Mini-Review Article

活性中药单体对泻痢性上皮细胞Cl-电解质通透性的调节作用

卷 21, 期 9, 2020

页: [902 - 909] 页: 8

弟呕挨: 10.2174/1389450121666200504073635

价格: $65

摘要

上皮层,排列在哺乳动物的肺泡,肾脏,大脑和结肠的内表面,是典型的电解质运输组织。大量的盐和液体从粘膜一侧向血管主动运动。上皮组织中的上皮盐再吸收在维持体液稳态中起重要作用。在吸收性上皮中,液体和盐的通量由主要由上皮钠通道,囊性纤维化跨膜电导调节剂,Na + -K + -2Cl-协同转运蛋白,Na + / H +交换剂和Na + / K + -ATPase组成的机制控制。穿过上皮的盐渗透性的失调有助于器官水肿的发病机理。在许多离子转运蛋白中,上皮Cl转运在跨上皮组织分泌水和调节体液含量中起着重要作用。许多中药通过调节Cl-电解质的运输来治疗腹泻。我们系统地总结了有关中药在肠道上皮组织中的Cl-电解质转运的最新进展。还涉及开发减轻水肿性疾病的先进策略的药物相关性。总之,通过控制离子通道的功能和表达,Cl-电解质转运与活性中药单体之间的串扰可能导致腹泻新策略的发展。

关键词: Cl-电解质运输,活性中药单体,离子通道,囊性纤维化跨膜电导调节剂,腹泻,上皮组织。

图形摘要
[1]
Moore-Olufemi SD, Xue H, Attuwaybi BO, et al. Resuscitation-induced gut edema and intestinal dysfunction. J Trauma 2005; 58(2): 264-70.
[http://dx.doi.org/10.1097/01.TA.0000133571.64393.D2] [PMID: 15706186]
[2]
Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 2009; 24: 257-65.
[http://dx.doi.org/10.1152/physiol.00015.2009] [PMID: 19675357]
[3]
Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 2012; 82(6): 635-42.
[http://dx.doi.org/10.1038/ki.2012.180] [PMID: 22718186]
[4]
Assaad S, Kratzert WB, Shelley B, et al. Assessment of Pulmonary Edema: Principles and Practice. J Cardiothorac Vasc Anesth 2017.
[PMID: 29174750]
[5]
Kato K, Daimon M, Ishibashi I, Kobayashi Y. Myocardial Edema in Takotsubo Syndrome - Serial Cardiovascular Magnetic Resonance Imaging of the Natural Course. Circ J 2017; 81(9): 1368-9.
[http://dx.doi.org/10.1253/circj.CJ-17-0065] [PMID: 28344203]
[6]
Hong JH, Park S, Shcheynikov N, Muallem S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 2014; 466(8): 1487-99.
[http://dx.doi.org/10.1007/s00424-013-1390-1] [PMID: 24240699]
[7]
Blouquit-Laye S, Chinet T. Ion and liquid transport across the bronchiolar epithelium. Respir Physiol Neurobiol 2007; 159(3): 278-82.
[http://dx.doi.org/10.1016/j.resp.2007.03.007] [PMID: 17433793]
[8]
Wu D, Hu Z. Rutaecarpine induces chloride secretion across rat isolated distal colon. J Pharmacol Exp Ther 2008; 325(1): 256-66.
[http://dx.doi.org/10.1124/jpet.107.131961] [PMID: 18187619]
[9]
Mall M, Gonska T, Thomas J, et al. Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 2003; 53(4): 608-18.
[http://dx.doi.org/10.1203/01.PDR.0000057204.51420.DC] [PMID: 12612194]
[10]
Greger R, Bleich M, Riedemann N, et al. The role of K+ channels in colonic Cl- secretion Comp Biochem Physiol A Physiol 1997 118(2): 271-5.
[11]
Cheung F. TCM: Made in China. Nature 2011; 480(7378): S82-3.
[http://dx.doi.org/10.1038/480S82a] [PMID: 22190085]
[12]
Li X, Wu L, Liu W, et al. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One 2014; 9(5)e95004
[http://dx.doi.org/10.1371/journal.pone.0095004] [PMID: 24817581]
[13]
Tian Y, Hu H, Zhang Y, Zhou L, Wang L, Xie C. Zusanli (ST36) acupoint injection for acute diarrhea in children under 5 years old: A protocol of systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore) 2019; 98(34)e16949
[http://dx.doi.org/10.1097/MD.0000000000016949] [PMID: 31441891]
[14]
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6(1): 33-45.
[http://dx.doi.org/10.1016/j.jcmgh.2018.02.009] [PMID: 29928670]
[15]
Lin R, Murtazina R, Cha B, et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 2011; 140(2): 560-71.
[http://dx.doi.org/10.1053/j.gastro.2010.10.042] [PMID: 20977906]
[16]
Walker NM, Simpson JE, Brazill JM, et al. Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum. Gastroenterology 2009; 136(3): 893-901.
[http://dx.doi.org/10.1053/j.gastro.2008.11.016] [PMID: 19121635]
[17]
Seidler UE. Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 2013; 13(6): 900-8.
[http://dx.doi.org/10.1016/j.coph.2013.10.001] [PMID: 24280619]
[18]
Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62: 535-72.
[http://dx.doi.org/10.1146/annurev.physiol.62.1.535] [PMID: 10845102]
[19]
Oprins JC, Meijer HP, Groot JA. TNF-alpha potentiates the ion secretion induced by muscarinic receptor activation in HT29cl.19A cells. Am J Physiol Cell Physiol 2000; 278(3): C463-72.
[http://dx.doi.org/10.1152/ajpcell.2000.278.3.C463] [PMID: 10712234]
[20]
Yu B, Xie R, Jin L, et al. trans-δ-Viniferin inhibits Ca2+-activated Cl- channels and improves diarrhea symptoms. Fitoterapia 2019; 139104367
[http://dx.doi.org/10.1016/j.fitote.2019.104367] [PMID: 31629045]
[21]
Xiong R, Li Y, Zheng K, et al. Er Shen Wan extract alleviates polyuria and regulates AQP 2 and AVPR 2 in a rat model of spleen-kidney Yang deficiency-induced diarrhea. Biomed Pharmacother 2019; 110: 302-11.
[http://dx.doi.org/10.1016/j.biopha.2018.11.147] [PMID: 30522016]
[22]
Xu Y, Rong A, Xu W, Niu Y, Wang Z. Comparison of 12-month therapeutic effect of conbercept and ranibizumab for diabetic macular edema: a real-life clinical practice study. BMC Ophthalmol 2017; 17(1): 158.
[http://dx.doi.org/10.1186/s12886-017-0554-8] [PMID: 28841827]
[23]
Li H, Cai Z, Chen JH, Ju M, Xu Z, Sheppard DN. The cystic fibrosis transmembrane conductance regulator Cl⁻ channel: a versatile engine for transepithelial ion transport. Sheng Li Xue Bao 2007; 59(4): 416-30.
[PMID: 17700962]
[24]
Berger ALIM, Ikuma M, Welsh MJ. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc Natl Acad Sci USA 2005; 102(2): 455-60.
[http://dx.doi.org/10.1073/pnas.0408575102] [PMID: 15623556]
[25]
Chang J, Ding Y, Zhou Z, Nie HG, Ji HL. Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19(3) E881
[http://dx.doi.org/10.3390/ijms19030881] [PMID: 29547542]
[26]
Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
[PMID: 11121513]
[27]
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[28]
Kim YA, Kim DH, Park CB, Park TS, Park BJ. Anti-Inflammatory and Skin-Moisturizing Effects of a Flavonoid Glycoside Extracted from the Aquatic Plant Nymphoides indica in Human Keratinocytes. Molecules 2018; 23(9) E2342
[http://dx.doi.org/10.3390/molecules23092342] [PMID: 30216992]
[29]
Niisato N, Ito Y, Marunaka Y. Activation of Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. Biochem Biophys Res Commun 1999; 254(2): 368-71.
[http://dx.doi.org/10.1006/bbrc.1998.9952] [PMID: 9918844]
[30]
Sun H, Niisato N, Nishio K, Hamilton KL, Marunaka Y. Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl- secretion:useful tools as regulators of Cl- secretion. (BioMed Res Int): 2014; 2014902735
[http://dx.doi.org/10.1155/2014/902735] [PMID: 24818160]
[31]
Zhang S, Smith N, Schuster D, et al. Quercetin increases cystic fibrosis transmembrane conductance regulator-mediated chloride transport and ciliary beat frequency: therapeutic implications for chronic rhinosinusitis. Am J Rhinol Allergy 2011; 25(5): 307-12.
[http://dx.doi.org/10.2500/ajra.2011.25.3643] [PMID: 22186243]
[32]
Illek B, Lizarzaburu ME, Lee V, Nantz MH, Kurth MJ, Fischer H. Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am J Physiol Cell Physiol 2000; 279(6): C1838-46.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1838] [PMID: 11078699]
[33]
Sousa M, Ousingsawat J, Seitz R, et al. An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol Pharmacol 2007; 71(1): 366-76.
[http://dx.doi.org/10.1124/mol.106.025262] [PMID: 17065237]
[34]
Lim M, McKenzie K, Floyd AD, Kwon E, Zeitlin PL. Modulation of deltaF508 cystic fibrosis transmembrane regulator trafficking and function with 4-phenylbutyrate and flavonoids. Am J Respir Cell Mol Biol 2004; 31(3): 351-7.
[http://dx.doi.org/10.1165/rcmb.2002-0086OC] [PMID: 15191910]
[35]
Jiang Y, Yu B, Wang X, et al. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin. Fitoterapia 2014; 99: 284-91.
[http://dx.doi.org/10.1016/j.fitote.2014.10.013] [PMID: 25451794]
[36]
Ko WH, Law VW, Yip WC, et al. Stimulation of chloride secretion by baicalein in isolated rat distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 282(3): G508-18.
[http://dx.doi.org/10.1152/ajpgi.00291.2001] [PMID: 11842001]
[37]
Yue GG, Yip TW, Huang Y, Ko WH. Cellular mechanism for potentiation of Ca2+-mediated Cl- secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem 2004; 279(38): 39310-6.
[http://dx.doi.org/10.1074/jbc.M406787200] [PMID: 15234961]
[38]
Zhou SS, Hazama A, Okada Y. Tyrosine kinase-independent extracellular action of genistein on the CFTR Cl- channel in guinea pig ventricular myocytes and CFTR-transfected mouse fibroblasts. Jpn J Physiol 1998; 48(5): 389-96.
[http://dx.doi.org/10.2170/jjphysiol.48.389] [PMID: 9852348]
[39]
Obayashi K, Horie M, Washizuka T, Nishimoto T, Sasayama S. On the mechanism of genistein-induced activation of protein kinase A-dependent Cl- conductance in cardiac myocytes. Pflugers Arch 1999; 438(3): 269-77.
[http://dx.doi.org/10.1007/s004240050909] [PMID: 10398855]
[40]
Lansdell KA, Cai Z, Kidd JF, Sheppard DN. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line. J Physiol 2000; 524(Pt 2): 317-30.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00317.x ] [PMID: 10766914]
[41]
French PJ, Bijman J, Bot AG, Boomaars WE, Scholte BJ, de Jonge HR. Genistein activates CFTR Cl- channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am J Physiol 1997; 273(2 Pt 1): C747-53.
[http://dx.doi.org/10.1152/ajpcell.1997.273.2.C747] [PMID: 9277373]
[42]
Roomans GM. Pharmacological treatment of the ion transport defect in cystic fibrosis. Expert Opin Investig Drugs 2001; 10(1): 1-19.
[http://dx.doi.org/10.1517/13543784.10.1.1] [PMID: 11116277]
[43]
Wang F, Zeltwanger S, Yang IC, Nairn AC, Hwang TC. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol 1998; 111(3): 477-90.
[http://dx.doi.org/10.1085/jgp.111.3.477] [PMID: 9482713]
[44]
Niisato N, Nishino H, Nishio K, Marunaka Y. Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells. Biochem Pharmacol 2004; 67(4): 795-801.
[http://dx.doi.org/10.1016/j.bcp.2003.10.026] [PMID: 14757180]
[45]
Asano J, Niisato N, Nakajima K, et al. Quercetin stimulates Na+/K+/2Cl- cotransport via PTK-dependent mechanisms in human airway epithelium. Am J Respir Cell Mol Biol 2009; 41(6): 688-95.
[http://dx.doi.org/10.1165/rcmb.2008-0338OC] [PMID: 19251944]
[46]
Cermak R, Vujicic Z, Scharrer E, Wolfram S. The impact of different flavonoid classes on colonic CI- secretion in rats. Biochem Pharmacol 2001; 62(8): 1145-51.
[http://dx.doi.org/10.1016/S0006-2952(01)00758-4] [PMID: 11597584]
[47]
Cermak R, Vujicic Z, Kuhn G, Wolffram S. The secretory response of the rat colon to the flavonol quercetin is dependent on Ca2+-calmodulin. Exp Physiol 2000; 85(3): 255-61.
[PMID: 10825411]
[48]
Grycová L, Dostál J, Marek R. Quaternary protoberberine alkaloids. Phytochemistry 2007; 68(2): 150-75.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.004] [PMID: 17109902]
[49]
Da-Cunha EV, Fechinei IM, Guedes DN, Barbosa-Filho JM, Da Silva MS. Protoberberine alkaloids. Alkaloids Chem Biol 2005; 62: 1-75.
[http://dx.doi.org/10.1016/S1099-4831(05)62001-9] [PMID: 16265921]
[50]
Subeki MH, Matsuura H, Takahashi K, et al. Antibabesial activity of protoberberine alkaloids and 20-hydroxyecdysone from Arcangelisia flava against Babesia gibsoni in culture. J Vet Med Sci 2005; 67(2): 223-7.
[http://dx.doi.org/10.1292/jvms.67.223] [PMID: 15750325]
[51]
Taylor CT, Baird AW. Berberine inhibition of electrogenic ion transport in rat colon. Br J Pharmacol 1995; 116(6): 2667-72.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17224.x] [PMID: 8590987]
[52]
Wu DZ, Yuan JY, Shi HL, Hu ZB. Palmatine, a protoberberine alkaloid, inhibits both Ca(2+)- and cAMP-activated Cl(-) secretion in isolated rat distal colon. Br J Pharmacol 2008; 153(6): 1203-13.
[http://dx.doi.org/10.1038/sj.bjp.0707684] [PMID: 18204477]
[53]
Xu M, Shao Q, Ye S, et al. Simultaneous Extraction and Identification of Phenolic Compounds in Anoectochilus roxburghii Using Microwave-Assisted Extraction Combined with UPLC-Q-TOF-MS/MS and Their Antioxidant Activities. Front Plant Sci 2017; 8: 1474.
[http://dx.doi.org/10.3389/fpls.2017.01474] [PMID: 28883828]
[54]
Xu X, Shan B, Liao CH, Xie JH, Wen PW, Shi JY. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol 2015; 81: 538-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.049 ] [PMID: 26318666]
[55]
Liu Q, Zhu M, Geng X, Wang H, Ng TB. Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella radicata. (Molecules)2017; 22(2) E234
[http://dx.doi.org/10.3390/molecules22020234] [PMID: 28165422]
[56]
Xie JH, Shen MY, Xie MY, et al. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr Polym 2012; 89(1): 177-84.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.068] [PMID: 24750621]
[57]
Liu X, Xie J, Jia S, et al. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 2017; 98: 576-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.028] [PMID: 28192134]
[58]
Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 2009; 121(1): 41-54.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.007] [PMID: 19000919]
[59]
Muanprasat C, Sirianant L, Sawasvirojwong S, Homvisasevongsa S, Suksamrarn A, Chatsudthipong V. Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell. Biol Pharm Bull 2013; 36(4): 522-8.
[http://dx.doi.org/10.1248/bpb.b12-00711] [PMID: 23343619]
[60]
Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther 2008; 324(2): 798-805.
[http://dx.doi.org/10.1124/jpet.107.129288] [PMID: 18032573]
[61]
Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53(Suppl. 2): S310-29.
[http://dx.doi.org/10.1002/mnfr.200900039] [PMID: 19437486]
[62]
Amabeoku GJ. Antidiarrhoeal activity of Geranium incanum Burm. f. (Geraniaceae) leaf aqueous extract in mice. J Ethnopharmacol 2009; 123(1): 190-3.
[http://dx.doi.org/10.1016/j.jep.2009.02.015] [PMID: 19429361]
[63]
Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolysable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. Pharm Res 2010; 27(3): 490-7.
[http://dx.doi.org/10.1007/s11095-009-0040-y] [PMID: 20225391]
[64]
Crozier A. Dietary phenolics, absorption, mammalian and microbial metabolism and colonic health. Mol Nutr Food Res 2009; 53(Suppl. 1): S5-6.
[http://dx.doi.org/10.1002/mnfr.200990016] [PMID: 19475594]
[65]
Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 2010; 24(11): 4178-86.
[http://dx.doi.org/10.1096/fj.10-160648] [PMID: 20581223]
[66]
Liu J, Jiang JJ, Xie YM. [Clinical characteristics and drug combination analysis in patients with inflammatory bowel disease based on real world HIS data of 14 758 cases]. Zhongguo Zhongyao Zazhi 2016; 41(8): 1553-8.
[PMID: 28884555]
[67]
Tradtrantip L, Namkung W, Verkman AS. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol 2010; 77(1): 69-78.
[http://dx.doi.org/10.1124/mol.109.061051] [PMID: 19808995]
[68]
Ren A, Zhang W, Thomas HG, et al. A tannic acid-based medical food, Cesinex(®), exhibits broad-spectrum antidiarrheal properties: a mechanistic and clinical study. Dig Dis Sci 2012; 57(1): 99-108.
[http://dx.doi.org/10.1007/s10620-011-1821-9] [PMID: 21748285]
[69]
Lai LJHY, Zhang H, Zhu XW, Han XM. The timeliness of Tongxie-Yaofang on patients with D-IBS about improving the clinical symptoms. Shiyong Zhongxiyi Jiehe Linchuang 2013; 13: 27-8.
[70]
Yang C, Xiong Y, Zhang SS, et al. Regulating effect of TongXie-YaoFang on colonic epithelial secretion via Cl- and HCO3- channel. World J Gastroenterol 2016; 22(48): 10584-91.
[http://dx.doi.org/10.3748/wjg.v22.i48.10584] [PMID: 28082810]
[71]
Tsai JC, Tsai S, Chang WC. Comparison of two Chinese medical herbs, Huangbai and Qianniuzi, on influence of short circuit current across the rat intestinal epithelia. J Ethnopharmacol 2004; 93(1): 21-5.
[http://dx.doi.org/10.1016/j.jep.2004.02.024] [PMID: 15182899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy