Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Proteomics and Neurodegenerative Disorders: Advancements in the Diagnostic Analysis

Author(s): Nidhi Puranik, Dhananjay Yadav, Shiv Kumar Yadav, Vishal K. Chavda and Jun-O Jin*

Volume 21, Issue 12, 2020

Page: [1174 - 1183] Pages: 10

DOI: 10.2174/1389203721666200511094222

Price: $65

Abstract

Changes in protein structure and function, alteration in protein-protein interaction, and significant difference in protein concentration inside the body could play an important role in indicating the pathological evidence of abnormalities before the development of clinical symptoms and act as a critical detection and diagnostic tool commonly known as biomarkers. Biomarkers play important roles in the diagnosis of various chronic diseases, including cancer. Neurodegenerative disorders, including Parkinson's, Alzheimer's, Huntington's, prion, and multiple sclerosis, are well characterized by neuronal deterioration, resulting in precise modifications of neuronal proteins. Nowadays, the diagnosis of neurological disorders is based on proteins or biomarkers. These biomarkers may be found in the cerebrospinal fluid, blood, serum, plasma, saliva, or urine sample. Early diagnosis is urgently needed to prevent further damage. For early diagnosis, identifying the changes in novel protein levels and their functions under the disease conditions is necessary. These can be used as specific proteomic biomarkers for diseases, and they can be possibly identified using neuroproteomics. Neuroproteomics is an emerging tool to corroborate disease-associated protein profiles. It also gives an idea about how these proteins interact with other proteins and undergo post-translational modifications. Neuroproteomics is based on bioinformatics, which provides functional characteristics and advances in technology such as mass spectroscopy, and can help in the discovery of various disease-specific biomarkers. This review gives a complete idea about the types of biomarkers, sources of biomarkers, and techniques involved in the discovery of biomarkers for early diagnosis of neurodegenerative diseases.

Keywords: Neuroproteomics, biomarkers, neurodegenerative disorders, bioinformatics, proteomics.

Graphical Abstract
[1]
Mabb, A.M.; Ehlers, M.D. Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol., 2010, 26, 179-210.
[http://dx.doi.org/10.1146/annurev-cellbio-100109-104129] [PMID: 20604708]
[2]
Doyle, J.P.; Dougherty, J.D.; Heiman, M.; Schmidt, E.F.; Stevens, T.R.; Ma, G.; Bupp, S.; Shrestha, P.; Shah, R.D.; Doughty, M.L.; Gong, S.; Greengard, P.; Heintz, N. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell, 2008, 135(4), 749-762.
[http://dx.doi.org/10.1016/j.cell.2008.10.029] [PMID: 19013282]
[3]
Heiman, M.; Schaefer, A.; Gong, S.; Peterson, J.D.; Day, M.; Ramsey, K.E.; Suárez-Fariñas, M.; Schwarz, C.; Stephan, D.A.; Surmeier, D.J.; Greengard, P.; Heintz, N. A translational profiling approach for the molecular characterization of CNS cell types. Cell, 2008, 135(4), 738-748.
[http://dx.doi.org/10.1016/j.cell.2008.10.028] [PMID: 19013281]
[4]
Dougherty, J.D.; Schmidt, E.F.; Nakajima, M.; Heintz, N. Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Res., 2010, 38(13), 4218-4230.
[http://dx.doi.org/10.1093/nar/gkq130] [PMID: 20308160]
[5]
Sharma, S.; Young, R.J.; Chen, J.; Chen, X.; Oh, E.C.; Schiller, M.R. Minimotifs dysfunction is pervasive in neurodegenerative disorders. Alzheimers Dement. (N. Y.), 2018, 4, 414-432.
[http://dx.doi.org/10.1016/j.trci.2018.06.005] [PMID: 30225339]
[6]
Gong, C.X.; Iqbal, K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem., 2008, 15(23), 2321-2328.
[http://dx.doi.org/10.2174/092986708785909111] [PMID: 18855662]
[7]
Anderson, D.B.; Zanella, C.A.; Henley, J.M.; Cimarosti, H. Sumoylation: Implications for Neurodegenerative Diseases. Adv. Exp. Med. Biol., 2017, 963, 261-281.
[http://dx.doi.org/10.1007/978-3-319-50044-7_16] [PMID: 28197918]
[8]
Stamler, J.S.; Jia, L.; Eu, J.P.; McMahon, T.J.; Demchenko, I.T.; Bonaventura, J.; Gernert, K.; Piantadosi, C.A. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science, 1997, 276(5321), 2034-2037.
[http://dx.doi.org/10.1126/science.276.5321.2034] [PMID: 9197264]
[9]
Sheng, M.; Hoogenraad, C.C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem., 2007, 76, 823-847.
[http://dx.doi.org/10.1146/annurev.biochem.76.060805.160029] [PMID: 17243894]
[10]
Ho, B-C.; Andreasen, N.C.; Ziebell, S.; Pierson, R.; Magnotta, V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch. Gen. Psychiatry, 2011, 68(2), 128-137.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.199] [PMID: 21300943]
[11]
Collins, M.A. Generating ‘omic knowledge’: the role of informatics in high content screening. Comb. Chem. High Throughput Screen., 2009, 12(9), 917-925.
[http://dx.doi.org/10.2174/138620709789383259] [PMID: 19531005]
[12]
Drabik, A.; Bierczynska-Krzysik, A.; Bodzon-Kulakowska, A.; Suder, P.; Kotlinska, J.; Silberring, J. Proteomics in neurosciences. Mass Spectrom. Rev., 2007, 26(3), 432-450.
[http://dx.doi.org/10.1002/mas.20131] [PMID: 17405153]
[13]
Pula, J.H.; Kim, J.; Nichols, J. Visual aspects of neurologic protein misfolding disorders. Curr. Opin. Ophthalmol., 2009, 20(6), 482-489.
[http://dx.doi.org/10.1097/ICU.0b013e3283319899] [PMID: 19816176]
[14]
Shevchenko, G.; Konzer, A.; Musunuri, S.; Bergquist, J. Neuroproteomics tools in clinical practice. Biochimica et Biophysica Acta (BBA)-. Proteins and Proteomics, 2015, 1854, 705-717.
[http://dx.doi.org/10.1016/j.bbapap.2015.01.016]
[15]
Taylor, J.P.; Brown, R.H., Jr; Cleveland, D.W.; Decoding, A.L.S. Decoding ALS: from genes to mechanism. Nature, 2016, 539(7628), 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[16]
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature, 2016, 539(7628), 180-186.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[17]
Gregersen, N.; Bross, P. Protein misfolding and cellular stress: an overview. Methods Mol. Biol., 2010, 648, 3-23.
[http://dx.doi.org/10.1007/978-1-60761-756-3_1] [PMID: 20700702]
[18]
Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov. Disord., 2012, 27(9), 1083-1091.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[19]
Hirsch, L.; Jette, N.; Frolkis, A.; Steeves, T.; Pringsheim, T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology, 2016, 46(4), 292-300.
[http://dx.doi.org/10.1159/000445751] [PMID: 27105081]
[20]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
[http://dx.doi.org/10.1016/S0968-0004(99)01445-0] [PMID: 10470028]
[21]
Mak, P.; Siwek, M.; Pohl, J.; Dubin, A. Menstrual hemocidin HbB115-146 is an acidophilic antibacterial peptide potentiating the activity of human defensins, cathelicidin and lysozyme. Am. J. Reprod. Immunol., 2007, 57(1), 81-91.
[http://dx.doi.org/10.1111/j.1600-0897.2006.00456.x] [PMID: 17156194]
[22]
Sato, M.; Chang, E.; Igarashi, T.; Noble, L.J. Neuronal injury and loss after traumatic brain injury: time course and regional variability. Brain Res., 2001, 917(1), 45-54.
[http://dx.doi.org/10.1016/S0006-8993(01)02905-5] [PMID: 11602228]
[23]
Carron, S.F.; Alwis, D.S.; Rajan, R. Traumatic brain injury and neuronal functionality changes in sensory cortex. Front. Syst. Neurosci., 2016, 10, 47.
[http://dx.doi.org/10.3389/fnsys.2016.00047] [PMID: 27313514]
[24]
Petzold, A.; Tisdall, M.M.; Girbes, A.R.; Martinian, L.; Thom, M.; Kitchen, N.; Smith, M. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain, 2011, 134(Pt 2), 464-483.
[http://dx.doi.org/10.1093/brain/awq360] [PMID: 21278408]
[25]
Ganau, M.; Syrmos, N.; Paris, M.; Ganau, L.; Ligarotti, G.K.I.; Moghaddamjou, A.; Chibbaro, S.; Soddu, A.; Ambu, R.; Prisco, L. Current and future applications of biomedical engineering for proteomic profiling: Predictive biomarkers in neuro-traumatology. Medicines (Basel), 2018, 5(1), 19.
[http://dx.doi.org/10.3390/medicines5010019] [PMID: 29401743]
[26]
Katare, D.P.; Malik, H.; Abdin, M. Neuroproteomics: advancement and challenges for biomarker discovery in neurodegenerative diseases. Int. J. Pharm. Pharm. Sci., 2013, 5, 14.
[27]
He, R.; Yan, X.; Guo, J.; Xu, Q.; Tang, B.; Sun, Q. Recent advances in Biomarkers for Parkinson’s disease. Front. Aging Neurosci., 2018, 10, 305.
[http://dx.doi.org/10.3389/fnagi.2018.00305] [PMID: 30364199]
[28]
Shoemaker, L.D.; Achrol, A.S.; Sethu, P.; Steinberg, G.K.; Chang, S.D. Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery, 2012, 70(3), 518-525.
[http://dx.doi.org/10.1227/NEU.0b013e3182333a26] [PMID: 21866062]
[29]
Guest, P.C.; Guest, F.L.; Martins-de Souza, D. Making Sense of Blood-Based Proteomics and Metabolomics in Psychiatric Research. Int. J. Neuropsychopharmacol., 2016, 19(6)pyv138
[30]
Sherer, T.B. Biomarkers for Parkinson’s disease., 2011.
[31]
Counts, S.E.; Ikonomovic, M.D.; Mercado, N.; Vega, I.E.; Mufson, E.J. Biomarkers for the Early Detection and Progression of Alzheimer’s Disease. Neurotherapeutics, 2017, 14(1), 35-53.
[http://dx.doi.org/10.1007/s13311-016-0481-z] [PMID: 27738903]
[32]
Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol., 2019, 18(6), 573-586.
[http://dx.doi.org/10.1016/S1474-4422(19)30024-9] [PMID: 30981640]
[33]
Donohue, M.C.; Moghadam, S.H.; Roe, A.D.; Sun, C-K.; Edland, S.D.; Thomas, R.G.; Petersen, R.C.; Sano, M.; Galasko, D.; Aisen, P.S.; Rissman, R.A. Longitudinal plasma amyloid beta in Alzheimer’s disease clinical trials. Alzheimers Dement., 2015, 11(9), 1069-1079.
[http://dx.doi.org/10.1016/j.jalz.2014.07.156] [PMID: 25301682]
[34]
Lista, S.; Zetterberg, H.; O’Bryant, S.E.; Blennow, K.; Hampel, H. Evolving relevance of neuroproteomics in Alzheimer’s disease.Neuroproteomics; Springer, 2017, pp. 101-115.
[http://dx.doi.org/10.1007/978-1-4939-6952-4_5]
[35]
Babić, M.; Svob Štrac, D.; Mück-Šeler, D.; Pivac, N.; Stanić, G.; Hof, P.R.; Simić, G. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat. Med. J., 2014, 55(4), 347-365.
[http://dx.doi.org/10.3325/cmj.2014.55.347] [PMID: 25165049]
[36]
Seddighi, S.; Varma, V.; Thambisetty, M. α2-macroglobulin in Alzheimer’s disease: new roles for an old chaperone. Biomarkers Med., 2018, 12(4), 311-314.
[37]
Song, F.; Poljak, A.; Smythe, G.A.; Sachdev, P. Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res. Brain Res. Rev., 2009, 61(2), 69-80.
[http://dx.doi.org/10.1016/j.brainresrev.2009.05.003] [PMID: 19464319]
[38]
Ishizu, T.; Osoegawa, M.; Mei, F-J.; Kikuchi, H.; Tanaka, M.; Takakura, Y.; Minohara, M.; Murai, H.; Mihara, F.; Taniwaki, T.; Kira, J. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain, 2005, 128(Pt 5), 988-1002.
[http://dx.doi.org/10.1093/brain/awh453] [PMID: 15743872]
[39]
Szczuciński, A.; Losy, J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol. Scand., 2007, 115(3), 137-146.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00749.x] [PMID: 17295707]
[40]
Harris, V.K.; Sadiq, S.A. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol. Diagn. Ther., 2009, 13(4), 225-244.
[http://dx.doi.org/10.1007/BF03256329] [PMID: 19712003]
[41]
Katsavos, S.; Anagnostouli, M. Biomarkers in multiple sclerosis: an up-to-date overview. Mult. Scler. Int., 2013, 2013340508
[http://dx.doi.org/10.1155/2013/340508]
[42]
Axelsson, M.; Malmeström, C.; Nilsson, S.; Haghighi, S.; Rosengren, L.; Lycke, J. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J. Neurol., 2011, 258(5), 882-888.
[http://dx.doi.org/10.1007/s00415-010-5863-2] [PMID: 21197541]
[43]
Hughes, R.C.; Park, D.C.; Parsons, M.E.; O’Brien, M.D. Serum creatine kinase studies in the detection of carriers of Duchenne dystrophy. J. Neurol. Neurosurg. Psychiatry, 1971, 34(5), 527-530.
[http://dx.doi.org/10.1136/jnnp.34.5.527] [PMID: 4941478]
[44]
Burch, P.M.; Pogoryelova, O.; Goldstein, R.; Bennett, D.; Guglieri, M.; Straub, V.; Bushby, K.; Lochmüller, H.; Morris, C. Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy. J. Neuromuscul. Dis., 2015, 2(3), 241-255.
[http://dx.doi.org/10.3233/JND-140066] [PMID: 26870665]
[45]
Górecka, A. Neurol. Neurochir. Pol., 1975, 9(1), 7-13. [Lactic dehydrogenase isoenzymes (LDH) in the serum of patients with progressive muscular dystrophy
[46]
Hathout, Y.; Brody, E.; Clemens, P.R.; Cripe, L.; DeLisle, R.K.; Furlong, P.; Gordish-Dressman, H.; Hache, L.; Henricson, E.; Hoffman, E.P.; Kobayashi, Y.M.; Lorts, A.; Mah, J.K.; McDonald, C.; Mehler, B.; Nelson, S.; Nikrad, M.; Singer, B.; Steele, F.; Sterling, D.; Sweeney, H.L.; Williams, S.; Gold, L. Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA, 2015, 112(23), 7153-7158.
[http://dx.doi.org/10.1073/pnas.1507719112] [PMID: 26039989]
[47]
Hathout, Y.; Seol, H.; Han, M.H.J.; Zhang, A.; Brown, K.J.; Hoffman, E.P. Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin. Proteomics, 2016, 13, 9.
[http://dx.doi.org/10.1186/s12014-016-9109-x] [PMID: 27051355]
[48]
Ved, R.; Zaben, M. Biomarkers for traumatic brain injury. J. Neurol., 2018, 265(5), 1241-1243.
[http://dx.doi.org/10.1007/s00415-018-8855-2] [PMID: 29637274]
[49]
Wicker, E.; Benton, L.; George, K.; Furlow, W.; Villapol, S. Serum Amyloid A Protein as a Potential Biomarker for Severity and Acute Outcome in Traumatic Brain Injury. BioMed Res. Int., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/5967816]
[50]
Renaud, M.; Moreira, M-C.; Ben Monga, B.; Rodriguez, D.; Debs, R.; Charles, P.; Chaouch, M.; Ferrat, F.; Laurencin, C.; Vercueil, L.; Mallaret, M.; M’Zahem, A.; Pacha, L.A.; Tazir, M.; Tilikete, C.; Ollagnon, E.; Ochsner, F.; Kuntzer, T.; Jung, H.H.; Beis, J.M.; Netter, J.C.; Djamshidian, A.; Bower, M.; Bottani, A.; Walsh, R.; Murphy, S.; Reiley, T.; Bieth, É.; Roelens, F.; Poll-The, B.T.; Lourenço, C.M.; Jardim, L.B.; Straussberg, R.; Landrieu, P.; Roze, E.; Thobois, S.; Pouget, J.; Guissart, C.; Goizet, C.; Dürr, A.; Tranchant, C.; Koenig, M.; Anheim, M. Clinical, biomarker, and molecular delineations and genotype-phenotype correlations of ataxia with oculomotor apraxia type 1. JAMA Neurol., 2018, 75(4), 495-502.
[http://dx.doi.org/10.1001/jamaneurol.2017.4373] [PMID: 29356829]
[51]
Körtvelyessy, P.; Prüss, H.; Thurner, L.; Maetzler, W.; Vittore-Welliong, D.; Schultze-Amberger, J.; Heinze, H.J.; Reinhold, D.; Leypoldt, F.; Schreiber, S.; Bittner, D. Biomarkers of Neurodegeneration in Autoimmune-Mediated Encephalitis. Front. Neurol., 2018, 9, 668.
[http://dx.doi.org/10.3389/fneur.2018.00668] [PMID: 30283395]
[52]
Drel, V.R.; Lupachyk, S.; Shevalye, H.; Vareniuk, I.; Xu, W.; Zhang, J.; Delamere, N.A.; Shahidullah, M.; Slusher, B.; Obrosova, I.G. New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and tumor necrosis factor-α. Endocrinology, 2010, 151(6), 2547-2555.
[http://dx.doi.org/10.1210/en.2009-1342] [PMID: 20357221]
[53]
Li, J.; Zhang, H.; Xie, M.; Yan, L.; Chen, J.; Wang, H. NSE, a potential biomarker, is closely connected to diabetic peripheral neuropathy. Diabetes Care, 2013, 36(11), 3405-3410.
[http://dx.doi.org/10.2337/dc13-0590] [PMID: 23846809]
[54]
Tabur, S.; Korkmaz, H.; Ozkaya, M.; Aksoy, S.N.; Akarsu, E. Is calprotectin a novel biomarker of neuroinflammation in diabetic periferal neuropathy? Diabetol. Metab. Syndr., 2015, 7, 36.
[http://dx.doi.org/10.1186/s13098-015-0030-7] [PMID: 25995771]
[55]
Dunckley, T.; Coon, K.D.; Stephan, D.A. Discovery and development of biomarkers of neurological disease. Drug Discov. Today, 2005, 10(5), 326-334.
[http://dx.doi.org/10.1016/S1359-6446(04)03353-7] [PMID: 15749281]
[56]
Nikolcheva, T.; Jäger, S.; Bush, T.A.; Vargas, G. Challenges in the development of companion diagnostics for neuropsychiatric disorders. Expert Rev. Mol. Diagn., 2011, 11(8), 829-837.
[http://dx.doi.org/10.1586/erm.11.67] [PMID: 22022945]
[57]
Hulette, C.M.; Downey, B.T.; Burger, P.C. Macrophage markers in diagnostic neuropathology. Am. J. Surg. Pathol., 1992, 16(5), 493-499.
[http://dx.doi.org/10.1097/00000478-199205000-00008] [PMID: 1376020]
[58]
King, A.; Maekawa, S.; Bodi, I.; Troakes, C.; Curran, O.; Ashkan, K.; Al-Sarraj, S. Simulated surgical-type cerebral biopsies from post-mortem brains allows accurate neuropathological diagnoses in the majority of neurodegenerative disease groups. Acta Neuropathol. Commun., 2013, 1, 53.
[http://dx.doi.org/10.1186/2051-5960-1-53] [PMID: 24252649]
[59]
Franz, H.; Ullmann, C.; Becker, A.; Ryan, M.; Bahn, S.; Arendt, T.; Simon, M.; Pääbo, S.; Khaitovich, P. Systematic analysis of gene expression in human brains before and after death. Genome Biol., 2005, 6(13), R112.
[http://dx.doi.org/10.1186/gb-2005-6-13-r112] [PMID: 16420671]
[60]
Coon, K.D.; Dunckley, T.; Stephan, D.A. Biomarker identification in neurologic diseases: improving diagnostics and therapeutics. Expert Rev. Mol. Diagn., 2004, 4(3), 361-375.
[http://dx.doi.org/10.1586/14737159.4.3.361] [PMID: 15137903]
[61]
Pepe, M.S.; Li, C.I.; Feng, Z. Improving the quality of biomarker discovery research: the right samples and enough of them. Cancer Epidemiol. Biomarkers Prev., 2015, 24(6), 944-950.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-1227] [PMID: 25837819]
[62]
Musunuri, S.; Shevchenko, G.; Bergquist, J. Neuroproteomic profiling of human brain tissue using multidimensional separation techniques and selective enrichment of membrane proteins. Electrophoresis, 2012, 33(24), 3779-3785.
[http://dx.doi.org/10.1002/elps.201200474] [PMID: 23161168]
[63]
Sallam, R.M. Proteomics in cancer biomarkers discovery: challenges and applications., 2015.
[64]
Rohlwink, U.K.; Figaji, A.A. Biomarkers of brain injury in cerebral infections. Clin. Chem., 2014, 60(6), 823-834.
[http://dx.doi.org/10.1373/clinchem.2013.212472] [PMID: 24170612]
[65]
Füvesi, J.; Hanrieder, J.; Bencsik, K.; Rajda, C.; Kovács, S.K.; Kaizer, L.; Beniczky, S.; Vécsei, L.; Bergquist, J. Proteomic analysis of cerebrospinal fluid in a fulminant case of multiple sclerosis. Int. J. Mol. Sci., 2012, 13(6), 7676-7693.
[http://dx.doi.org/10.3390/ijms13067676] [PMID: 22837721]
[66]
Puccioni-Sohler, M.; Farias, L.C.; Cabral-Castro, M.J.; Zalis, M.G.; Kalil, R.S.; Salgado, M.C.F. Cerebrospinal Fluid Immunoglobulins as Potential Biomarkers of Chikungunya Encephalitis. Emerg. Infect. Dis., 2018, 24(5), 939-941.
[http://dx.doi.org/10.3201/eid2405.171763] [PMID: 29664389]
[67]
Ramström, M.; Bergquist, J. Proteomics of human cerebrospinal fluid.Proteomics of Human Body Fluids; Springer, 2007, pp. 269-284.
[http://dx.doi.org/10.1007/978-1-59745-432-2_12]
[68]
Baig, F.; Toulson, G.; Lawton, M.; Evetts, S.; Ruffmann, C.; Rolinski, M.; Klein, J.; Morovat, R.; Ben-Shlomo, Y.; Hu, M. Serum biomarkers for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2016, 87, e1-e1.
[69]
Amado, F.M.; Vitorino, R.M.; Lobo, M.J.; Domingues, P.M. Proteomics of Human Saliva.Proteomics of Human Body Fluids; Springer, 2007, pp. 347-376.
[http://dx.doi.org/10.1007/978-1-59745-432-2_16]
[70]
Wang, X.; Kaczor-Urbanowicz, K.E.; Wong, D.T.W. Salivary biomarkers in cancer detection. Med. Oncol., 2017, 34(1), 7-7.
[http://dx.doi.org/10.1007/s12032-016-0863-4] [PMID: 27943101]
[71]
Shah, F.D.; Begum, R.; Vajaria, B.N.; Patel, K.R.; Patel, J.B.; Shukla, S.N.; Patel, P.S. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian J. Clin. Biochem., 2011, 26(4), 326-334.
[http://dx.doi.org/10.1007/s12291-011-0149-8] [PMID: 23024467]
[72]
Al-Tarawneh, S.K.; Border, M.B.; Dibble, C.F.; Bencharit, S. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS, 2011, 15(6), 353-361.
[http://dx.doi.org/10.1089/omi.2010.0134] [PMID: 21568728]
[73]
Hu, S.; Loo, J.A.; Wong, D.T. Human body fluid proteome analysis. Proteomics, 2006, 6(23), 6326-6353.
[http://dx.doi.org/10.1002/pmic.200600284] [PMID: 17083142]
[74]
Pisitkun, T.; Shen, R-F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13368-13373.
[http://dx.doi.org/10.1073/pnas.0403453101] [PMID: 15326289]
[75]
Rodríguez-Suárez, E.; Siwy, J.; Zürbig, P.; Mischak, H. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim. Biophys. Acta, 2014, 1844(5), 884-898.
[http://dx.doi.org/10.1016/j.bbapap.2013.06.016] [PMID: 23831154]
[76]
Thongboonkerd, V.; Ahn, S.; Simpson, R. Proteomics of human body fluids; Principles, Methods, and Applications, 2007.
[http://dx.doi.org/10.1007/978-1-59745-432-2]
[77]
English, J.A.; Manadas, B.; Scaife, C.; Cotter, D.R.; Dunn, M.J. Partitioning the proteome: phase separation for targeted analysis of membrane proteins in human post-mortem brain. PLoS One, 2012, 7(6)e39509
[http://dx.doi.org/10.1371/journal.pone.0039509] [PMID: 22745773]
[78]
Bayés, A.; Grant, S.G. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci., 2009, 10(9), 635-646.
[http://dx.doi.org/10.1038/nrn2701] [PMID: 19693028]
[79]
Föcking, M.; Boersema, P.J.; O’Donoghue, N.; Lubec, G.; Pennington, S.R.; Cotter, D.R.; Dunn, M.J. 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics, 2006, 6(18), 4914-4931.
[http://dx.doi.org/10.1002/pmic.200600269] [PMID: 16927420]
[80]
Arora, A.; Bhagat, N. Insight into the molecular imaging of Alzheimer’s disease. Int. J. Biomed. Imaging, 2016, 20167462014
[http://dx.doi.org/10.1155/2016/7462014] [PMID: 26880871]
[81]
Smalla, K.H.; Mikhaylova, M.; Sahin, J.; Bernstein, H.G.; Bogerts, B.; Schmitt, A.; van der Schors, R.; Smit, A.B.; Li, K.W.; Gundelfinger, E.D.; Kreutz, M.R. A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol. Psychiatry, 2008, 13(9), 878-896.
[http://dx.doi.org/10.1038/mp.2008.60] [PMID: 18504422]
[82]
Ahmed, E.U.; Ahmed, S.; Ukai, W.; Matsumoto, I.; Kemp, A.; McGregor, I.S.; Kashem, M.A. Antipsychotic induced alteration of growth and proteome of rat neural stem cells. Neurochem. Res., 2012, 37(8), 1649-1659.
[http://dx.doi.org/10.1007/s11064-012-0768-3] [PMID: 22528831]
[83]
Zellner, M.; Veitinger, M.; Umlauf, E. The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathol., 2009, 118(1), 181-195.
[http://dx.doi.org/10.1007/s00401-009-0502-7] [PMID: 19259691]
[84]
Licker, V.; Côte, M.; Lobrinus, J.A.; Rodrigo, N.; Kövari, E.; Hochstrasser, D.F.; Turck, N.; Sanchez, J.C.; Burkhard, P.R. Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson’s disease. J. Proteomics, 2012, 75(15), 4656-4667.
[http://dx.doi.org/10.1016/j.jprot.2012.02.032] [PMID: 22410244]
[85]
Ringman, J.M.; Schulman, H.; Becker, C.; Jones, T.; Bai, Y.; Immermann, F.; Cole, G.; Sokolow, S.; Gylys, K.; Geschwind, D.H.; Cummings, J.L.; Wan, H.I. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch. Neurol., 2012, 69(1), 96-104.
[http://dx.doi.org/10.1001/archneurol.2011.642] [PMID: 22232349]
[86]
Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D.J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 2004, 3(12), 1154-1169.
[http://dx.doi.org/10.1074/mcp.M400129-MCP200] [PMID: 15385600]
[87]
Pierce, A.; Unwin, R.D.; Evans, C.A.; Griffiths, S.; Carney, L.; Zhang, L.; Jaworska, E.; Lee, C.F.; Blinco, D.; Okoniewski, M.J.; Miller, C.J.; Bitton, D.A.; Spooncer, E.; Whetton, A.D. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol. Cell. Proteomics, 2008, 7(5), 853-863.
[http://dx.doi.org/10.1074/mcp.M700251-MCP200] [PMID: 17951628]
[88]
Leroy, B.; Rosier, C.; Erculisse, V.; Leys, N.; Mergeay, M.; Wattiez, R. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics, 2010, 10(12), 2281-2291.
[http://dx.doi.org/10.1002/pmic.200900286] [PMID: 20391527]
[89]
Fleron, M.; Greffe, Y.; Musmeci, D.; Massart, A.C.; Hennequiere, V.; Mazzucchelli, G.; Waltregny, D.; De Pauw-Gillet, M.C.; Castronovo, V.; De Pauw, E.; Turtoi, A. Novel post-digest isotope coded protein labeling method for phospho- and glycoproteome analysis. J. Proteomics, 2010, 73(10), 1986-2005.
[http://dx.doi.org/10.1016/j.jprot.2010.06.003] [PMID: 20601274]
[90]
Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. 2012.
[91]
Liu, Y.; Hüttenhain, R.; Surinova, S.; Gillet, L.C.; Mouritsen, J.; Brunner, R.; Navarro, P.; Aebersold, R. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics, 2013, 13(8), 1247-1256.
[http://dx.doi.org/10.1002/pmic.201200417] [PMID: 23322582]
[92]
Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol., 2006, 7(12), 952-958.
[http://dx.doi.org/10.1038/nrm2067] [PMID: 17139335]
[93]
Ong, S.E.; Foster, L.J.; Mann, M. Mass spectrometric-based approaches in quantitative proteomics. Methods, 2003, 29(2), 124-130.
[http://dx.doi.org/10.1016/S1046-2023(02)00303-1] [PMID: 12606218]
[94]
Zanivan, S.; Krueger, M.; Mann, M. In vivo quantitative proteomics: the SILAC mouse. Methods Mol. Biol., 2012, 757, 435-450.
[http://dx.doi.org/10.1007/978-1-61779-166-6_25] [PMID: 21909926]
[95]
Savas, J.N.; Toyama, B.H.; Xu, T.; Yates, J.R., III; Hetzer, M.W. Extremely long-lived nuclear pore proteins in the rat brain. Science, 2012, 335(6071), 942.
[http://dx.doi.org/10.1126/science.1217421] [PMID: 22300851]
[96]
Bordner, K.A.; George, E.D.; Carlyle, B.C.; Duque, A.; Kitchen, R.R.; Lam, T.T.; Colangelo, C.M.; Stone, K.L.; Abbott, T.B.; Mane, S.M.; Nairn, A.C.; Simen, A.A. Functional genomic and proteomic analysis reveals disruption of myelin-related genes and translation in a mouse model of early life neglect. Front. Psychiatry, 2011, 2, 18.
[http://dx.doi.org/10.3389/fpsyt.2011.00018] [PMID: 21629843]
[97]
Chan, M.K.; Tsang, T.M.; Harris, L.W.; Guest, P.C.; Holmes, E.; Bahn, S. Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol. Psychiatry, 2011, 16(12), 1189-1202.
[http://dx.doi.org/10.1038/mp.2010.100] [PMID: 20921955]
[98]
Mathè, A.A.; Stenfors, C.; Brodin, E.; Theodorsson, E. Neuropeptides in brain: effects of microwave irradiation and decapitation. Life Sci., 1990, 46(4), 287-293.
[http://dx.doi.org/10.1016/0024-3205(90)90035-P] [PMID: 2304372]
[99]
Andrade, E.C.; Krueger, D.D.; Nairn, A.C. Recent advances in neuroproteomics. Curr. Opin. Mol. Ther., 2007, 9(3), 270-281.
[100]
Hoogland, C.; Mostaguir, K.; Sanchez, J-C.; Hochstrasser, D.F.; Appel, R.D. 2D PAGE Databases for Proteins in Human Body Fluids.Proteomics of Human Body Fluids: Principles, Methods, and Applications; Thongboonkerd, V., Ed.; Humana Press: Totowa, NJ, 2007, pp. 137-146.
[http://dx.doi.org/10.1007/978-1-59745-432-2_7]
[101]
Kim, H.; Eliuk, S.; Deshane, J.; Meleth, S.; Sanderson, T.; Pinner, A.; Robinson, G.; Wilson, L.; Kirk, M.; Barnes, S. 2D Gel Proteomics.Biological Aging: Methods and Protocols; Tollefsbol, T.O., Ed.; Humana Press: Totowa, NJ, 2007, pp. 349-391.
[http://dx.doi.org/10.1007/978-1-59745-361-5_24]
[102]
Marouga, R.; David, S.; Hawkins, E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem., 2005, 382(3), 669-678.
[http://dx.doi.org/10.1007/s00216-005-3126-3] [PMID: 15900442]
[103]
Diez, R.; Herbstreith, M.; Osorio, C.; Alzate, O. Frontiers in Neuroscience 2-D Fluorescence Difference Gel Electrophoresis (DIGE) in Neuroproteomics.Neuroproteomics; Alzate, O., Ed.; CRC Press/Taylor & Francis Llc: Boca Raton, FL, 2010.
[104]
Kapp, E.; Schütz, F. 2007.
[105]
Ekegren, T.; Hanrieder, J.; Bergquist, J. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research. J. Mass Spectrom., 2008, 43(5), 559-571.
[http://dx.doi.org/10.1002/jms.1409] [PMID: 18416436]
[106]
Hanrieder, J.; Ekegren, T.; Andersson, M.; Bergquist, J. MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J. Neurochem., 2013, 124(5), 695-707.
[http://dx.doi.org/10.1111/jnc.12019] [PMID: 22994484]
[107]
Jamal, W.Y.; Shahin, M.; Rotimi, V.O. Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. J. Med. Microbiol., 2013, 62(Pt 4), 540-544.
[http://dx.doi.org/10.1099/jmm.0.053256-0] [PMID: 23242640]
[108]
Abdi, F.; Quinn, J.F.; Jankovic, J.; McIntosh, M.; Leverenz, J.B.; Peskind, E.; Nixon, R.; Nutt, J.; Chung, K.; Zabetian, C.; Samii, A.; Lin, M.; Hattan, S.; Pan, C.; Wang, Y.; Jin, J.; Zhu, D.; Li, G.J.; Liu, Y.; Waichunas, D.; Montine, T.J.; Zhang, J. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis., 2006, 9(3), 293-348.
[http://dx.doi.org/10.3233/JAD-2006-9309] [PMID: 16914840]
[109]
Tannu, N.S.; Hemby, S.E. Methods for proteomics in neuroscience; , 2006.
[110]
Craft, G.E.; Chen, A.; Nairn, A.C. Recent advances in quantitative neuroproteomics. Methods, 2013, 61(3), 186-218.
[http://dx.doi.org/10.1016/j.ymeth.2013.04.008] [PMID: 23623823]
[111]
McDonnell, L.A.; Heeren, R.M.A. Imaging mass spectrometry. Mass Spectrom. Rev., 2007, 26(4), 606-643.
[http://dx.doi.org/10.1002/mas.20124] [PMID: 17471576]
[112]
Kitchen, R.R.; Rozowsky, J.S.; Gerstein, M.B.; Nairn, A.C. Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat. Neurosci., 2014, 17(11), 1491-1499.
[http://dx.doi.org/10.1038/nn.3829] [PMID: 25349915]
[113]
LaBaer, J.; Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol., 2005, 9(1), 14-19.
[http://dx.doi.org/10.1016/j.cbpa.2004.12.006] [PMID: 15701447]
[114]
Gonzalez-Gonzalez, M.; Jara-Acevedo, R.; Matarraz, S.; Jara-Acevedo, M.; Paradinas, S.; Sayagües, J.M.; Orfao, A.; Fuentes, M. Nanotechniques in proteomics: protein microarrays and novel detection platforms. Eur. J. Pharm. Sci., 2012, 45(4), 499-506.
[http://dx.doi.org/10.1016/j.ejps.2011.07.009] [PMID: 21803154]
[115]
Gonzalez, L.C. Protein microarrays, biosensors, and cell-based methods for secretome-wide extracellular protein-protein interaction mapping. Methods, 2012, 57(4), 448-458.
[http://dx.doi.org/10.1016/j.ymeth.2012.06.004] [PMID: 22728035]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy