Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

The Potential of Flavonoids and Tannins from Medicinal Plants as Anticancer Agents

Author(s): Eugenia D. Teodor*, Oana Ungureanu, Florentina Gatea and Gabriel L. Radu

Volume 20, Issue 18, 2020

Page: [2216 - 2227] Pages: 12

DOI: 10.2174/1871520620666200516150829

Price: $65

Abstract

The tendency of using herbs extracts or natural compounds extracted from herbs for preventing or treating different illnesses, including cancer, continues to be an alternative to drug use. Many studies of plant compounds aimed at finding substances with selective cytotoxicity on abnormal cells. Phenolic compounds, as important secondary metabolites from plants, are one of them. In this review, the recent literature data from the past five years about anticancer/antitumor effect of flavonoids and tannins extracted from medicinal plants are surveyed. The cytostatic/antitumor effects of the individual compounds extracted from plants and/or of the plants' polyphenolic extracts are considered, in order to point out the most significant constituents or plants with anticancer potential. The most important results concerning these compounds and their derivatives in cancer prevention and treatment, the importance of their chemical structure, their mechanism of action in vitro and in vivo, and some bioavailability aspects are discussed.

Keywords: Flavonoids, tannins, medicinal plants, cytotoxicity, antitumor activity, bioavailability.

Graphical Abstract
[1]
Komlaga, G.; Agyare, C.; Dickson, R.A.; Mensah, M.L.K.; Annan, K.; Loiseau, P.M.; Champy, P. Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region. Ghana. J. Ethnopharmacol., 2015, 172, 333-346.
[http://dx.doi.org/10.1016/j.jep.2015.06.041 PMID: 26151245]
[2]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113, 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[3]
Alamgir, A.N.M. Secondary Metabolites: Secondary Metabolic Products Consisting of C and H; C, H, and O; N, S, and P Elements; and O/N Heterocycles. In:Therapeutic Use of Medicinal Plants and their Extracts; Springer International Publishing: Cham, 2018, Vol. 2, pp. 165-309.
[http://dx.doi.org/10.1007/978-3-319-92387-1_3]
[4]
Nandakumar, V.; Singh, T.; Katiyar, S.K. Multi-targeted prevention and therapy of cancer by proanthocyanidins. Cancer Lett., 2008, 269(2), 378-387.
[http://dx.doi.org/10.1016/j.canlet.2008.03.049 PMID: 18457915]
[5]
Danciu, C.; Soica, C.; Antal, D.; Alexa, E.; Pavel, I.Z.; Ghiulai, R.; Ardelean, F.; Babuta, R.M.; Popescu, A.; Dehelean, C.A. Natural compounds in the chemoprevention of malignant melanoma. Anticancer. Agents Med. Chem., 2018, 18(5), 631-644.
[http://dx.doi.org/10.2174/1871520617666171121142522 PMID: 29173184]
[6]
Terao, J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem. Pharmacol., 2017, 139, 15-23.
[http://dx.doi.org/10.1016/j.bcp.2017.03.021 PMID: 28377278]
[7]
Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol., 2017, 174(11), 1244-1262.
[http://dx.doi.org/10.1111/bph.13630 PMID: 27646690]
[8]
Kasimsetty, S.G.; Bialonska, D.; Reddy, M.K.; Thornton, C.; Willett, K.L.; Ferreira, D. Effects of pomegranate chemical constituents/intestinal microbial metabolites on CYP1B1 in 22Rv1 prostate cancer cells. J. Agric. Food Chem., 2009, 57(22), 10636-10644.
[http://dx.doi.org/10.1021/jf902716r PMID: 19919114]
[9]
Miene, C.; Weise, A.; Glei, M. Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97). Nutr. Cancer, 2011, 63(4), 653-662.
[http://dx.doi.org/10.1080/01635581.2011.552157 PMID: 21598179]
[10]
Kaulmann, A.; Bohn, T. Bioactivity of polyphenols: Preventive and adjuvant strategies toward reducing inflammatory bowel diseases-promises, perspectives, and pitfalls. Oxid. Med. Cell. Longev., 2016, 20169346470
[http://dx.doi.org/10.1155/2016/9346470] [PMID: 27478535]
[11]
Wang, C-G.; Yao, W-N.; Zhang, B.; Hua, J.; Liang, D.; Wang, H-S. Lung cancer and matrix metalloproteinases inhibitors of polyphenols from Selaginella tamariscina with suppression activity of migration. Bioorg. Med. Chem. Lett., 2018, 28(14), 2413-2417.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.024 PMID: 29921475]
[12]
Feng, Y.; Li, N.; Ma, H.; Bei, B.; Han, Y.; Chen, G. Undescribed phenylethyl flavones isolated from Patrinia villosa show cytoprotective properties via the modulation of the mir-144-3p/Nrf2 pathway. Phytochemistry, 2018, 153, 28-35.
[http://dx.doi.org/10.1016/j.phytochem.2018.05.016 PMID: 29859331]
[13]
Sun, Q.; Wang, D.; Li, F-F.; Yao, G-D.; Li, X.; Li, L-Z.; Huang, X-X.; Song, S-J. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorg. Med. Chem. Lett., 2016, 26(16), 3968-3972.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.002 PMID: 27400887]
[14]
Chen, X.; Mukwaya, E.; Wong, M-S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol., 2014, 52(5), 655-660.
[http://dx.doi.org/10.3109/13880209.2013.853809 PMID: 24256182]
[15]
Wang, D.; Sun, Q.; Wu, J.; Wang, W.; Yao, G.; Li, T.; Li, X.; Li, L.; Zhang, Y.; Cui, W. A new prenylated flavonoid induces G0/G1 arrest and apoptosis through p38/JNK MAPK pathways in human hepatocellular carcinoma cells Sci. Rep, 2017, 7, 5736:1-5736:13.
[16]
Desta, K.T.; Kim, G.S.; Abd El-Aty, A.M.; Raha, S.; Kim, M-B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H-C.; Shim, J-H.; Shin, S.C. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC-ESI-MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1053, 1-8.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.035 PMID: 28411462]
[17]
Paudel, K.R.; Panth, N. Phytochemical profile and biological activity of Nelumbo nucifera. Evid. Based Complement. Alternat. Med, 2015, 2015, 789124:1-789124:16.
[18]
Wu, C-H.; Yang, M-Y.; Lee, Y-J.; Wang, C-J. Nelumbo nucifera leaf polyphenol extract inhibits breast cancer cells metastasis in vitro and in vivo through PKCα targeting. J. Funct. Foods, 2017, 37, 480-490.
[http://dx.doi.org/10.1016/j.jff.2017.08.021]
[19]
Mohan, S.; Thiagarajan, K.; Chandrasekaran, R. Evaluation of ethyl gallate for its antioxidant and anticancer properties against chemical-induced tongue carcinogenesis in mice. Biochem. J., 2017, 474(17), 3011-3025.
[http://dx.doi.org/10.1042/BCJ20170316 PMID: 28679629]
[20]
Yi, J.; Wang, Z.; Bai, H.; Yu, X.; Jing, J.; Zuo, L. Optimization of purification, identification and evaluation of the in vitro antitumor activity of polyphenols from Pinus koraiensis pinecones. Molecules, 2015, 20(6), 10450-10467.
[http://dx.doi.org/10.3390/molecules200610450 PMID: 26056816]
[21]
Huang, C-C.; Hung, C-H.; Chen, C-C.; Kao, S-H.; Wang, C-J. Hibiscus sabdariffa polyphenol-enriched extract inhibits colon carcinoma metastasis associating with FAK and CD44/c-MET signaling. J. Funct. Foods, 2018, 48, 542-550.
[http://dx.doi.org/10.1016/j.jff.2018.07.055]
[22]
Yang, M-Y.; Peng, C-H.; Chan, K-C.; Yang, Y-S.; Huang, C-N.; Wang, C-J. The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J. Agric. Food Chem., 2010, 58(2), 850-859.
[http://dx.doi.org/10.1021/jf903209w PMID: 20017484]
[23]
Truong, X.; Park, S.-H.; Lee, Y.-G.; Jeong, H.; Moon, J.-H.; Jeon, T.-I. Protocatechuic acid from pear inhibits melanogenesis in melanoma cells. Int. J. Mol. Sci, 2017, 18, 1809:1-1809:10.
[http://dx.doi.org/10.3390/ijms18081809]
[24]
Maciel, L.G.; do Carmo, M.A.V.; Azevedo, L.; Daguer, H.; Molognoni, L.; de Almeida, M.M.; Granato, D.; Rosso, N.D. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., 2018, 113, 187-197.
[http://dx.doi.org/10.1016/j.fct.2018.01.053 PMID: 29407472]
[25]
Yun, B.H.; Lee, Y.H.; Park, K.T.; Jung, S.J.; Lee, Y.S. Synthesis of novel flavone derivatives possessing substituted benzamides and their biological evaluation against human cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(17), 4170-4173.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.063 PMID: 27503682]
[26]
Wu, K-H.; Ho, C-T.; Chen, Z-F.; Chen, L-C.; Whang-Peng, J.; Lin, T-N.; Ho, Y-S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 221-231.
[http://dx.doi.org/10.1016/j.jfda.2017.03.009 PMID: 29389559]
[27]
Kwon, Y. Food-derived polyphenols inhibit the growth of ovarian cancer cells irrespective of their ability to induce antioxidant responses. Heliyon, 2018, 4, e00753:1-e00753:19.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00753]
[28]
Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med, 2010, 15, 13:1-13:9.
[http://dx.doi.org/10.1186/1749-8546-5-13]
[29]
Matei, A.O.; Gatea, F.; Teodor, E.D.; Radu, G.L. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC. Chem. Pap., 2016, 70, 515-522.
[http://dx.doi.org/10.1515/chempap-2015-0222]
[30]
Khan, N.; Mukhtar, H. Cancer and metastasis: Prevention and treatment by green tea. Cancer Metastasis Rev., 2010, 29(3), 435-445.
[http://dx.doi.org/10.1007/s10555-010-9236-1 PMID: 20714789]
[31]
Bailey, H.H.; Mukhtar, H. Green tea polyphenols and cancer chemoprevention of genitourinary cancer. Am. Soc. Clin. Oncol. Educ. Book, 2013, 33, 92-96.
[http://dx.doi.org/10.1200/EdBook_AM.2013.33.92 PMID: 23714466]
[32]
Siddiqui, I.A.; Sanna, V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol. Nutr. Food Res., 2016, 60(6), 1330-1341.
[http://dx.doi.org/10.1002/mnfr.201600035 PMID: 26935239]
[33]
Nagle, D.G.; Ferreira, D.; Zhou, Y-D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020 PMID: 16876833]
[34]
Rady, I.; Mohamed, H.; Rady, M.; Siddiqui, I.A.; Mukhtar, H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egypt. J. Basic Appl. Sci., 2018, 5, 1-23.
[35]
Gan, R-Y.; Li, H-B.; Sui, Z-Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of Epigallocatechin Gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941.
[http://dx.doi.org/10.1080/10408398.2016.1231168 PMID: 27645804]
[36]
Aras, A.; Khokhar, A.R.; Qureshi, M.Z.; Silva, M.F.; Sobczak-Kupiec, A.; Pineda, E.A.G.; Hechenleitner, A.A.W.; Farooqi, A.A. Targeting cancer with nano-bullets: Curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac. J. Cancer Prev., 2014, 15(9), 3865-3871.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3865 PMID: 24935565]
[37]
Schmidt, O.T.H.; Lademann, R. Corilagin, another crystallized tanning agent from Dividivi. X. Communication on natural tanning agents. Justus Liebigs Ann. Chem., 1951, 571, 232-237.
[http://dx.doi.org/10.1002/jlac.19515710305]
[38]
Zheng, Z-Z.; Chen, L-H.; Liu, S-S.; Deng, Y.; Zheng, G-H.; Gu, Y.; Ming, Y-L. Bioguided fraction and isolation of the antitumor components from Phyllanthus niruri L. BioMed Res. Int., 2016, 20169729275
[http://dx.doi.org/10.1155/2016/9729275] [PMID: 27777954]
[39]
Gu, Y.; Xiao, L.; Ming, Y.; Zheng, Z.; Li, W. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo. Int. J. Oncol., 2016, 48(5), 1868-1876.
[http://dx.doi.org/10.3892/ijo.2016.3413 PMID: 26935808]
[40]
Ranganathan, P.; Weaver, K.L.; Capobianco, A.J. Notch signalling in solid tumours: A little bit of everything but not all the time. Nat. Rev. Cancer, 2011, 11(5), 338-351.
[http://dx.doi.org/10.1038/nrc3035 PMID: 21508972]
[41]
Deng, Y.; Li, X.; Li, X.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol. Rep., 2018, 39(6), 2545-2552.
[http://dx.doi.org/10.3892/or.2018.6396 PMID: 29693193]
[42]
Jia, L.; Zhou, J.; Zhao, H.; Jin, H.; Lv, M.; Zhao, N.; Zheng, Z.; Lu, Y.; Ming, Y.; Yu, Y. Corilagin sensitizes epithelial ovarian cancer to chemotherapy by inhibiting Snailglycolysis pathways. Oncol. Rep., 2017, 38(4), 2464-2470.
[http://dx.doi.org/10.3892/or.2017.5886 PMID: 28791374]
[43]
Yokozawa, T.; Chen, C.P.; Tanaka, T.; Kitani, K. Effects of sanguiin H-6, a component of Sanguisorbae radix, on lipopolysaccharide-stimulated nitric oxide production. Biochem. Pharmacol., 2002, 63(5), 853-858.
[http://dx.doi.org/10.1016/S0006-2952(01)00930-3 PMID: 11911836]
[44]
Ko, H.; Jeon, H.; Lee, D.; Choi, H-K.; Kang, K.S.; Choi, K-C. Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg. Med. Chem. Lett., 2015, 25(23), 5508-5513.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.067 PMID: 26508552]
[45]
Park, E-J.; Lee, D.; Baek, S-E.; Kim, K.H.; Kang, K.S.; Jang, T.S.; Lee, H.L.; Song, J.H.; Yoo, J-E. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(18), 4389-4392.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.019 PMID: 28835347]
[46]
Gross, A.; McDonnell, J.M.; Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 1999, 13(15), 1899-1911.
[http://dx.doi.org/10.1101/gad.13.15.1899 PMID: 10444588]
[47]
Chhabra, S.; Mishra, T.; Kumar, Y.; Thacker, G.; Kanojiya, S.; Chattopadhyay, N.; Narender, T.; Trivedi, A.K. Chebulinic acid isolated from the fruits of Terminalia chebula specifically induces apoptosis in acute myeloid leukemia cells. Phytother. Res., 2017, 31(12), 1849-1857.
[http://dx.doi.org/10.1002/ptr.5927 PMID: 28921713]
[48]
Shimozu, Y.; Kimura, Y.; Esumi, A.; Aoyama, H.; Kuroda, T.; Sakagami, H.; Hatano, T. Ellagitannins of Davidia involucrata. I. Structure of Davicratinic acid A and effects of Davidia tannins on drug-resistant bacteria and human oral squamous cell carcinomas. Molecules, 2017, 22, 470:1-470:9.
[49]
Orabi, M.A.A.; Taniguchi, S.; Sakagami, H.; Yoshimura, M.; Amakura, Y.; Hatano, T. Hydrolyzable tannins of Tamaricaceous plants. 7.1 structures and cytotoxic properties of oligomeric ellagitannins from leaves of Tamarix nilotica and cultured tissues of Tamarix tetrandra. J. Nat. Prod., 2016, 79(4), 984-995.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01065 PMID: 26938659]
[50]
Park, E.; Kwon, H.Y.; Jung, J.H.; Jung, D-B.; Jeong, A.; Cheon, J.; Kim, B.; Kim, S-H. Inhibition of myeloid cell leukemia 1 and activation of caspases are critically involved in gallotannin-induced apoptosis in prostate cancer cells. Phytother. Res., 2015, 29(8), 1225-1236.
[http://dx.doi.org/10.1002/ptr.5371 PMID: 26014377]
[51]
Tang, J.M.; Min, J.; Li, B.S.; Hong, S.S.; Liu, C.; Hu, M.; Li, Y.; Yang, J.; Hong, L. Therapeutic effects of punicalagin against ovarian carcinoma cells in association With β-catenin signaling inhibition. Int. J. Gynecol. Cancer, 2016, 26(9), 1557-1563.
[http://dx.doi.org/10.1097/IGC.0000000000000805 PMID: 27540692]
[52]
Cheng, X.; Gao, Y.; Yao, X.; Yu, H.; Bao, J.; Guan, H.; Sun, Y.; Zhang, L. Punicalagin induces apoptosis-independent autophagic cell death in human papillary thyroid carcinoma BCPAP cells. RSC Advances, 2016, 6, 68485-68493.
[http://dx.doi.org/10.1039/C6RA13431A]
[53]
Wen, L.; You, L.; Yang, X.; Yang, J.; Chen, F.; Jiang, Y.; Yang, B. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity. Free Radic. Biol. Med., 2015, 84, 171-184.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.023 PMID: 25857215]
[54]
Forman, V.; Haladová, M.; Grančai, D.; Ficková, M. Antiproliferative activities of water infusions from leaves of five Cornus L. species. Molecules, 2015, 20(12), 22546-22552.
[http://dx.doi.org/10.3390/molecules201219786 PMID: 26694338]
[55]
Zingue, S.; Cisilotto, J.; Tueche, A.B.; Bishayee, A.; Mefegue, F.A.; Sandjo, L.P.; Magne Nde, C.B.; Winter, E.; Michel, T.; Ndinteh, D.T.; Awounfack, C.F.; Silihe, K.K.; Melachio Tanekou, T.T.; Creczynski-Pasa, T.B.; Njamen, D. Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity in vitro and prevents experimental mammary tumorigenesis in vivo. J. Ethnopharmacol., 2016, 190, 183-199.
[http://dx.doi.org/10.1016/j.jep.2016.06.004 PMID: 27267829]
[56]
Urueña, C.; Gomez, A.; Sandoval, T.; Hernandez, J.; Li, S.; Barreto, A.; Fiorentino, S.; Multifunctional, T. Multifunctional T lymphocytes generated after therapy with an antitumor gallotanin-rich normalized fraction are related to primary tumor size reduction in a breast cancer model. Integr. Cancer Ther., 2015, 14(5), 468-483.
[http://dx.doi.org/10.1177/1534735415596425 PMID: 26220604]
[57]
Bussmann, R.W.; Sharon, D. Traditional medicinal plant use in Northern Peru: Tracking two thousand years of healing culture. J. Ethnobiol. Ethnomed., 2006, 2, 47.
[http://dx.doi.org/10.1186/1746-4269-2-47 PMID: 17090303]
[58]
Sandoval, T.A.; Urueña, C.P.; Llano, M.; Gómez-Cadena, A.; Hernández, J.F.; Sequeda, L.G.; Loaiza, A.E.; Barreto, A.; Li, S.; Fiorentino, S. Standardized extract from Caesalpinia spinosa is cytotoxic over cancer stem cells and enhance anticancer activity of doxorubicin. Am. J. Chin. Med., 2016, 44(8), 1693-1717.
[http://dx.doi.org/10.1142/S0192415X16500956 PMID: 27852125]
[59]
Ads, E.N.; Rajendrasozhan, S.; Hassan, S.I.; Sharawy, S.M.S.; Humaidi, J.R. Phytochemical, antimicrobial and cytotoxic evaluation of Ziziphus spina-christi (L.) stem bark. Biomed. Res. India, 2015, 28, 6646-6653.
[60]
Zhang, B-M.; Wang, Z-B.; Xin, P.; Wang, Q-H.; Bu, H.; Kuang, H-X. Phytochemistry and pharmacology of genus Ephedra. Chin. J. Nat. Med., 2018, 16(11), 811-828.
[http://dx.doi.org/10.1016/S1875-5364(18)30123-7 PMID: 30502763]
[61]
Schäfer, S.; Salcher, S.; Seiter, M.; Ranninger, C.; Möst, M.; Obexer, P.; Huber, C.G.; Ausserlechner, M.J.; Schwaiger, S.; Stuppner, H. Characterization of the XIAP-inhibiting proanthocyanidin fraction of the aerial parts of Ephedra sinica. Planta Med., 2016, 82(11-12), 973-985.
[http://dx.doi.org/10.1055/s-0042-107253 PMID: 27220077]
[62]
City of Hope Medical Center IH636 Grape Seed Extract in Preventing Breast Cancer in Postmenopausal Women at Risk of Developing Breast Cancer. 2015.
[63]
Ko, H. Geraniin inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg. Med. Chem. Lett., 2015, 25(17), 3529-3534.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.093 PMID: 26169124]
[64]
Yang, C-M.; Cheng, H-Y.; Lin, T-C.; Chiang, L-C.; Lin, C-C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-D-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol., 2007, 110(3), 555-558.
[http://dx.doi.org/10.1016/j.jep.2006.09.039 PMID: 17113739]
[65]
Ito, H.; Iguchi, A.; Hatano, T. Identification of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. J. Agric. Food Chem., 2008, 56(2), 393-400.
[http://dx.doi.org/10.1021/jf0726942 PMID: 18163562]
[66]
Lee, J-C.; Tsai, C-Y.; Kao, J-Y.; Kao, M-C.; Tsai, S-C.; Chang, C-S.; Huang, L-J.; Kuo, S-C.; Lin, J-K.; Way, T-D. Geraniin-mediated apoptosis by cleavage of focal adhesion kinase through up-regulation of Fas ligand expression in human melanoma cells. Mol. Nutr. Food Res., 2008, 52(6), 655-663.
[http://dx.doi.org/10.1002/mnfr.200700381 PMID: 18435487]
[67]
Manaharan, T.; Ming, C.H.; Palanisamy, U.D. Syzygium aqueum leaf extract and its bioactive compounds enhances pre-adipocyte differentiation and 2-NBDG uptake in 3T3-L1 cells. Food Chem., 2013, 136(2), 354-363.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.056 PMID: 23122070]
[68]
Lin, S-Y.; Wang, C-C.; Lu, Y-L.; Wu, W-C.; Hou, W-C. Antioxidant, anti-semicarbazide-sensitive amine oxidase, and anti-hypertensive activities of geraniin isolated from Phyllanthus urinaria. Food Chem. Toxicol., 2008, 46(7), 2485-2492.
[http://dx.doi.org/10.1016/j.fct.2008.04.007 PMID: 18495318]
[69]
Wang, X.; Chen, Z.; Li, X.; Jiang, Z.; Zhao, Y.; Ping, F. Geraniin suppresses ovarian cancer growth through inhibition of NF-κB activation and downregulation of Mcl-1 expression: WANG ET AL. J. Biochem. Mol. Toxicol., 2017, 31e21929
[http://dx.doi.org/10.1002/jbt.21929]]
[70]
Wang, Y.; Wan, D.; Zhou, R.; Zhong, W.; Lu, S.; Chai, Y. Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through regulation of PI3K/Akt and ERK1/2 signaling pathways. Anticancer Drugs, 2017, 28(9), 959-966.
[http://dx.doi.org/10.1097/CAD.0000000000000535 PMID: 28704237]
[71]
Yoshida, T.; Yoshimura, M.; Amakura, Y. Chemical and biological significance of Oenothein B and related ellagitannin oligomers with macrocyclic structure Molecules, 2018, 23, 552:1-552:21.
[http://dx.doi.org/10.3390/molecules23030552]
[72]
Hatano, T.; Yasuhara, T.; Matsuda, M.; Yazaki, K.; Yoshida, T.; Okuda, T. Oenothein B, a dimeric, hydrolysable tannin with macrocyclic structure, and accompanying tannins from Oenothera erythrosepala. J. Chem. Soc. Perkin, 1990, 1, 2735.
[http://dx.doi.org/10.1039/p19900002735]
[73]
Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int. J. Mol. Sci., 2010, 11(1), 79-106.
[http://dx.doi.org/10.3390/ijms11010079 PMID: 20162003]
[74]
Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother., 2018, 99, 43-50.
[http://dx.doi.org/10.1016/j.biopha.2018.01.030 PMID: 29324311]
[75]
Yisimayili, Z.; Guo, X.; Liu, H.; Xu, Z.; Abdulla, R.; Akber Aisa, H.; Huang, C. Metabolic profiling analysis of corilagin in vivo and in vitro using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2019, 165, 251-260.
[http://dx.doi.org/10.1016/j.jpba.2018.12.013 PMID: 30562708]
[76]
Reddy, B.U.; Mullick, R.; Kumar, A.; Sharma, G.; Bag, P.; Roy, C.L.; Sudha, G.; Tandon, H.; Dave, P.; Shukla, A.; Srinivasan, P.; Nandhitha, M.; Srinivasan, N.; Das, S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res., 2018, 150, 47-59.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.004 PMID: 29224736]
[77]
Zou, D.; Ganugula, R.; Arora, M.; Nabity, M.B.; Sheikh-Hamad, D.; Kumar, M.N.V.R. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Renal Physiol., 2019, 317(5), F1255-F1264.
[http://dx.doi.org/10.1152/ajprenal.00346.2019 PMID: 31532243]
[78]
Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr., 2015, 54(3), 325-341.
[http://dx.doi.org/10.1007/s00394-015-0852-y PMID: 25672526]
[79]
Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A-M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; Martínez-Cuesta, M.C.; Santos, C.N. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites--a position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res., 2015, 59(7), 1307-1323.
[http://dx.doi.org/10.1002/mnfr.201400745 PMID: 25988374]
[80]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods, 2018, 48, 457-471.
[http://dx.doi.org/10.1016/j.jff.2018.07.037]
[81]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; Athira, K.V.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008 PMID: 25596314]
[82]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother, 2019, 112, 108612:1--108612:10.
[http://dx.doi.org/10.1016/j.biopha.2019.108612]
[83]
Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z-J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv., 2020, 38107385
[PMID: 31004736]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy