Mini-Review Article

Regulation of Cl- Electrolyte Permeability in Epithelia by Active Traditional Chinese Medicine Monomers for Diarrhea

Author(s): Lei Chen, Yan Ding*, Yapeng Hou, Yanhong Liu and Hongguang Nie

Volume 21, Issue 9, 2020

Page: [902 - 909] Pages: 8

DOI: 10.2174/1389450121666200504073635

Price: $65

Abstract

The epithelial layer, lining the inner surface of the mammalian alveolar, kidney, brain and colon, is a typical electrolyte transporting tissue. Large quantities of salt and fluid are actively moved from the mucosal side toward the blood vessel. Transepithelial salt re-absorption in epithelial tissues plays an important role in maintaining fluid homeostasis. In absorptive epithelium, fluid and salt flux is controlled by the machinery mainly composed of epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/K+-ATPase. Dysregulation of salt permeability across epithelium contributes to the pathogenesis of organ edema. In numerous ion transporters, epithelial Cl- transportation plays an important role in water secretion across epithelial tissues and regulation of body fluid content. Many traditional Chinese medicines treat diarrhea by regulating the Cl- electrolyte transport. We systematically summarized the recent progress regarding the traditional Chinese medicine on Cl- electrolyte transport in the intestinal epithelial tissues. The pharmaceutical relevance of developing advanced strategies to mitigate edematous disorders is also implicated. In conclusion, the crosstalk between Cl- electrolyte transport and active traditional Chinese medicine monomers may lead to the development of new strategies for diarrhea by manipulating the function and expression of ion channels.

Keywords: Cl- electrolyte transport, active traditional Chinese medicine monomers, ion channels, cystic fibrosis transmembrane conductance regulator, diarrhea, epithelial tissues.

Graphical Abstract
[1]
Moore-Olufemi SD, Xue H, Attuwaybi BO, et al. Resuscitation-induced gut edema and intestinal dysfunction. J Trauma 2005; 58(2): 264-70.
[http://dx.doi.org/10.1097/01.TA.0000133571.64393.D2] [PMID: 15706186]
[2]
Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 2009; 24: 257-65.
[http://dx.doi.org/10.1152/physiol.00015.2009] [PMID: 19675357]
[3]
Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 2012; 82(6): 635-42.
[http://dx.doi.org/10.1038/ki.2012.180] [PMID: 22718186]
[4]
Assaad S, Kratzert WB, Shelley B, et al. Assessment of Pulmonary Edema: Principles and Practice. J Cardiothorac Vasc Anesth 2017.
[PMID: 29174750]
[5]
Kato K, Daimon M, Ishibashi I, Kobayashi Y. Myocardial Edema in Takotsubo Syndrome - Serial Cardiovascular Magnetic Resonance Imaging of the Natural Course. Circ J 2017; 81(9): 1368-9.
[http://dx.doi.org/10.1253/circj.CJ-17-0065] [PMID: 28344203]
[6]
Hong JH, Park S, Shcheynikov N, Muallem S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 2014; 466(8): 1487-99.
[http://dx.doi.org/10.1007/s00424-013-1390-1] [PMID: 24240699]
[7]
Blouquit-Laye S, Chinet T. Ion and liquid transport across the bronchiolar epithelium. Respir Physiol Neurobiol 2007; 159(3): 278-82.
[http://dx.doi.org/10.1016/j.resp.2007.03.007] [PMID: 17433793]
[8]
Wu D, Hu Z. Rutaecarpine induces chloride secretion across rat isolated distal colon. J Pharmacol Exp Ther 2008; 325(1): 256-66.
[http://dx.doi.org/10.1124/jpet.107.131961] [PMID: 18187619]
[9]
Mall M, Gonska T, Thomas J, et al. Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 2003; 53(4): 608-18.
[http://dx.doi.org/10.1203/01.PDR.0000057204.51420.DC] [PMID: 12612194]
[10]
Greger R, Bleich M, Riedemann N, et al. The role of K+ channels in colonic Cl- secretion Comp Biochem Physiol A Physiol 1997 118(2): 271-5.
[11]
Cheung F. TCM: Made in China. Nature 2011; 480(7378): S82-3.
[http://dx.doi.org/10.1038/480S82a] [PMID: 22190085]
[12]
Li X, Wu L, Liu W, et al. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One 2014; 9(5)e95004
[http://dx.doi.org/10.1371/journal.pone.0095004] [PMID: 24817581]
[13]
Tian Y, Hu H, Zhang Y, Zhou L, Wang L, Xie C. Zusanli (ST36) acupoint injection for acute diarrhea in children under 5 years old: A protocol of systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore) 2019; 98(34)e16949
[http://dx.doi.org/10.1097/MD.0000000000016949] [PMID: 31441891]
[14]
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6(1): 33-45.
[http://dx.doi.org/10.1016/j.jcmgh.2018.02.009] [PMID: 29928670]
[15]
Lin R, Murtazina R, Cha B, et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 2011; 140(2): 560-71.
[http://dx.doi.org/10.1053/j.gastro.2010.10.042] [PMID: 20977906]
[16]
Walker NM, Simpson JE, Brazill JM, et al. Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum. Gastroenterology 2009; 136(3): 893-901.
[http://dx.doi.org/10.1053/j.gastro.2008.11.016] [PMID: 19121635]
[17]
Seidler UE. Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr Opin Pharmacol 2013; 13(6): 900-8.
[http://dx.doi.org/10.1016/j.coph.2013.10.001] [PMID: 24280619]
[18]
Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 2000; 62: 535-72.
[http://dx.doi.org/10.1146/annurev.physiol.62.1.535] [PMID: 10845102]
[19]
Oprins JC, Meijer HP, Groot JA. TNF-alpha potentiates the ion secretion induced by muscarinic receptor activation in HT29cl.19A cells. Am J Physiol Cell Physiol 2000; 278(3): C463-72.
[http://dx.doi.org/10.1152/ajpcell.2000.278.3.C463] [PMID: 10712234]
[20]
Yu B, Xie R, Jin L, et al. trans-δ-Viniferin inhibits Ca2+-activated Cl- channels and improves diarrhea symptoms. Fitoterapia 2019; 139104367
[http://dx.doi.org/10.1016/j.fitote.2019.104367] [PMID: 31629045]
[21]
Xiong R, Li Y, Zheng K, et al. Er Shen Wan extract alleviates polyuria and regulates AQP 2 and AVPR 2 in a rat model of spleen-kidney Yang deficiency-induced diarrhea. Biomed Pharmacother 2019; 110: 302-11.
[http://dx.doi.org/10.1016/j.biopha.2018.11.147] [PMID: 30522016]
[22]
Xu Y, Rong A, Xu W, Niu Y, Wang Z. Comparison of 12-month therapeutic effect of conbercept and ranibizumab for diabetic macular edema: a real-life clinical practice study. BMC Ophthalmol 2017; 17(1): 158.
[http://dx.doi.org/10.1186/s12886-017-0554-8] [PMID: 28841827]
[23]
Li H, Cai Z, Chen JH, Ju M, Xu Z, Sheppard DN. The cystic fibrosis transmembrane conductance regulator Cl⁻ channel: a versatile engine for transepithelial ion transport. Sheng Li Xue Bao 2007; 59(4): 416-30.
[PMID: 17700962]
[24]
Berger ALIM, Ikuma M, Welsh MJ. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc Natl Acad Sci USA 2005; 102(2): 455-60.
[http://dx.doi.org/10.1073/pnas.0408575102] [PMID: 15623556]
[25]
Chang J, Ding Y, Zhou Z, Nie HG, Ji HL. Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19(3) E881
[http://dx.doi.org/10.3390/ijms19030881] [PMID: 29547542]
[26]
Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
[PMID: 11121513]
[27]
Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[28]
Kim YA, Kim DH, Park CB, Park TS, Park BJ. Anti-Inflammatory and Skin-Moisturizing Effects of a Flavonoid Glycoside Extracted from the Aquatic Plant Nymphoides indica in Human Keratinocytes. Molecules 2018; 23(9) E2342
[http://dx.doi.org/10.3390/molecules23092342] [PMID: 30216992]
[29]
Niisato N, Ito Y, Marunaka Y. Activation of Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. Biochem Biophys Res Commun 1999; 254(2): 368-71.
[http://dx.doi.org/10.1006/bbrc.1998.9952] [PMID: 9918844]
[30]
Sun H, Niisato N, Nishio K, Hamilton KL, Marunaka Y. Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl- secretion:useful tools as regulators of Cl- secretion. (BioMed Res Int): 2014; 2014902735
[http://dx.doi.org/10.1155/2014/902735] [PMID: 24818160]
[31]
Zhang S, Smith N, Schuster D, et al. Quercetin increases cystic fibrosis transmembrane conductance regulator-mediated chloride transport and ciliary beat frequency: therapeutic implications for chronic rhinosinusitis. Am J Rhinol Allergy 2011; 25(5): 307-12.
[http://dx.doi.org/10.2500/ajra.2011.25.3643] [PMID: 22186243]
[32]
Illek B, Lizarzaburu ME, Lee V, Nantz MH, Kurth MJ, Fischer H. Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am J Physiol Cell Physiol 2000; 279(6): C1838-46.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1838] [PMID: 11078699]
[33]
Sousa M, Ousingsawat J, Seitz R, et al. An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: A potential treatment for cystic fibrosis. Mol Pharmacol 2007; 71(1): 366-76.
[http://dx.doi.org/10.1124/mol.106.025262] [PMID: 17065237]
[34]
Lim M, McKenzie K, Floyd AD, Kwon E, Zeitlin PL. Modulation of deltaF508 cystic fibrosis transmembrane regulator trafficking and function with 4-phenylbutyrate and flavonoids. Am J Respir Cell Mol Biol 2004; 31(3): 351-7.
[http://dx.doi.org/10.1165/rcmb.2002-0086OC] [PMID: 15191910]
[35]
Jiang Y, Yu B, Wang X, et al. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin. Fitoterapia 2014; 99: 284-91.
[http://dx.doi.org/10.1016/j.fitote.2014.10.013] [PMID: 25451794]
[36]
Ko WH, Law VW, Yip WC, et al. Stimulation of chloride secretion by baicalein in isolated rat distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 282(3): G508-18.
[http://dx.doi.org/10.1152/ajpgi.00291.2001] [PMID: 11842001]
[37]
Yue GG, Yip TW, Huang Y, Ko WH. Cellular mechanism for potentiation of Ca2+-mediated Cl- secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem 2004; 279(38): 39310-6.
[http://dx.doi.org/10.1074/jbc.M406787200] [PMID: 15234961]
[38]
Zhou SS, Hazama A, Okada Y. Tyrosine kinase-independent extracellular action of genistein on the CFTR Cl- channel in guinea pig ventricular myocytes and CFTR-transfected mouse fibroblasts. Jpn J Physiol 1998; 48(5): 389-96.
[http://dx.doi.org/10.2170/jjphysiol.48.389] [PMID: 9852348]
[39]
Obayashi K, Horie M, Washizuka T, Nishimoto T, Sasayama S. On the mechanism of genistein-induced activation of protein kinase A-dependent Cl- conductance in cardiac myocytes. Pflugers Arch 1999; 438(3): 269-77.
[http://dx.doi.org/10.1007/s004240050909] [PMID: 10398855]
[40]
Lansdell KA, Cai Z, Kidd JF, Sheppard DN. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line. J Physiol 2000; 524(Pt 2): 317-30.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00317.x ] [PMID: 10766914]
[41]
French PJ, Bijman J, Bot AG, Boomaars WE, Scholte BJ, de Jonge HR. Genistein activates CFTR Cl- channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am J Physiol 1997; 273(2 Pt 1): C747-53.
[http://dx.doi.org/10.1152/ajpcell.1997.273.2.C747] [PMID: 9277373]
[42]
Roomans GM. Pharmacological treatment of the ion transport defect in cystic fibrosis. Expert Opin Investig Drugs 2001; 10(1): 1-19.
[http://dx.doi.org/10.1517/13543784.10.1.1] [PMID: 11116277]
[43]
Wang F, Zeltwanger S, Yang IC, Nairn AC, Hwang TC. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol 1998; 111(3): 477-90.
[http://dx.doi.org/10.1085/jgp.111.3.477] [PMID: 9482713]
[44]
Niisato N, Nishino H, Nishio K, Marunaka Y. Cross talk of cAMP and flavone in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells. Biochem Pharmacol 2004; 67(4): 795-801.
[http://dx.doi.org/10.1016/j.bcp.2003.10.026] [PMID: 14757180]
[45]
Asano J, Niisato N, Nakajima K, et al. Quercetin stimulates Na+/K+/2Cl- cotransport via PTK-dependent mechanisms in human airway epithelium. Am J Respir Cell Mol Biol 2009; 41(6): 688-95.
[http://dx.doi.org/10.1165/rcmb.2008-0338OC] [PMID: 19251944]
[46]
Cermak R, Vujicic Z, Scharrer E, Wolfram S. The impact of different flavonoid classes on colonic CI- secretion in rats. Biochem Pharmacol 2001; 62(8): 1145-51.
[http://dx.doi.org/10.1016/S0006-2952(01)00758-4] [PMID: 11597584]
[47]
Cermak R, Vujicic Z, Kuhn G, Wolffram S. The secretory response of the rat colon to the flavonol quercetin is dependent on Ca2+-calmodulin. Exp Physiol 2000; 85(3): 255-61.
[PMID: 10825411]
[48]
Grycová L, Dostál J, Marek R. Quaternary protoberberine alkaloids. Phytochemistry 2007; 68(2): 150-75.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.004] [PMID: 17109902]
[49]
Da-Cunha EV, Fechinei IM, Guedes DN, Barbosa-Filho JM, Da Silva MS. Protoberberine alkaloids. Alkaloids Chem Biol 2005; 62: 1-75.
[http://dx.doi.org/10.1016/S1099-4831(05)62001-9] [PMID: 16265921]
[50]
Subeki MH, Matsuura H, Takahashi K, et al. Antibabesial activity of protoberberine alkaloids and 20-hydroxyecdysone from Arcangelisia flava against Babesia gibsoni in culture. J Vet Med Sci 2005; 67(2): 223-7.
[http://dx.doi.org/10.1292/jvms.67.223] [PMID: 15750325]
[51]
Taylor CT, Baird AW. Berberine inhibition of electrogenic ion transport in rat colon. Br J Pharmacol 1995; 116(6): 2667-72.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17224.x] [PMID: 8590987]
[52]
Wu DZ, Yuan JY, Shi HL, Hu ZB. Palmatine, a protoberberine alkaloid, inhibits both Ca(2+)- and cAMP-activated Cl(-) secretion in isolated rat distal colon. Br J Pharmacol 2008; 153(6): 1203-13.
[http://dx.doi.org/10.1038/sj.bjp.0707684] [PMID: 18204477]
[53]
Xu M, Shao Q, Ye S, et al. Simultaneous Extraction and Identification of Phenolic Compounds in Anoectochilus roxburghii Using Microwave-Assisted Extraction Combined with UPLC-Q-TOF-MS/MS and Their Antioxidant Activities. Front Plant Sci 2017; 8: 1474.
[http://dx.doi.org/10.3389/fpls.2017.01474] [PMID: 28883828]
[54]
Xu X, Shan B, Liao CH, Xie JH, Wen PW, Shi JY. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol 2015; 81: 538-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.049 ] [PMID: 26318666]
[55]
Liu Q, Zhu M, Geng X, Wang H, Ng TB. Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella radicata. (Molecules)2017; 22(2) E234
[http://dx.doi.org/10.3390/molecules22020234] [PMID: 28165422]
[56]
Xie JH, Shen MY, Xie MY, et al. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr Polym 2012; 89(1): 177-84.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.068] [PMID: 24750621]
[57]
Liu X, Xie J, Jia S, et al. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 2017; 98: 576-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.028] [PMID: 28192134]
[58]
Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 2009; 121(1): 41-54.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.007] [PMID: 19000919]
[59]
Muanprasat C, Sirianant L, Sawasvirojwong S, Homvisasevongsa S, Suksamrarn A, Chatsudthipong V. Activation of AMP-activated protein kinase by a plant-derived dihydroisosteviol in human intestinal epithelial cell. Biol Pharm Bull 2013; 36(4): 522-8.
[http://dx.doi.org/10.1248/bpb.b12-00711] [PMID: 23343619]
[60]
Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther 2008; 324(2): 798-805.
[http://dx.doi.org/10.1124/jpet.107.129288] [PMID: 18032573]
[61]
Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53(Suppl. 2): S310-29.
[http://dx.doi.org/10.1002/mnfr.200900039] [PMID: 19437486]
[62]
Amabeoku GJ. Antidiarrhoeal activity of Geranium incanum Burm. f. (Geraniaceae) leaf aqueous extract in mice. J Ethnopharmacol 2009; 123(1): 190-3.
[http://dx.doi.org/10.1016/j.jep.2009.02.015] [PMID: 19429361]
[63]
Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolysable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. Pharm Res 2010; 27(3): 490-7.
[http://dx.doi.org/10.1007/s11095-009-0040-y] [PMID: 20225391]
[64]
Crozier A. Dietary phenolics, absorption, mammalian and microbial metabolism and colonic health. Mol Nutr Food Res 2009; 53(Suppl. 1): S5-6.
[http://dx.doi.org/10.1002/mnfr.200990016] [PMID: 19475594]
[65]
Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 2010; 24(11): 4178-86.
[http://dx.doi.org/10.1096/fj.10-160648] [PMID: 20581223]
[66]
Liu J, Jiang JJ, Xie YM. [Clinical characteristics and drug combination analysis in patients with inflammatory bowel disease based on real world HIS data of 14 758 cases]. Zhongguo Zhongyao Zazhi 2016; 41(8): 1553-8.
[PMID: 28884555]
[67]
Tradtrantip L, Namkung W, Verkman AS. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol 2010; 77(1): 69-78.
[http://dx.doi.org/10.1124/mol.109.061051] [PMID: 19808995]
[68]
Ren A, Zhang W, Thomas HG, et al. A tannic acid-based medical food, Cesinex(®), exhibits broad-spectrum antidiarrheal properties: a mechanistic and clinical study. Dig Dis Sci 2012; 57(1): 99-108.
[http://dx.doi.org/10.1007/s10620-011-1821-9] [PMID: 21748285]
[69]
Lai LJHY, Zhang H, Zhu XW, Han XM. The timeliness of Tongxie-Yaofang on patients with D-IBS about improving the clinical symptoms. Shiyong Zhongxiyi Jiehe Linchuang 2013; 13: 27-8.
[70]
Yang C, Xiong Y, Zhang SS, et al. Regulating effect of TongXie-YaoFang on colonic epithelial secretion via Cl- and HCO3- channel. World J Gastroenterol 2016; 22(48): 10584-91.
[http://dx.doi.org/10.3748/wjg.v22.i48.10584] [PMID: 28082810]
[71]
Tsai JC, Tsai S, Chang WC. Comparison of two Chinese medical herbs, Huangbai and Qianniuzi, on influence of short circuit current across the rat intestinal epithelia. J Ethnopharmacol 2004; 93(1): 21-5.
[http://dx.doi.org/10.1016/j.jep.2004.02.024] [PMID: 15182899]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy