software package for population genetics data analysis version 3.0. Evol. Bioinform. Online, 2005, 1, 47-50.
[http://dx.doi.org/10.1177/117693430500100003] [PMID: 19325852]
[19]
R Core Team. R: a language and environment for statistical computing., http://www.R-project.org/ (Accessed Dec 20, 2018)
[20]
Fuertes, E.; Söderhäll, C.; Acevedo, N.; Becker, A.; Brauer, M.; Chan-Yeung, M.; Dijk, F.N.; Heinrich, J.; de Jongste, J.; Koppelman, G.H.; Postma, D.S.; Kere, J.; Kozyrskyj, A.L.; Pershagen, G.; Sandford, A.; Standl, M.; Tiesler, C.M.; Waldenberger, M.; Westman, M.; Carlsten, C.; Melén, E. Associations between the 17q21 region and allergic rhinitis in 5 birth cohorts. J. Allergy Clin. Immunol., 2015, 135(2), 573-576.
[http://dx.doi.org/10.1016/j.jaci.2014.08.016] [PMID: 25262464]
[21]
Verlaan, D.J.; Berlivet, S.; Hunninghake, G.M.; Madore, A.M.; Larivière, M.; Moussette, S.; Grundberg, E.; Kwan, T.; Ouimet, M.; Ge, B.; Hoberman, R.; Swiatek, M.; Dias, J.; Lam, K.C.; Koka, V.; Harmsen, E.; Soto-Quiros, M.; Avila, L.; Celedón, J.C.; Weiss, S.T.; Dewar, K.; Sinnett, D.; Laprise, C.; Raby, B.A.; Pastinen, T.; Naumova, A.K. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet., 2009, 85(3), 377-393.
[http://dx.doi.org/10.1016/j.ajhg.2009.08.007] [PMID: 19732864]
[22]
Tavendale, R.; Macgregor, D.F.; Mukhopadhyay, S.; Palmer, C.N. A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J. Allergy Clin. Immunol., 2008, 121(4), 860-863.
[http://dx.doi.org/10.1016/j.jaci.2008.01.015] [PMID: 18395550]
[23]
Ha, S.G.; Ge, X.N.; Bahaie, N.S.; Kang, B.N.; Rao, A.; Rao, S.P.; Sriramarao, P. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat. Commun., 2013, 4, 2479.
[http://dx.doi.org/10.1038/ncomms3479] [PMID: 24056518]
[24]
Rathkey, J.K.; Xiao, T.S.; Abbott, D.W. Human polymorphisms in GSDMD alter the inflammatory response. J. Biol. Chem., 2020, 295(10), 3228-3238..
[http://dx.doi.org/10.1074/jbc.RA119.010604] [PMID: 31988247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy