Title:Curcumin Based Drug Delivery Systems for Cancer Therapy
Volume: 26
Issue: 42
Author(s): Ankita Tiwari and Sanjay K. Jain*
Affiliation:
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), 470 003,India
Keywords:
Curcumin, cancer therapy, liposomes, nano-formulations, drug delivery, solubility.
Abstract: Cancer accounts for the second major cause of death globally. Conventional cancer therapies lead to
systemic toxicity that forbids their long term application. Besides, tumor resistance and recurrence have been
observed in the majority of cases. Thus, the development of such therapy, which will pose minimum side effects,
is the need of the hour. Curcumin or diferuloylmethane (CUR) is a natural polyphenol bioactive (obtained from
Curcuma longa) which possesses anti-cancer and chemo-preventive activity. It acts by modulating various components
of signaling cascades that are involved in cancer cell proliferation, invasion, and apoptosis process. It
interacts with the adaptive and innate immune systems of our body and causes tumor regression. This may be the
reason behind the attainment of in vivo anti-tumor activity at a very low concentration. Its ease of availability,
safety profile, low cost, and multifaceted role in cancer prevention and treatment has made it a promising agent
for chemoprevention of many cancers. Regardless of the phenomenal properties, its clinical utility is haltered due
to its low aqueous solubility, poor bioavailability, rapid metabolism, and low cellular uptake. In the last few
years, a variety of novel drug carriers have been fabricated to enhance the bioavailability and pharmacokinetic
profile of CUR to attain better targeting of cancer. In this review, the recent developments in the arena of nanoformulations,
like liposomes, polymeric NPs, solid lipid NPs (SNPs), polymeric micelles, nanoemulsions, microspheres,
nanogels, etc. in anticancer therapy have been discussed along with a brief overview of the molecular
targets for CUR in cancer therapy and role of CUR in cancer immunotherapy.