Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Mini-Review Article

Evaluation of Therapeutic Agents Targeting the Pathogenesis of Coronary Artery Spasm: A Mini Review

Author(s): Xin Zhao, Jinfan Tian, Zhishuai Ye, Mingyue Xu, Xiantao Song* and Rongchong Huang*

Volume 19, Issue 4, 2021

Published on: 03 June, 2020

Page: [347 - 358] Pages: 12

DOI: 10.2174/1570161118666200603131119

Price: $65

Abstract

Coronary artery spasm (CAS) plays an important role in the pathogenesis of ischemic heart disease. The clinical manifestations of CAS include variant angina, myocardial infarction and sudden death. Although endothelial dysfunction and hyperreactivity of vascular smooth muscle cells have been associated with CAS, the underlying mechanisms remain unclear. Thus, there is a long way to go to truly understand the pathogenesis of CAS to formulate effective treatments. This article discusses the pathophysiological mechanisms as well as downstream molecular pathways of CAS, with a focus on potential therapeutic targets.

Keywords: Coronary artery spasm, endothelial dysfunction, vascular smooth muscle cell hyperreactivity, therapeutic targets, ischemic heart disease, epicardial coronary artery.

Graphical Abstract
[1]
Collaborators GS. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related sustainable development goals for 195 countries and territories: a systematic analysis for the global burden of disease study 2017. Lancet 2018; 392(10159): 2091-138.
[http://dx.doi.org/10.1016/S0140-6736(18)32281-5] [PMID: 30496107]
[2]
JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2008): digest version. Circ J 2010; 74(8): 1745-62.
[http://dx.doi.org/10.1253/circj.CJ-10-74-0802] [PMID: 20671373]
[3]
Pristipino C, Beltrame JF, Finocchiaro ML, et al. Major racial differences in coronary constrictor response between japanese and caucasians with recent myocardial infarction. Circulation 2000; 101(10): 1102-8.
[http://dx.doi.org/10.1161/01.CIR.101.10.1102] [PMID: 10715255]
[4]
Yasue H, Omote S, Takizawa A, et al. Comparison of coronary arteriographic findings during angina pectoris associated with S-T elevation or depression. Am J Cardiol 1981; 47(3): 539-46.
[http://dx.doi.org/10.1016/0002-9149(81)90536-1] [PMID: 7468490]
[5]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[6]
Bugiardini R, Pozzati A, Ottani F, Morgagni GL, Puddu P. Vasotonic angina: a spectrum of ischemic syndromes involving functional abnormalities of the epicardial and microvascular coronary circulation. J Am Coll Cardiol 1993; 22(2): 417-25.
[http://dx.doi.org/10.1016/0735-1097(93)90045-3] [PMID: 8166784]
[7]
Yasue H, Omote S, Takizawa A, Nagao M. Coronary arterial spasm in ischemic heart disease and its pathogenesis. A review. Circ Res 1983; 52(2 Pt 2): I147-52.
[PMID: 6339104]
[8]
Yasue H, Takizawa A, Nagao M, et al. Long-term prognosis for patients with variant angina and influential factors. Circulation 1988; 78(1): 1-9.
[http://dx.doi.org/10.1161/01.CIR.78.1.1] [PMID: 3260150]
[9]
Hamilton KK, Pepine CJ. A renaissance of provocative testing for coronary spasm? J Am Coll Cardiol 2000; 35(7): 1857-9.
[http://dx.doi.org/10.1016/S0735-1097(00)00653-7] [PMID: 10841235]
[10]
Bashour T. Cardiac rhythm disorders complicating coronary arterial spasm. Clin Cardiol 1984; 7(9): 510-2.
[http://dx.doi.org/10.1002/clc.4960070908] [PMID: 6529869]
[11]
Hung MJ, Cheng CW, Yang NI, Hung MY, Cherng WJ. Coronary vasospasm-induced acute coronary syndrome complicated by life-threatening cardiac arrhythmias in patients without hemodynamically significant coronary artery disease. Int J Cardiol 2007; 117(1): 37-44.
[http://dx.doi.org/10.1016/j.ijcard.2006.03.055] [PMID: 16844245]
[12]
Waldmann V, Bougouin W, Karam N, et al. Coronary Vasospasm-Related Sudden Cardiac Arrest in the Community. J Am Coll Cardiol 2018; 72(7): 814-5.
[http://dx.doi.org/10.1016/j.jacc.2018.05.051] [PMID: 30092958]
[13]
Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J 2000; 64(1): 1-12.
[http://dx.doi.org/10.1253/jcj.64.1] [PMID: 10651199]
[14]
Nakayama N, Kaikita K, Fukunaga T, et al. Clinical features and prognosis of patients with coronary spasm-induced non-ST-segment elevation acute coronary syndrome. J Am Heart Assoc 2014; 3(3)e000795
[http://dx.doi.org/10.1161/JAHA.114.000795] [PMID: 24811613]
[15]
Montone RA, Niccoli G, Russo M, et al. Clinical, angiographic and echocardiographic correlates of epicardial and microvascular spasm in patients with myocardial ischaemia and non-obstructive coronary arteries. Clin Res Cardiol 2020; 109(4): 435-43.
[http://dx.doi.org/10.1007/s00392-019-01523-w] [PMID: 31270616]
[16]
Keaney JF Jr, Larson MG, Vasan RS, et al. Framingham Study. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2003; 23(3): 434-9.
[http://dx.doi.org/10.1161/01.ATV.0000058402.34138.11] [PMID: 12615693]
[17]
Itoh T, Mizuno Y, Harada E, Yoshimura M, Ogawa H, Yasue H. Coronary spasm is associated with chronic low-grade inflammation. Circ J 2007; 71(7): 1074-8.
[http://dx.doi.org/10.1253/circj.71.1074] [PMID: 17587713]
[18]
Kadokami T, Shimokawa H, Fukumoto Y, et al. Coronary artery spasm does not depend on the intracellular calcium store but is substantially mediated by the protein kinase C-mediated pathway in a swine model with interleukin-1 beta in vivo. Circulation 1996; 94(2): 190-6.
[http://dx.doi.org/10.1161/01.CIR.94.2.190] [PMID: 8674178]
[19]
Lanza GA, Careri G, Crea F. Mechanisms of coronary artery spasm. Circulation 2011; 124(16): 1774-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.037283] [PMID: 22007100]
[20]
Mehta PK, Thobani A, Vaccarino V. Coronary Artery Spasm, Coronary Reactivity, and Their Psychological Context. Psychosom Med 2019; 81(3): 233-6.
[http://dx.doi.org/10.1097/PSY.0000000000000682] [PMID: 30747790]
[21]
Sheng ZQ, Li YF, Zheng KL, et al. The relationship between number and function of EPCs and concentration of VEGF165 and SDF-1 in coronary artery spasm. Eur Rev Med Pharmacol Sci 2018; 22(9): 2767-77.
[PMID: 29771429]
[22]
Shaw J, Anderson T. Coronary endothelial dysfunction in non-obstructive coronary artery disease: Risk, pathogenesis, diagnosis and therapy. Vasc Med 2016; 21(2): 146-55.
[http://dx.doi.org/10.1177/1358863X15618268] [PMID: 26675331]
[23]
Shan LM, Wang H. Pharmacological characteristics of the endothelial target for acetylcholine induced vascular relaxation. Life Sci 2002; 70(11): 1285-98.
[http://dx.doi.org/10.1016/S0024-3205(01)01506-5] [PMID: 11883707]
[24]
Toda N, Okamura T. Endothelium-dependent and -independent responses to vasoactive substances of isolated human coronary arteries. Am J Physiol 1989; 257(3 Pt 2): H988-95.
[PMID: 2476941]
[25]
Nguyen HT, Nguyen HT, Islam MZ, et al. Antagonistic effects of gingko biloba and Sephora japonica on cerebral vasoconstriction in response to histamine, 5-hydroxytryptamine, u46619 and bradykinin. Am J Chin Med 2016; 44(8): 1607-25.
[http://dx.doi.org/10.1142/S0192415X16500907] [PMID: 27852128]
[26]
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373-6.
[http://dx.doi.org/10.1038/288373a0] [PMID: 6253831]
[27]
Goligorsky MS. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis 2010; 6(1): 1-10.
[http://dx.doi.org/10.4161/org.6.1.10427] [PMID: 20592859]
[28]
El-Hawli A, Qaradakhi T, Hayes A, et al. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model. Biomed Pharmacother 2017; 86: 23-6.
[http://dx.doi.org/10.1016/j.biopha.2016.11.142] [PMID: 27936390]
[29]
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8(3): 185-94.
[http://dx.doi.org/10.1038/nrm2122] [PMID: 17318224]
[30]
Trane AE, Hiob MA, Uy T, Pavlov D, Bernatchez P. Caveolin-1 scaffolding domain residue phenylalanine 92 modulates Akt signaling. Eur J Pharmacol 2015; 766: 46-55.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.033] [PMID: 26409042]
[31]
Peng XL, Qu W, Wang LZ, et al. Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation. PLoS One 2014; 9(11)e113716
[http://dx.doi.org/10.1371/journal.pone.0113716] [PMID: 25419974]
[32]
Kwok W, Clemens MG. Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock 2010; 33(4): 392-8.
[http://dx.doi.org/10.1097/SHK.0b013e3181be3e99] [PMID: 19730165]
[33]
Cao X, Ye Z, Jin M, Yan S, Song X, Huang R. Downregulated caveolin-1 expression serves a potential role in coronary artery spasm by inducing nitric oxide production in vitro. Exp Ther Med 2018; 16(4): 3567-73.
[http://dx.doi.org/10.3892/etm.2018.6646] [PMID: 30233709]
[34]
Tian J, Popal MS, Huang R, et al. Caveolin as a novel potential therapeutic target in cardiac and vascular diseases: a mini review. Aging Dis 2020; 11(2): 378-89.
[http://dx.doi.org/10.14336/AD.2019.09603] [PMID: 32257548]
[35]
Chuaiphichai S, McNeill E, Douglas G, et al. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. Hypertension 2014; 64(3): 530-40.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03089] [PMID: 24777984]
[36]
Okumura K, Yasue H, Matsuyama K, et al. Diffuse disorder of coronary artery vasomotility in patients with coronary spastic angina. Hyperreactivity to the constrictor effects of acetylcholine and the dilator effects of nitroglycerin. J Am Coll Cardiol 1996; 27(1): 45-52.
[http://dx.doi.org/10.1016/0735-1097(95)00432-7] [PMID: 8522709]
[37]
Kugiyama K, Ohgushi M, Sugiyama S, et al. Supersensitive dilator response to nitroglycerin but not to atrial natriuretic peptide in spastic coronary arteries in coronary spastic angina. Am J Cardiol 1997; 79(5): 606-10.
[http://dx.doi.org/10.1016/S0002-9149(96)00824-7] [PMID: 9068517]
[38]
Group JCSJW. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J 2014; 78(11): 2779-801.
[http://dx.doi.org/10.1253/circj.CJ-66-0098] [PMID: 25273915]
[39]
Beltrame JF, Crea F, Kaski JC, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J 2017; 38(33): 2565-8.
[PMID: 26245334]
[40]
Kugiyama K, Yasue H, Okumura K, et al. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 1996; 94(3): 266-71.
[http://dx.doi.org/10.1161/01.CIR.94.3.266] [PMID: 8759065]
[41]
Kim CH, Park TK, Cho SW, et al. Impact of different nitrate therapies on long-term clinical outcomes of patients with vasospastic angina: A propensity score-matched analysis. Int J Cardiol 2018; 252: 1-5.
[http://dx.doi.org/10.1016/j.ijcard.2017.07.031] [PMID: 29249418]
[42]
Qipshidze N, Metreveli N, Lominadze D, Tyagi SC. Folic acid improves acetylcholine-induced vasoconstriction of coronary vessels isolated from hyperhomocysteinemic mice: an implication to coronary vasospasm. J Cell Physiol 2011; 226(10): 2712-20.
[http://dx.doi.org/10.1002/jcp.22621] [PMID: 21792928]
[43]
Hori T, Matsubara T, Ishibashi T, et al. Significance of asymmetric dimethylarginine (ADMA) concentrations during coronary circulation in patients with vasospastic angina. Circ J 2003; 67(4): 305-11.
[http://dx.doi.org/10.1253/circj.67.305] [PMID: 12655160]
[44]
Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000; 20(9): 2032-7.
[http://dx.doi.org/10.1161/01.ATV.20.9.2032] [PMID: 10978245]
[45]
Closs EI, Ostad MA, Simon A, et al. Impairment of the extrusion transporter for asymmetric dimethyl-L-arginine: a novel mechanism underlying vasospastic angina. Biochem Biophys Res Commun 2012; 423(2): 218-23.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.044] [PMID: 22609206]
[46]
Shin ES, Lee JH, Yoo SY, et al. A randomised, multicentre, double blind, placebo controlled trial to evaluate the efficacy and safety of cilostazol in patients with vasospastic angina. Heart 2014; 100(19): 1531-6.
[http://dx.doi.org/10.1136/heartjnl-2014-305986] [PMID: 24934484]
[47]
Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 2006; 189(2): 350-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.01.022] [PMID: 16545819]
[48]
Iino M, Endo M. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release. Nature 1992; 360(6399): 76-8.
[http://dx.doi.org/10.1038/360076a0] [PMID: 1331809]
[49]
Shibutani S, Osanai T, Ashitate T, et al. Coronary vasospasm induced in transgenic mouse with increased phospholipase C-δ1 activity. Circulation 2012; 125(8): 1027-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.064303] [PMID: 22265909]
[50]
Murakami K, Osanai T, Tanaka M, et al. Enhanced transient receptor potential channel-mediated Ca2+ influx in the cells with phospholipase C-δ1 overexpression: its possible role in coronary artery spasm. Fundam Clin Pharmacol 2017; 31(4): 383-91.
[http://dx.doi.org/10.1111/fcp.12269] [PMID: 28107550]
[51]
Chihara K, Amano M, Nakamura N, et al. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 1997; 272(40): 25121-7.
[http://dx.doi.org/10.1074/jbc.272.40.25121] [PMID: 9312122]
[52]
Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273(5272): 245-8.
[http://dx.doi.org/10.1126/science.273.5272.245] [PMID: 8662509]
[53]
Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation 2000; 101(11): 1319-23.
[http://dx.doi.org/10.1161/01.CIR.101.11.1319] [PMID: 10725293]
[54]
Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). G Ital Cardiol (Rome) 2016; 17(10): 831-72.
[PMID: 27869901]
[55]
Maxwell CJ, Hogan DB, Ebly EM. Calcium-channel blockers and cognitive function in elderly people: results from the Canadian Study of Health and Aging. CMAJ 1999; 161(5): 501-6.
[PMID: 10497605]
[56]
Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 1999; 43(4): 1029-39.
[http://dx.doi.org/10.1016/S0008-6363(99)00144-3] [PMID: 10615430]
[57]
Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002; 105(13): 1545-7.
[http://dx.doi.org/10.1161/hc1002.105938] [PMID: 11927519]
[58]
Otsuka T, Ibuki C, Suzuki T, et al. Administration of the Rho-kinase inhibitor, fasudil, following nitroglycerin additionally dilates the site of coronary spasm in patients with vasospastic angina. Coron Artery Dis 2008; 19(2): 105-10.
[http://dx.doi.org/10.1097/MCA.0b013e3282f3420c] [PMID: 18300747]
[59]
Komiyama K, Tejima T, Tanabe Y, et al. The impact of Rho-kinase inhibitor, “Fasudil”, intracoronary bolus administration to improve refractory coronary vasospasm. Cardiovasc Interv Ther 2011; 26(3): 281-5.
[http://dx.doi.org/10.1007/s12928-011-0071-2] [PMID: 24122598]
[60]
Shimokawa H, Tomoike H, Nabeyama S, et al. Coronary artery spasm induced in atherosclerotic miniature swine. Science 1983; 221(4610): 560-2.
[http://dx.doi.org/10.1126/science.6408736] [PMID: 6408736]
[61]
Shimokawa H, Tomoike H, Nabeyama S, et al. Coronary artery spasm induced in miniature swine: angiographic evidence and relation to coronary atherosclerosis. Am Heart J 1985; 110(2): 300-10.
[http://dx.doi.org/10.1016/0002-8703(85)90148-6] [PMID: 4025107]
[62]
Hung MJ, Hsu KH, Hu WS, Chang NC, Hung MY. C-reactive protein for predicting prognosis and its gender-specific associations with diabetes mellitus and hypertension in the development of coronary artery spasm. PLoS One 2013; 8(10)e77655
[http://dx.doi.org/10.1371/journal.pone.0077655] [PMID: 24204905]
[63]
Hung MJ, Cherng WJ, Cheng CW, Li LF. Comparison of serum levels of inflammatory markers in patients with coronary vasospasm without significant fixed coronary artery disease versus patients with stable angina pectoris and acute coronary syndromes with significant fixed coronary artery disease. Am J Cardiol 2006; 97(10): 1429-34.
[http://dx.doi.org/10.1016/j.amjcard.2005.12.035] [PMID: 16679078]
[64]
Hung MY, Wu YH, Bamodu OA, et al. Activation of the monocytic α7 nicotinic acetylcholine receptor modulates oxidative stress and inflammation-associated development of coronary artery spasm via a p38 MAP-kinase signaling-dependent pathway. Free Radic Biol Med 2018; 120: 266-76.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.050] [PMID: 29609021]
[65]
Sato A, Taneichi Y, Sekine I, et al. Prinzmetal’s variant angina induced only by alcohol ingestion. Clin Cardiol 1981; 4(4): 193-5.
[http://dx.doi.org/10.1002/clc.4960040408] [PMID: 7273503]
[66]
Sohn SM, Choi BG, Choi SY, et al. Impact of alcohol drinking on acetylcholine-induced coronary artery spasm in Korean populations. Atherosclerosis 2018; 268: 163-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.032] [PMID: 29227870]
[67]
Ohsawa M, Tanno K. Conflicting effect of alcohol on cardiovascular risk: a clue to understand the different etiologies of coronary artery disease, stroke and peripheral artery disease. Hypertens Res 2013; 36(1): 16-8.
[http://dx.doi.org/10.1038/hr.2012.152] [PMID: 23034467]
[68]
Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health 2006; 29(4): 245-54.
[PMID: 17718403]
[69]
Lim GB. Inflammation: Perivascular inflammation in coronary spasm. Nat Rev Cardiol 2018; 15(3): 134-5.
[http://dx.doi.org/10.1038/nrcardio.2018.9] [PMID: 29434362]
[70]
Ohyama K, Matsumoto Y, Takanami K, et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol 2018; 71(4): 414-25.
[http://dx.doi.org/10.1016/j.jacc.2017.11.046] [PMID: 29389358]
[71]
Lee Y, Park HC, Shin J. Clinical efficacy of aspirin with identification of intimal morphology by optical coherence tomography in preventing event recurrence in patients with vasospasm-induced acute coronary syndrome. Int J Cardiovasc Imaging 2018; 34(11): 1697-706.
[http://dx.doi.org/10.1007/s10554-018-1399-9] [PMID: 29923156]
[72]
Bates ER, Lau WC. Controversies in antiplatelet therapy for patients with cardiovascular disease. Circulation 2005; 111(17): e267-71.
[http://dx.doi.org/10.1161/01.CIR.0000157158.63751.B2] [PMID: 15867186]
[73]
Husain S, Andrews NP, Mulcahy D, Panza JA, Quyyumi AA. Aspirin improves endothelial dysfunction in atherosclerosis. Circulation 1998; 97(8): 716-20.
[http://dx.doi.org/10.1161/01.CIR.97.8.716] [PMID: 9498533]
[74]
Ishii M, Kaikita K, Sato K, et al. Impact of statin therapy on clinical outcome in patients with coronary spasm. J Am Heart Assoc 2016; 5(5)e003426
[http://dx.doi.org/10.1161/JAHA.116.003426] [PMID: 27207970]
[75]
Yasue H, Mizuno Y, Harada E, et al. Effects of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, fluvastatin, on coronary spasm after withdrawal of calcium-channel blockers. J Am Coll Cardiol 2008; 51(18): 1742-8.
[http://dx.doi.org/10.1016/j.jacc.2007.12.049] [PMID: 18452779]
[76]
Abe K, Nakayama M, Yoshimura M, et al. Increase in the transcriptional activity of the endothelial nitric oxide synthase gene with fluvastatin: a relation with the -786T>C polymorphism. Pharmacogenet Genomics 2005; 15(5): 329-36.
[http://dx.doi.org/10.1097/01213011-200505000-00008] [PMID: 15864134]
[77]
Osugi T, Saitoh S, Matumoto K, et al. Preventive effect of chronic endothelin type A receptor antagonist on coronary microvascular spasm induced by repeated epicardial coronary artery endothelial denudation in pigs. J Atheroscler Thromb 2010; 17(1): 54-63.
[http://dx.doi.org/10.5551/jat.2147] [PMID: 20075598]
[78]
Harrison DG. From ST segments to endothelial pathophysiology: hypercholesterolemia and endothelial superoxide production. J Clin Invest 2014; 124(2): 473-5.
[http://dx.doi.org/10.1172/JCI70336] [PMID: 24487641]
[79]
Oumi T, Nozato T, Sakakibara A, et al. Malondialdehyde-modified low density lipoprotein as oxidative-stress marker in vasospastic angina patients. Int Heart J 2017; 58(3): 335-43.
[http://dx.doi.org/10.1536/ihj.16-455] [PMID: 28539572]
[80]
Ito T, Fujita H, Tani T, Sugiura T, Ohte N. Increased circulating malondialdehyde-modified low-density lipoprotein levels in patients with ergonovine-induced coronary artery spasm. Int J Cardiol 2015; 184: 475-80.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.040] [PMID: 25756568]
[81]
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86(5): 494-501.
[http://dx.doi.org/10.1161/01.RES.86.5.494] [PMID: 10720409]
[82]
Montezano AC, De Lucca Camargo L, Persson P, et al. NADPH oxidase 5 is a pro-contractile Nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J Am Heart Assoc 2018; 7(12)e009388
[http://dx.doi.org/10.1161/JAHA.118.009388] [PMID: 29907654]
[83]
Kugiyama K, Motoyama T, Hirashima O, et al. Vitamin C attenuates abnormal vasomotor reactivity in spasm coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 1998; 32(1): 103-9.
[http://dx.doi.org/10.1016/S0735-1097(98)00185-5] [PMID: 9669256]
[84]
Motoyama T, Kawano H, Kugiyama K, et al. Vitamin E administration improves impairment of endothelium-dependent vasodilation in patients with coronary spastic angina. J Am Coll Cardiol 1998; 32(6): 1672-9.
[http://dx.doi.org/10.1016/S0735-1097(98)00447-1] [PMID: 9822095]
[85]
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9(8)e301
[http://dx.doi.org/10.3390/biom9080301] [PMID: 31349600]
[86]
Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med 2001; 11(3-4): 93-102.
[http://dx.doi.org/10.1016/S1050-1738(01)00111-6] [PMID: 11686009]
[87]
Salonen RM, Nyyssönen K, Kaikkonen J, et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 2003; 107(7): 947-53.
[http://dx.doi.org/10.1161/01.CIR.0000050626.25057.51] [PMID: 12600905]
[88]
Muralidharan S, Maher GM, Boyle WA, Nerbonne JM. “Caged” phenylephrine: development and application to probe the mechanism of alpha-receptor-mediated vasoconstriction. Proc Natl Acad Sci USA 1993; 90(11): 5199-203.
[http://dx.doi.org/10.1073/pnas.90.11.5199] [PMID: 8389474]
[89]
Clement JP IV, Kunjilwar K, Gonzalez G, et al. Association and stoichiometry of K(ATP) channel subunits. Neuron 1997; 18(5): 827-38.
[http://dx.doi.org/10.1016/S0896-6273(00)80321-9] [PMID: 9182806]
[90]
Smith KJ, Chadburn AJ, Adomaviciene A, et al. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol 2013; 168(4): 3506-13.
[http://dx.doi.org/10.1016/j.ijcard.2013.04.210] [PMID: 23739550]
[91]
Chutkow WA, Pu J, Wheeler MT, et al. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J Clin Invest 2002; 110(2): 203-8.
[http://dx.doi.org/10.1172/JCI0215672] [PMID: 12122112]
[92]
Miki T, Suzuki M, Shibasaki T, et al. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 2002; 8(5): 466-72.
[http://dx.doi.org/10.1038/nm0502-466] [PMID: 11984590]
[93]
Malester B, Tong X, Ghiu I, et al. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion. FASEB J 2007; 21(9): 2162-72.
[http://dx.doi.org/10.1096/fj.06-7821com] [PMID: 17341678]
[94]
Teragawa H, Kato M, Yamagata T, Matsuura H, Kajiyama G. The preventive effect of magnesium on coronary spasm in patients with vasospastic angina. Chest 2000; 118(6): 1690-5.
[http://dx.doi.org/10.1378/chest.118.6.1690] [PMID: 11115460]
[95]
Yoshimura M, Oshima T, Matsuura H, Ishida T, Kambe M, Kajiyama G. Extracellular Mg2+ inhibits capacitative Ca2+ entry in vascular smooth muscle cells. Circulation 1997; 95(11): 2567-72.
[http://dx.doi.org/10.1161/01.CIR.95.11.2567] [PMID: 9184588]
[96]
Mallet RT, Sun J, Fan WL, Kang YH, Bünger R. Magnesium activated adenosine formation in intact perfused heart: predominance of ecto 5′-nucleotidase during hypermagnesemia. Biochim Biophys Acta 1996; 1290(2): 165-76.
[http://dx.doi.org/10.1016/0304-4165(96)00016-5] [PMID: 8645720]
[97]
Simpson D, Wellington K. Nicorandil: a review of its use in the management of stable angina pectoris, including high-risk patients. Drugs 2004; 64(17): 1941-55.
[http://dx.doi.org/10.2165/00003495-200464170-00012] [PMID: 15329045]
[98]
Miura T, Miki T. ATP-sensitive K+ channel openers: old drugs with new clinical benefits for the heart. Curr Vasc Pharmacol 2003; 1(3): 251-8.
[http://dx.doi.org/10.2174/1570161033476646] [PMID: 15320472]
[99]
Hayashi T, Ichikawa M, Iwata A, Nakata T, Lim YJ, Mishima M. Intracoronary nicorandil relieves multiple coronary vasospasm with hemodynamic collapse. Circ J 2008; 72(2): 327-30.
[http://dx.doi.org/10.1253/circj.72.327] [PMID: 18219174]
[100]
Deng CY, Yang H, Kuang SJ, et al. Upregulation of 5-hydroxytryptamine receptor signaling in coronary arteries after organ culture. PLoS One 2014; 9(9)e107128
[http://dx.doi.org/10.1371/journal.pone.0107128] [PMID: 25202989]
[101]
Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 2003; 93(8): 767-75.
[http://dx.doi.org/10.1161/01.RES.0000096650.91688.28] [PMID: 14500337]
[102]
El-Daly M, Saifeddine M, Mihara K, Ramachandran R, Triggle CR, Hollenberg MD. Proteinase-activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways. Br J Pharmacol 2014; 171(9): 2413-25.
[http://dx.doi.org/10.1111/bph.12593] [PMID: 24506284]
[103]
Kawakami T, Ohno H, Tanaka N, Ishihara H, Kobayakawa H, Sakurai T. The relationship between paroxysmal atrial fibrillation and coronary artery spasm. Pacing Clin Electrophysiol 2014; 37(5): 591-6.
[http://dx.doi.org/10.1111/pace.12299] [PMID: 24215419]
[104]
Jougasaki M, Yasue H, Takahashi K. Perivascular nerve lesion of the coronary artery involved in spasm in a patient with variant angina. Pathology 1989; 21(4): 304-7.
[http://dx.doi.org/10.3109/00313028909061079] [PMID: 2633119]
[105]
Yasue H, Horio Y, Nakamura N, et al. Induction of coronary artery spasm by acetylcholine in patients with variant angina: possible role of the parasympathetic nervous system in the pathogenesis of coronary artery spasm. Circulation 1986; 74(5): 955-63.
[http://dx.doi.org/10.1161/01.CIR.74.5.955] [PMID: 3769179]
[106]
Kaski JC, Maseri A, Vejar M, Crea F, Hackett D. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol 1989; 14(6): 1456-63.
[http://dx.doi.org/10.1016/0735-1097(89)90382-3] [PMID: 2809004]
[107]
Heusch G, Baumgart D, Camici P, et al. alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 2000; 101(6): 689-94.
[http://dx.doi.org/10.1161/01.CIR.101.6.689] [PMID: 10673263]
[108]
Winniford MD, Filipchuk N, Hillis LD. Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 1983; 67(6): 1185-8.
[http://dx.doi.org/10.1161/01.CIR.67.6.1185] [PMID: 6133637]
[109]
Abbate A, Hamza M, Cassano AD, et al. Sympathectomy as a treatment for refractory coronary artery spasm. Int J Cardiol 2012; 161(1): e7-9.
[http://dx.doi.org/10.1016/j.ijcard.2012.03.006] [PMID: 22465349]
[110]
Mizuno Y, Harada E, Morita S, et al. East asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015; 131(19): 1665-73.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013120] [PMID: 25759460]
[111]
Nakayama M, Yasue H, Yoshimura M, et al. T-786-->C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999; 99(22): 2864-70.
[http://dx.doi.org/10.1161/01.CIR.99.22.2864] [PMID: 10359729]
[112]
Yoshimura M, Yasue H, Nakayama M, et al. A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet 1998; 103(1): 65-9.
[http://dx.doi.org/10.1007/s004390050785] [PMID: 9737779]
[113]
Nakano T, Osanai T, Tomita H, Sekimata M, Homma Y, Okumura K. Enhanced activity of variant phospholipase C-delta1 protein (R257H) detected in patients with coronary artery spasm. Circulation 2002; 105(17): 2024-9.
[http://dx.doi.org/10.1161/01.CIR.0000014613.36469.3F] [PMID: 11980680]
[114]
Murase Y, Yamada Y, Hirashiki A, et al. Genetic risk and gene-environment interaction in coronary artery spasm in Japanese men and women. Eur Heart J 2004; 25(11): 970-7.
[http://dx.doi.org/10.1016/j.ehj.2004.02.020] [PMID: 15172469]
[115]
Mackness B, Durrington PN, Mackness MI. Polymorphisms of paraoxonase genes and low-density lipoprotein lipid peroxidation. Lancet 1999; 353(9151): 468-9.
[http://dx.doi.org/10.1016/S0140-6736(98)05105-8] [PMID: 9989726]
[116]
Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm--clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 2008; 51(1): 2-17.
[http://dx.doi.org/10.1016/j.jjcc.2008.01.001] [PMID: 18522770]
[117]
Suda A, Takahashi J, Hao K, et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. J Am Coll Cardiol 2019; 74(19): 2350-60.
[http://dx.doi.org/10.1016/j.jacc.2019.08.1056] [PMID: 31699275]
[118]
Sueda S, Kohno H, Fukuda H, et al. Frequency of provoked coronary spasms in patients undergoing coronary arteriography using a spasm provocation test via intracoronary administration of ergonovine. Angiology 2004; 55(4): 403-11.
[http://dx.doi.org/10.1177/000331970405500407] [PMID: 15258686]
[119]
Kim MH, Park EH, Yang DK, et al. Role of vasospasm in acute coronary syndrome: insights from ergonovine stress echocardiography. Circ J 2005; 69(1): 39-43.
[http://dx.doi.org/10.1253/circj.69.39] [PMID: 15635200]
[120]
Xiang D, Zeng D, Huo Y. Chinese expert consensus on diagnosis and treatment of coronary artery spasm Chinese. J Interv Cardiol 2015; 15(1): 30-40.
[http://dx.doi.org/10.11909/j.issn.1671-5411.2018.01.012 PMID: 29434623]
[121]
Ozaki Y, Keane D, Serruys PW. Progression and regression of coronary stenosis in the long-term follow-up of vasospastic angina. Circulation 1995; 92(9): 2446-56.
[http://dx.doi.org/10.1161/01.CIR.92.9.2446] [PMID: 7586344]
[122]
Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 1991; 18(4): 904-10.
[http://dx.doi.org/10.1016/0735-1097(91)90745-U] [PMID: 1894863]
[123]
Jagroop IA, Daskalopoulou SS, Mikhailidis DP. Endothelin-1 and human platelets. Curr Vasc Pharmacol 2005; 3(4): 393-9.
[http://dx.doi.org/10.2174/157016105774329453] [PMID: 16248783]
[124]
Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther 2008; 31(3): 187-99.
[http://dx.doi.org/10.1111/j.1365-2885.2008.00944.x] [PMID: 18471139]
[125]
Liu G, Liang B, Song X, et al. P selectin increases angiotensin II induced cardiac inflammation and fibrosis via platelet activation. Mol Med Rep 2016; 13(6): 5021-8.
[http://dx.doi.org/10.3892/mmr.2016.5186] [PMID: 27121797]
[126]
Steen VM, Holmsen H, Aarbakke G. The platelet-stimulating effect of adrenaline through alpha 2-adrenergic receptors requires simultaneous activation by a true stimulatory platelet agonist. Evidence that adrenaline per se does not induce human platelet activation in vitro. Thromb Haemost 1993; 70(3): 506-13.
[http://dx.doi.org/10.1055/s-0038-1649614] [PMID: 8259557]
[127]
Tada M, Kuzuya T, Inoue M, et al. Elevation of thromboxane B2 levels in patients with classic and variant angina Pectoris. Circulation 1981; 64(6): 1107-15.
[http://dx.doi.org/10.1161/01.CIR.64.6.1107] [PMID: 7296786]
[128]
Vlachojannis J, Tsakas S, Chinari E, Orphanos V, Zoumbos N, Kurz P. Increased endothelin-1 content in the platelets of hemodialysed patients. Clin Nephrol 1997; 48(3): 185-90.
[PMID: 9342491]
[129]
Irie T, Imaizumi T, Matuguchi T, et al. Increased fibrinopeptide A during anginal attacks in patients with variant angina. J Am Coll Cardiol 1989; 14(3): 589-94.
[http://dx.doi.org/10.1016/0735-1097(89)90097-1] [PMID: 2768708]
[130]
Kurata C, Shimane A. Intractable vasospastic angina. Heart 1997; 78(1): 93-4.
[http://dx.doi.org/10.1136/hrt.78.1.93] [PMID: 9290411]
[131]
Taqueti VR. Coronary microvascular dysfunction in vasospastic angina: provocative role for the microcirculation in macrovessel disease prognosis. J Am Coll Cardiol 2019; 74(19): 2361-4.
[http://dx.doi.org/10.1016/j.jacc.2019.09.042] [PMID: 31699276]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy