Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Dietary Technologies to Optimize Healing from Injury-Induced Inflammation

Author(s): Barry Sears*, Mary Perry and Asish K. Saha*

Volume 20, Issue 2, 2021

Published on: 12 May, 2020

Page: [123 - 131] Pages: 9

DOI: 10.2174/1871523019666200512114210

open access plus

Open Access Journals Promotions 2
Abstract

Inflammation is an acute adaptive response to injury. However, if the initial inflammatory response to an injury is not completely healed, it becomes chronic low-level inflammation that is strongly associated with many chronic disease states, including metabolic (obesity and diabetes), cardiovascular, auto-immune, and neurogenerative disorders as well as cancer. The healing process is far more complex than the initiation of inflammation. Within that complexity of healing is a sequence of events that are under profound dietary control and can be defined by specific blood markers. Those molecular events of the healing process that are under significant dietary control are termed as the Resolution Response. The purpose of this review is to describe the molecular components of the Resolution Response and how different dietary factors can either optimize or inhibit their actions. In particular, those dietary components that optimize the Resolution Response include a calorie-restricted, protein-adequate, moderate-carbohydrate, low-fat diet referred to as the Zone diet, omega-3 fatty acids, and polyphenols. The appropriate combination of these dietary interventions constitutes the foundation of Pro-Resolution Nutrition. The effect of these dietary components the actions of NF-κB, AMPK, eicosanoids, and resolvins are described in this review, as well as ranges of appropriate blood markers that indicate success in optimizing the Resolution Response by dietary interventions.

Keywords: Resolution response, inflammation, zone diet, omega-3 fatty acids, polyphenols, NF-κB, AMPK, eicosanoids, resolvins.

Graphical Abstract
Animated Abstract
[1]
Sears, B. The Resolution Zone; Zone Press: Palm City, FL, 2019.
[2]
Pasteur, L. On germ theory. Science, 1881, 2(63), 420-422.
[http://dx.doi.org/10.1126/science.os-2.63.420] [PMID: 17830637]
[3]
Dubos, R. Louis Pasteur: Freelance of Science; Little Brown: New York, NY, 1950.
[4]
Oates, J.A. The 1982 nobel prize in physiology or medicine. Science, 1982, 218(4574), 765-768.
[http://dx.doi.org/10.1126/science.6753151] [PMID: 6753151]
[5]
Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014, 510(7503), 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[6]
Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5), 705-716.
[http://dx.doi.org/10.1016/0092-8674(86)90346-6] [PMID: 3091258]
[7]
Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell, 2017, 168(1-2), 37-57.
[http://dx.doi.org/10.1016/j.cell.2016.12.012] [PMID: 28086098]
[8]
Spite, M.; Clària, J.; Serhan, C.N. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab., 2014, 19(1), 21-36.
[http://dx.doi.org/10.1016/j.cmet.2013.10.006] [PMID: 24239568]
[9]
Chiang, N.; Fredman, G.; Bäckhed, F.; Oh, S.F.; Vickery, T.; Schmidt, B.A.; Serhan, C.N. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature, 2012, 484(7395), 524-528.
[http://dx.doi.org/10.1038/nature11042] [PMID: 22538616]
[10]
Morita, M.; Kuba, K.; Ichikawa, A.; Nakayama, M.; Katahira, J.; Iwamoto, R.; Watanebe, T.; Sakabe, S.; Daidoji, T.; Nakamura, S.; Kadowaki, A.; Ohto, T.; Nakanishi, H.; Taguchi, R.; Nakaya, T.; Murakami, M.; Yoneda, Y.; Arai, H.; Kawaoka, Y.; Penninger, J.M.; Arita, M.; Imai, Y. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell, 2013, 153(1), 112-125.
[http://dx.doi.org/10.1016/j.cell.2013.02.027] [PMID: 23477864]
[11]
Ramon, S.; Baker, S.F.; Sahler, J.M.; Kim, N.; Feldsott, E.A.; Serhan, C.N.; Martínez-Sobrido, L.; Topham, D.J.; Phipps, R.P. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? J. Immunol., 2014, 193(12), 6031-6040.
[http://dx.doi.org/10.4049/jimmunol.1302795] [PMID: 25392529]
[12]
Chen, X.; Li, X.; Zhang, W.; He, J.; Xu, B.; Lei, B.; Wang, Z.; Cates, C.; Rousselle, T.; Li, J. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism, 2018, 83, 256-270.
[http://dx.doi.org/10.1016/j.metabol.2018.03.004] [PMID: 29526538]
[13]
Cantó, C.; Auwerx, J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell. Mol. Life Sci., 2010, 67(20), 3407-3423.
[http://dx.doi.org/10.1007/s00018-010-0454-z] [PMID: 20640476]
[14]
Jeon, S-M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med., 2016, 48(7)e245
[http://dx.doi.org/10.1038/emm.2016.81] [PMID: 27416781]
[15]
Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature, 2017, 542(7640), 177-185.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[16]
Salminen, A.; Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev., 2012, 11(2), 230-241.
[http://dx.doi.org/10.1016/j.arr.2011.12.005] [PMID: 22186033]
[17]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell. Mol. Life Sci., 2019, 76(10), 1901-1918.
[http://dx.doi.org/10.1007/s00018-019-03048-x] [PMID: 30788516]
[18]
Del Pinto, R.; Ferri, C. Inflammation-accelerated senescence and the cardiovascular system: Mechanisms and perspectives. Int. J. Mol. Sci., 2018, 19(12)E3701
[http://dx.doi.org/10.3390/ijms19123701] [PMID: 30469478]
[19]
Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 2013, 75, 685-705.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183653] [PMID: 23140366]
[20]
Kirkland, J.L.; Tchkonia, T. Cellular senescence: A translational perspective. EBioMedicine, 2017, 21, 21-28.
[http://dx.doi.org/10.1016/j.ebiom.2017.04.013] [PMID: 28416161]
[21]
Prata, L.G.P.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin. Immunol., 2018.40, 101275
[http://dx.doi.org/10.1016/j.smim.2019.04.003] [PMID: 31088710]
[22]
Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: senescence-induced senescence. Aging Cell, 2012, 11(2), 345-349.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00795.x] [PMID: 22321662]
[23]
Childs, B.G.; Gluscevic, M.; Baker, D.J.; Laberge, R.M.; Marquess, D.; Dananberg, J.; van Deursen, J.M. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov., 2017, 16(10), 718-735.
[http://dx.doi.org/10.1038/nrd.2017.116] [PMID: 28729727]
[24]
Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, 214(2), 199-210.
[http://dx.doi.org/10.1002/path.2277] [PMID: 18161745]
[25]
Eming, S.A.; Wynn, T.A.; Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, 356(6342), 1026-1030.
[http://dx.doi.org/10.1126/science.aam7928] [PMID: 28596335]
[26]
Salminen, A. Activation of immunosuppressive network in the aging process. Ageing Res. Rev., 2020.57, 100998
[http://dx.doi.org/10.1016/j.arr.2019.100998] [PMID: 31838128]
[27]
Josephson, A.M.; Bradaschia-Correa, V.; Lee, S.; Leclerc, K.; Patel, K.S.; Muinos Lopez, E.; Litwa, H.P.; Neibart, S.S.; Kadiyala, M.; Wong, M.Z.; Mizrahi, M.M.; Yim, N.L.; Ramme, A.J.; Egol, K.A.; Leucht, P. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc. Natl. Acad. Sci. USA, 2019, 116(14), 6995-7004.
[http://dx.doi.org/10.1073/pnas.1810692116] [PMID: 30894483]
[28]
Fullerton, M.D.; Steinberg, G.R. Editorial: “Presenting” an adaptive role for AMPK. J. Leukoc. Biol., 2013, 94(6), 1099-1101.
[http://dx.doi.org/10.1189/jlb.0613335] [PMID: 24296592]
[29]
Carroll, K.C.; Viollet, B.; Suttles, J. AMPKα1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J. Leukoc. Biol., 2013, 94(6), 1113-1121.
[http://dx.doi.org/10.1189/jlb.0313157] [PMID: 23883517]
[30]
Mitchell, J.P.; Carmody, R.J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol., 2018, 335, 41-84.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.007] [PMID: 29305014]
[31]
Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 2007, 13(11), 460-469.
[http://dx.doi.org/10.1016/j.molmed.2007.09.002] [PMID: 18029230]
[32]
Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[33]
Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 132, 41-48.
[http://dx.doi.org/10.1016/j.plefa.2018.03.004] [PMID: 29610056]
[34]
Serhan, C.N.; Chiang, N.; Dalli, J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin. Immunol., 2015, 27(3), 200-215.
[http://dx.doi.org/10.1016/j.smim.2015.03.004] [PMID: 25857211]
[35]
Dalli, J.; Serhan, C. Macrophage proresolving mediators-the when and where. Microbiol. Spectr., 2016, 4, 3.
[http://dx.doi.org/10.1128/microbiolspec.MCHD-0001-2014]
[36]
Elajami, T.K.; Colas, R.A.; Dalli, J.; Chiang, N.; Serhan, C.N.; Welty, F.K. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J., 2016, 30(8), 2792-2801.
[http://dx.doi.org/10.1096/fj.201500155R] [PMID: 27121596]
[37]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[38]
Hardie, D.G. Keeping the home fires burning: AMP-activated protein kinase. J. R. Soc. Interface, 2018, 15(138)20170774
[http://dx.doi.org/10.1098/rsif.2017.0774] [PMID: 29343628]
[39]
Sears, B. The Zone; Regan Books: New York, NY, 1995.
[40]
Pereira, M.A.; Swain, J.; Goldfine, A.B.; Rifai, N.; Ludwig, D.S. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA, 2004, 292(20), 2482-2490.
[http://dx.doi.org/10.1001/jama.292.20.2482] [PMID: 15562127]
[41]
Pittas, A.G.; Roberts, S.B.; Das, S.K.; Gilhooly, C.H.; Saltzman, E.; Golden, J.; Stark, P.C.; Greenberg, A.S. The effects of the dietary glycemic load on type 2 diabetes risk factors during weight loss. Obesity (Silver Spring), 2006, 14(12), 2200-2209.
[http://dx.doi.org/10.1038/oby.2006.258] [PMID: 17189547]
[42]
Markovic, T.P.; Jenkins, A.B.; Campbell, L.V.; Furler, S.M.; Kraegen, E.W.; Chisholm, D.J. The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM. Diabetes Care, 1998, 21(5), 687-694.
[http://dx.doi.org/10.2337/diacare.21.5.687] [PMID: 9589225]
[43]
Stulnig, T.M. The Zone diet and metabolic control in type 2 diabetes. J. Am. Coll. Nutr., 2015, 34(Suppl. 1), 39-41.
[http://dx.doi.org/10.1080/07315724.2015.1080110] [PMID: 26400433]
[44]
Sears, B.; Bell, S. The zone diet: an anti-inflammatory, low glycemic-load diet. Metab. Syndr. Relat. Disord., 2004, 2(1), 24-38.
[http://dx.doi.org/10.1089/met.2004.2.24] [PMID: 18370674]
[45]
Ludwig, D.S.; Majzoub, J.A.; Al-Zahrani, A.; Dallal, G.E.; Blanco, I.; Roberts, S.B. High glycemic index foods, overeating, and obesity. Pediatrics, 1999, 103(3)E26
[http://dx.doi.org/10.1542/peds.103.3.e26] [PMID: 10049982]
[46]
Hamdy, O.; Mottalib, A.; Morsi, A.; El-Sayed, N.; Goebel-Fabbri, A.; Arathuzik, G.; Shahar, J.; Kirpitch, A.; Zrebiec, J. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res. Care, 2017, 5(1)e000259
[http://dx.doi.org/10.1136/bmjdrc-2016-000259] [PMID: 28090332]
[47]
Rabassa, M.; Cherubini, A.; Zamora-Ros, R.; Urpi-Sarda, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: The invecchiare in chianti study. J. Am. Geriatr. Soc., 2015, 63(5), 938-946.
[http://dx.doi.org/10.1111/jgs.13379] [PMID: 25919574]
[48]
Rabassa, M.; Zamora-Ros, R.; Andres-Lacueva, C.; Urpi-Sarda, M.; Bandinelli, S.; Ferrucci, L.; Cherubini, A. Association between both total baseline urinary and dietary polyphenols and substantial physical performance decline risk in older adults: A 9-year follow-up of the InCHIANTI study. J. Nutr. Health Aging, 2016, 20(5), 478-485.
[http://dx.doi.org/10.1007/s12603-015-0600-2] [PMID: 27102783]
[49]
Urpi-Sarda, M.; Andres-Lacueva, C.; Rabassa, M.; Ruggiero, C.; Zamora-Ros, R.; Bandinelli, S.; Ferrucci, L.; Cherubini, A. The relationship between urinary total polyphenols and the frailty phenotype in a community-dwelling older population: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(9), 1141-1147.
[http://dx.doi.org/10.1093/gerona/glv026] [PMID: 25838546]
[50]
Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J. Nutr., 2013, 143(9), 1445-1450.
[http://dx.doi.org/10.3945/jn.113.177121] [PMID: 23803472]
[51]
Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A randomized clinical trial evaluating the efficacy of an anthocyanin-maqui berry extract (Delphinol®) on oxidative stress biomarkers. J. Am. Coll. Nutr., 2015, 34(Suppl. 1), 28-33.
[http://dx.doi.org/10.1080/07315724.2015.1080108] [PMID: 26400431]
[52]
Alvarado, J.; Schoenlau, F.; Leschot, A.; Salgad, A.M.; Vigil Portales, P. Delphinol® standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Med., 2016, 58(3)(Suppl. 1), 1-6.
[PMID: 27820958]
[53]
Sears, B.; Bailes, J.; Asselin, B. Therapeutic uses of high-dose omega-3 fatty acids to treat comatose patients with severe brain injury. PharmaNutrition, 2013, 1, 86-89.
[http://dx.doi.org/10.1016/j.phanu.2013.04.002]
[54]
Georgiou, T.; Neokleous, A.; Nikolaou, D.; Sears, B. Pilot study for treating dry age-related macular degeneration (AMD) with high-dose omega-3 fatty acids. PharmaNutrition, 2014, 2, 8-11.
[http://dx.doi.org/10.1016/j.phanu.2013.10.001]
[55]
Baidal, D.A.; Ricordi, C.; Garcia-Contreras, M.; Sonnino, A.; Fabbri, A. Combination high-dose omega-3 fatty acids and high-dose cholecalciferol in new onset type 1 diabetes: a potential role in preservation of beta-cell mass. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3313-3318.
[PMID: 27467009]
[56]
Cadario, F.; Savastio, S.; Rizzo, A.M.; Carrera, D.; Bona, G.; Ricordi, C. Can Type 1 diabetes progression be halted? Possible role of high dose vitamin D and omega 3 fatty acids. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(7), 1604-1609.
[PMID: 28429367]
[57]
Cadario, F.; Savastio, S.; Ricotti, R.; Rizzo, A.M.; Carrera, D.; Maiuri, L.; Ricordi, C. Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(2), 512-515.
[PMID: 29424911]
[58]
Endres, S.; Ghorbani, R.; Kelley, V.E.; Georgilis, K.; Lonnemann, G.; van der Meer, J.W.; Cannon, J.G.; Rogers, T.S.; Klempner, M.S.; Weber, P.C.; Schaefer, E.J.; Wolff, S.M.; Dinarello, C.A. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med., 1989, 320(5), 265-271.
[http://dx.doi.org/10.1056/NEJM198902023200501] [PMID: 2783477]
[59]
Viollet, B.; Horman, S.; Leclerc, J.; Lantier, L.; Foretz, M.; Billaud, M.; Giri, S.; Andreelli, F. AMPK inhibition in health and disease. Crit. Rev. Biochem. Mol. Biol., 2010, 45(4), 276-295.
[http://dx.doi.org/10.3109/10409238.2010.488215] [PMID: 20522000]
[60]
Coughlan, K.A.; Balon, T.W.; Valentine, R.J.; Petrocelli, R.; Schultz, V.; Brandon, A.; Cooney, G.J. Kraegen, E.W.; Ruderman, N.B.; Saha, A.K. Nutrient excess and AMPK downregulation in incubated skeletal muscle and muscle of glucose infused rats. PLoS One, 2015, 10(5)e0127388
[http://dx.doi.org/10.1371/journal.pone.0127388]] [PMID: 25996822 ]
[61]
Coughlan, K.A.; Valentine, R.J.; Ruderman, N.B.; Saha, A.K. Nutrient excess in AMPK downregulation and insulin resistance. J. Endocrinol. Diabetes Obes., 2013, 1(1), 1008-1020.
[PMID: 26120590]

© 2024 Bentham Science Publishers | Privacy Policy