Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

IFN-γ and TNF-α Gene Polymorphisms in Multiple Sclerosis Patients in Northwest Iran

Author(s): Mohammad Asgharzadeh, Nima Najafi-Ghalehlou, Behroz M. Poor, Vahid Asgharzadeh, Mahya Pourostadi, Ali Vegari, Hossein S. Kafil, Manouchehr Fadaee, Mehdi Farhoudi and Jalil Rashedi*

Volume 21, Issue 3, 2021

Published on: 05 May, 2020

Page: [520 - 525] Pages: 6

DOI: 10.2174/1871530320666200505123443

Price: $65

Abstract

Background: Cytokines are polypeptides that play critical roles in immune responses. Gene polymorphisms occurring in the inflammatory cytokines are taking a role in autoimmune diseases, including multiple sclerosis (MS), which may induce inappropriate immune responses.

Objective: The aim of this study was to investigate the allelic and genotypic frequencies of interferon gamma gene (IFN-γ) at +874A/T locus and tumor necrosis factor (TNF-α) at+308A/G locus in MS patients of Azeri population.

Methods: At first, a questionnaire was prepared for each of 240 healthy, non-relative, and 152 Azeri MS patients before obtaining the blood sample from all subjects. After DNA extraction, the frequency of alleles and genotypes of the IFN-γ and TNF-α genes at +874A/T and -308G/A loci, respectively, were determined by allele-specific PCR method. Finally, the frequencies were compared between control and MS patients by chi-square test (x2-test) and p<0.05 was considered significant.

Results: In the IFN-γ +874A/T gene single nucleotide polymorphism (SNP), the most allelic and genotypic frequencies in MS patients were the A allele, 55.26% (p=0.04) and the AT genotype, 52.63% (p=0.048). In healthy individuals, it was 65.42% for the A allele and 45.42% for the AA genotype. For the TNF-α 308 G/A SNP, the highest allelic and genotypic frequencies in MS patients were the G allele with 55.92% (p<0.001) and AG genotype with 61.84%, and in healthy subjects, the allelic and genotypic frequencies were 84.2% and 70.8% for the G allele and GG genotype, respectively.

Conclusion: Head trauma, the infection with the herpes virus and Mycoplasma pneumonia, frequent colds and high consumption of canned foods provide grounds for MS. The T allele in the IFN-γ gene (+874) and the genotypes of AA and AG at the TNF-α gene (-308) at the position-308 were considered as potential risk factors for MS. Therefore, the polymorphisms in cytokine genes and following changes in their expression levels can be effective in susceptibility to MS.

Keywords: Single nucleotide polymorphism, interferon gamma, tumor necrosis factor, multiple sclerosis, azeri population, Iran.

Graphical Abstract
[1]
Wu, T.; Mohan, C. The AKT axis as a therapeutic target in autoimmune diseases. Endocr. Metab. Immune Disord. Drug Targets, 2009, 9(2), 145-150.
[http://dx.doi.org/10.2174/187153009788452417] [PMID: 19519464]
[2]
Schmierer, K.; Campion, T.; Sinclair, A.; van Hecke, W.; Matthews, P.M.; Wattjes, M.P. Towards a standard MRI protocol for multiple sclerosis across the UK. Br. J. Radiol., 2019, 92(1101)20180926
[http://dx.doi.org/10.1259/bjr.20180926] [PMID: 30994035]
[3]
Alfredsson, L.; Olsson, T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb. Perspect. Med., 2019, 9(4)a028944
[http://dx.doi.org/10.1101/cshperspect.a028944] [PMID: 29735578]
[4]
Salinthone, S.; Yadav, V.; Bourdette, D.N.; Carr, D.W. Lipoic acid: a novel therapeutic approach for multiple sclerosis and other chronic inflammatory diseases of the CNS. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(2), 132-142.
[http://dx.doi.org/10.2174/187153008784534303] [PMID: 18537699]
[5]
Guo, X.F.; Wang, J.; Yu, S.J.; Song, J.; Ji, M.Y.; Cao, Z.; Zhang, J.X.; Wang, J.; Dong, W.G. TNF-α-308 polymorphism and risk of digestive system cancers: a meta-analysis. World J. Gastroenterol., 2013, 19(48), 9461-9471.
[http://dx.doi.org/10.3748/wjg.v19.i48.9461] [PMID: 24409077]
[6]
Hajeer, A.H.; Hutchinson, I.V. Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum. Immunol., 2001, 62(11), 1191-1199.
[http://dx.doi.org/10.1016/S0198-8859(01)00322-6] [PMID: 11704281]
[7]
Karimi, M.; Goldie, L.C.; Cruickshank, M.N.; Moses, E.K.; Abraham, L.J. A critical assessment of the factors affecting reporter gene assays for promoter SNP function: a reassessment of -308 TNF polymorphism function using a novel integrated reporter system. Eur. J. Hum. Genet., 2009, 17(11), 1454-1462.
[http://dx.doi.org/10.1038/ejhg.2009.80] [PMID: 19471307]
[8]
Cooper, A.M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol., 2009, 27, 393-422.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132703] [PMID: 19302046]
[9]
Liu, M.; Cao, B.; Zhang, H.; Dai, Y.; Liu, X.; Xu, C. Association of interferon-gamma gene haplotype in the Chinese population with hepatitis B virus infection. Immunogenetics, 2006, 58(11), 859-864.
[http://dx.doi.org/10.1007/s00251-006-0161-y] [PMID: 17033822]
[10]
Pravica, V.; Perrey, C.; Stevens, A.; Lee, J.H.; Hutchinson, I.V. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum. Immunol., 2000, 61(9), 863-866.
[http://dx.doi.org/10.1016/S0198-8859(00)00167-1] [PMID: 11053629]
[11]
Yan, J.; Greer, J.M. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. CNS Neurol. Disord. Drug Targets, 2008, 7(6), 536-557.
[http://dx.doi.org/10.2174/187152708787122941] [PMID: 19128210]
[12]
Izad, M.; Vodjgani, M.; Nicknam, M.H.; Lotfi, J.; Fathi, D.; Amirzargar, A.A. Interferon-gamma gene polymorphism in Iranian patients with multiple sclerosis. Iran. J. Allergy Asthma Immunol., 2004, 3(3), 115-119.
[PMID: 17301401]
[13]
Stampanoni, B.M.; Gentile, A.; Iezzi, E.; Zagaglia, S.; Musella, A.; Simonelli, I.; Gilio, L.; Furlan, R.; Finardi, A.; Marfia, A.G.; Guadalupi, L. Transient Receptor Potential Vanilloid 1 Modulates Central Inflammation in Multiple Sclerosis. Front. Neurol., 2019, 10, 30.
[http://dx.doi.org/10.3389/fneur.2019.00030]
[14]
Asgharzadeh, M.; Mazloumi, A.; Kafil, H.S.; Ghazanchaei, A. Mannose-binding lectin gene and promoter polymorphism in visceral leishmaniasis caused by Leishmania infantum. Pak. J. Biol. Sci., 2007, 10(11), 1850-1854.
[http://dx.doi.org/10.3923/pjbs.2007.1850.1854] [PMID: 19086549]
[15]
Asgharzadeh, M.; Ghorghanlu, S.; Rashedi, J.; Mahdavi Poor, B.; Khaki-Khatibi, F.; Moaddab, S.R.; Samadi-Kafil, H.; Pourostadi, M. Association of Promoter Polymorphisms of Interleukin-10 and Interferon-Gamma Genes with Tuberculosis in Azeri Population of Iran. Iran. J. Allergy Asthma Immunol., 2016, 15(3), 167-173.
[PMID: 27424131]
[16]
Ghorghanlu, S.; Asgharzadeh, M.; Samadi-Kafil, H.; Khaki-Khatibi, F.; Rashedi, J.; Mahdavi Poor, B.; Moaddab, S.R.; Pourostadi, M. TNF-A-308 G/A polymorphism and susceptibility to tuberculosis in Azeri population of Iran. Genetika, 2016, 48(3), 819-826.
[http://dx.doi.org/10.2298/GENSR1603819G]
[17]
Simpson, S., Jr; Stewart, N.; van der Mei, I.; Otahal, P.; Charlesworth, J.; Ponsonby, A.L.; Blizzard, L.; Dwyer, T.; Pittas, F.; Gies, P.; Taylor, B. Stimulated PBMC-produced IFN-γ and TNF-α are associated with altered relapse risk in multiple sclerosis: results from a prospective cohort study. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 200-207.
[http://dx.doi.org/10.1136/jnnp-2013-307336] [PMID: 24790215]
[18]
Zhou, Y.; Taylor, B.; van der Mei, I.; Stewart, N.; Charlesworth, J.; Blizzard, L.; Ponsonby, A.L.; Dwyer, T.; Pittas, F.; Simpson, S. Jr Genetic variation in PBMC-produced IFN-γ and TNF-α associations with relapse in multiple sclerosis. J. Neurol. Sci., 2015, 349(1-2), 40-44.
[http://dx.doi.org/10.1016/j.jns.2014.12.022] [PMID: 25575858]
[19]
Hashioka, S.; McGeer, E.G.; Miyaoka, T.; Wake, R.; Horiguchi, J.; McGeer, P.L. Interferon-γ-induced neurotoxicity of human astrocytes. CNS Neurol. Disord. Drug Targets, 2015, 14(2), 251-256.
[http://dx.doi.org/10.2174/1871527314666150217122305] [PMID: 25687700]
[20]
Gamble, J.R.; Harlan, J.M.; Klebanoff, S.J.; Vadas, M.A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc. Natl. Acad. Sci. USA, 1985, 82(24), 8667-8671.
[http://dx.doi.org/10.1073/pnas.82.24.8667] [PMID: 3866246]
[21]
Akcali, A.; Pehlivan, S.; Pehlivan, M.; Sever, T.; Akgul, P.; Neyal, M. TNF-alpha promoter polymorphisms in multiple sclerosis: no association with -308 and -238 alleles, but the -857 alleles in associated with the disease in Turkish patients. Int. J. Immunogenet., 2010, 37(2), 91-95.
[http://dx.doi.org/10.1111/j.1744-313X.2009.00895.x] [PMID: 20082645]
[22]
Sarial, S.; Shokrgozar, M.A.; Amirzargar, A.; Shokri, F.; Radfar, J.; Zohrevand, P.; Arjang, Z.; Sahraian, M.A.; Lotfi, J. IL-1, IL-1R and TNFalpha gene polymorphisms in Iranian patients with multiple sclerosis. Iran. J. Allergy Asthma Immunol., 2008, 7(1), 37-40.
[PMID: 18322311]
[23]
Virtanen, J.O.; Jacobson, S. Viruses and multiple sclerosis. CNS Neurol. Disord. Drug Targets, 2012, 11(5), 528-544.
[http://dx.doi.org/10.2174/187152712801661220] [PMID: 22583435]
[24]
Bahar, M.; Ashtari, F.; Aghaei, M.; Akbari, M.; Salari, M.; Ghalamkari, S. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study. J. Pak. Med. Assoc., 2012, 62(3), (Suppl. 2), S6-S8..
[PMID: 22768448]
[25]
Naghib, M.; Kheirkhah, B.; Mohebbi, R.; Sadeg, L. Molecular identification of drug resistant mutations to tetracycline in Mycoplasma spp. isolated from patients with multiple sclerosis. Cell. Mol. Biol., 2017, 63(7), 112-115.
[http://dx.doi.org/10.14715/cmb/2017.63.7.19] [PMID: 28838350]
[26]
Koskderelioglu, A.; Afsar, I.; Pektas, B.; Gedizlioglu, M. Is Toxoplasma gondii infection protective against multiple sclerosis risk? Mult. Scler. Relat. Disord., 2017, 15, 7-10.
[http://dx.doi.org/10.1016/j.msard.2017.04.004] [PMID: 28641775]
[27]
Montgomery, S.; Hiyoshi, A.; Burkill, S.; Alfredsson, L.; Bahmanyar, S.; Olsson, T. Concussion in adolescence and risk of multiple sclerosis. Ann. Neurol., 2017, 82(4), 554-561.
[http://dx.doi.org/10.1002/ana.25036] [PMID: 28869671]
[28]
Kamphuis, W.W.; Derada Troletti, C.; Reijerkerk, A.; Romero, I.A.; de Vries, H.E. The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol. Disord. Drug Targets, 2015, 14(2), 157-167.
[http://dx.doi.org/10.2174/1871527314666150116125246] [PMID: 25613507]
[29]
Prendergast, C.T.; Anderton, S.M. Immune cell entry to central nervous system--current understanding and prospective therapeutic targets. Endocr. Metab. Immune Disord. Drug Targets, 2009, 9(4), 315-327.
[http://dx.doi.org/10.2174/187153009789839219] [PMID: 20028334]
[30]
von Geldern, G.; Mowry, E.M. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol., 2012, 8(12), 678-689.
[http://dx.doi.org/10.1038/nrneurol.2012.194] [PMID: 23026980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy